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Sparse Multiscale Patches

for Image Processing

Paolo Piro, Sandrine Anthoine, Eric Debreuve, and Michel Barlaud

Université de Nice Sophia-Antipolis / CNRS, Sophia-Antipolis, France

Abstract. This paper presents a framework to define an objective mea-
sure of the similarity (or dissimilarity) between two images for image
processing. The problem is twofold: 1) define a set of features that cap-
ture the information contained in the image relevant for the given task
and 2) define a similarity measure in this feature space.
In this paper, we propose a feature space as well as a statistical mea-
sure on this space. Our feature space is based on a global descrip-
tor of the image in a multiscale transformed domain. After decompo-
sition into a Laplacian pyramid, the coefficients are arranged in in-
trascale/interscale/interchannel patches which reflect the dependencies
of neighboring coefficients in presence of specific structures or textures.
At each scale, the probability density function (pdf) of these patches is
used as a descriptor of the relevant information. Because of the sparsity
of the multiscale transform, the most significant patches, called Sparse
Multiscale Patches (SMP), describe efficiently these pdfs. We propose a
statistical measure (the Kullback-Leibler divergence) based on the com-
parison of these probability density functions. Interestingly, this measure
is estimated via the nonparametric, k-th nearest neighbor framework
without explicitly building the pdfs.
This framework is applied to a query-by-example image retrieval method.
Experiments on two publicly available databases showed the potential
of our SMP approach for this task. In particular, it performed com-
parably to a SIFT -based retrieval method and two versions of a fuzzy
segmentation-based method (the UFM and CLUE methods), and it ex-
hibited some robustness to different geometric and radiometric deforma-
tions of the images.

Key words: multiscale transform, sparsity, patches, Kullback-Leibler
divergence, k-th nearest neighbor.

1 Introduction

1.1 Similarity in image processing

Defining an objective measure of the similarity (or dissimilarity) between two
images (or parts of them) is a recurrent question in image processing that is
dealt with in quite different ways. When dealing with inverse problems such as
denoising or deconvolution of images, a similarity measure is needed to evaluate
how well the estimate explains the observations. However, for these problems,



efforts have been concentrated in the conditioning of the inverse operator as
well as the spatial properties of the estimated images. The measure of fitness to
the data has been less studied and is usually a simple euclidean norm in pixel

space such as: d(I1, I2) =
√∑

i∈{pixel} |I1(i) − I2(i)|2. At the other end of the

spectrum, for some applications, the similarity measure is at the core of the
problem and has received much more attention. This is the case for applications
such as tracking or image retrieval, where the task is to rank the images of a
database according to their visual similarity to the given query image. In any
case, defining a similarity measure is a two steps process:

1. Define a set of properties that capture the information contained in the image
relevant for the given task. This step defines the so-called feature space.

2. Define a similarity measure in the feature space. This measure is often (but
not always) a distance.

Number of possibilities have been explored for the feature space itself. Some
spaces involve a transform domain (e.g. wavelet transforms), some are based
on various descriptors. A variety of descriptors (see [1] for a review) has been
proposed in the literature. Local descriptors (e.g. salient points [2]) are based
on a subset of the pixels of the image while global descriptors give information
about the image as a whole (e.g. color histograms [5]). Local descriptors exploit
the information given by a limited of number of points of interest together with
their spatial neighborhood. Hence much information in the image is not used in
these methods (see [4] for an extensive comparison and performance evaluation
of most local descriptors). On the contrary, global descriptors include informa-
tion of the whole image (e.g. histograms of intensity values). Global descriptors
may be defined at the pixel level (e.g. color histograms [5]) and include no no-
tion of spatial correlation or at the patch level including spatial and/or scale
correlations. The concept of global patch descriptors is supported by statistical
studies on images [6]. Here, we propose a new descriptor of this kind.

The similarity measure can range from simple euclidean norm to more sophis-
ticated measures: robust estimators have been used for optical flow [7, 8], Bhat-
tacharya’s distance for tracking [9], entropic measure such as entropy, Kullback-
Leibler divergence or mutual information for registration [10, 11]. A general re-
quirement for the similarity measure is the visual relevance, i.e. a strong corre-
lation with human perception of similarity itself. Research in vision science has
already brought some perspectives on how to do so [12]. Nevertheless, designing
systems purely based on the perceptual characteristics of the human visual sys-
tem is a difficult task. Therefore, once meaningful features have been selected,
we prefer to employ metrics that have a mathematical foundation and can be
easily implemented. For this purpose, several distance metrics have been used
to compare feature vectors for various tasks of image processing. The authors
of [13] give a variety of such measures and empirically show how the selection of
a metric affects the performances of a retrieval system.

In this paper we propose a feature space as well as a statistical measure on
this space. Our feature space is based on a global descriptor in a transformed



domain that we call Sparse Multiscale Patches. The measure we propose on this
space is statistical: it compares the probability density function (pdf) of these
patches.

1.2 Proposed feature space and measure

We propose a new descriptor based on Sparse Multiscale Patches. In short, we
integrate using probability distributions the local information brought by the
SMP. The key aspects of these descriptors are the following:

– A multiscale representation of the images;
– Inter/intrascale patches that describe locally the structure of the image at a

given scale;
– A sparse repartition: most of the energy is concentrated in a few patches.

Note that the occurrence in different parts of an image of similar patches of
spatially neighboring pixels has been exploited in image processing [14–16].
Here the concept is used for multiscale coefficients as proposed in [17].

The visual content of images is represented by patches of multiresolution co-
efficients. The extracted feature vectors are viewed as samples from an unknown
multidimensional distribution. The multiresolution transform of an image being
sparse, a reduced number of patches yields a good approximation of the dis-
tribution. We estimate the similarity between images by a pseudo-distance (or
measure) between these multidimensional probability density functions.

We propose to use the Kullback-Leibler (KL) divergence as a similarity mea-
sure that quantifies the closeness between two probability density functions.
Such measure has already shown good performances in the context of image
retrieval [13]. It has already been used for the simple case of parametrized
marginal distributions of wavelet coefficients [18, 19], assuming independence of
the coefficients. In contrast, we define multidimensional feature vectors (patches),
that capture interscale and intrascale dependencies among subband coefficients.
These are better adapted to the descriptor of local image structures and texture.
In addition, for color images, we take into account the dependencies among the
three color channels; hence patches of coefficients are also interchannel. This ap-
proach implies to estimate distributions in a high-dimensional statistical space,
where fixed size kernel options to estimate distributions or divergences fail. Al-
ternatively, we propose to estimate the KL divergence directly from the samples
by using the k-th nearest neighbor (kNN) approach, i.e. adapting to the local
sample density.

1.3 Organization of the paper

This paper is organized as follows. In Section 2, we define our feature space
which consists of inter/intrascale and interchannel patches of Laplacian pyramid
coefficients for color images, called Sparse Multiscale Patches. We then define
the global similarity on this feature space in Section 3 by combining similarities



between the probability density functions of these patches at different scales. The
comparison between pdfs is measured by the KL divergence. We also explain how
to estimate this quantity. Finally, in the last section we illustrate the use of the
proposed measure in a particular application: image retrieval.

2 Feature space: Sparse Multiscale Patches

Throughout this paper, we will denote the input image by I, the scale of the
multiresolution decomposition by j, and the location in the 2D image space by
k.

2.1 Multiscale coefficients: strengths and limits

The wavelet transform enjoys several properties that have made it quite suc-
cessful in signal processing and that are relevant for the definition of similarity
between images. Indeed, it provides a sparse representation of images, meaning
that it concentrates the informational content of an image into few coefficients of
large amplitude while the rest of the coefficients are small. This combined with a
fast transform is what makes wavelet thresholding methods so powerful: in fact
just identifying large coefficients is sufficient to extract where the information
lies in the image. For example, denoising can be done very efficiently by simply
thresholding wavelet coefficients as proved in [20]. Such simple coefficient-wise
treatments provide results of excellent quality at a reduced computational cost.

In fact, these classical wavelet methods treat each coefficient separately, rely-
ing on the fact that they are decorrelated. However, the wavelet coefficients are
not independent and these dependencies are the signature of structures present
in the image. For example, a discontinuity between smooth regions at point k0

will give large coefficients at this point at all scales j (w(I)j,k0
large for all j).

Classical methods using coefficient-wise treatments may destroy these dependen-
cies between coefficients and hence alter the local structure of images. Therefore
models using the dependencies between coefficients have been proposed and used
in image enhancement (e.g. [17, 21]). In particular, the authors of [17] introduced
the concept of patches of wavelet coefficients (which they called “neighborhoods
of wavelet coefficient”) to represent efficiently fine spatial structures in images.

2.2 Multiscale patches for color images

Following these ideas, we define a feature space based on a sparse descriptor of
the image content by a multiresolution decomposition. More precisely, we group
the Laplacian pyramid coefficients of the three color channels of the image I into
coherent sets called patches. Here the coherence is sought by grouping coefficients
linked to a particular scale j and location k in the image.

In fact, the most significant dependencies are seen between a coefficient
w(I)j,k and its closest neighbors in space: w(I)j,k±(0,1), w(I)j,k±(1,0) and in scale:



Fig. 1. Building a patch of multiscale coefficients, for a single color channel image.

w(I)j−1,k, where j−1 represents the scale a step coarser than the scale j. Group-
ing the closest neighbors in scale and space of the coefficient w(I)j,k in a vector,

we obtain the patch
→
w(I)j,k (see Fig. 1):

→
w(I)j,k =

(
w(I)j,k, w(I)j,k±(1,0), w(I)j,k±(0,1), w(I)j−1,k

)
(1)

which describes the structure of the grayscale image I at scale j and location k.
The probability density functions of such patches at each scale j have proved to
characterize fine spatial structures in grayscale images [17, 22]. Such patches are
therefore relevant features for our problem as will be seen in Section 4.3.

We consider color images in the luminance/chrominance space: I=(IY, IU, IV).
Since the coefficients are correlated through channels, we aggregate in the patch
the coefficients of the three channels:

w(I)j,k =
(→
w(IY )j,k,

→
w(IU )j,k,

→
w(IV )j,k

)
(2)

with
→
w(IY )j,k,

→
w(IU )j,k and

→
w(IV )j,k given by Eq.(1).

The low-frequency approximation that results from the Laplacian pyramid is
also used to build additional feature vectors. Namely, 3× 3 pixel neighborhoods
along all three channels are joined together to form patches of dimension 27
(whereas patches from the higher-frequency subbands are of dimension 18, as
defined in Eq.(2)). The union of the higher-frequency and low-frequency patches
forms our feature space. The patches of this augmented feature space will be
denoted by w(I)j,k.

2.3 Multiscale transform

The coefficients are obtained by a Laplacian pyramid decomposition [23]. In-
deed, critically sampled tensor wavelet transforms lack rotation and translation



Fig. 2. White indicates the location of patches of largest energy (1/8 of the patches is
selected for each subband).

invariance and so would the patches made of such coefficients. Hence we pre-
fer to use the Laplacian pyramid which shares the sparsity and inter/intrascale
dependency properties with the wavelet transform while being more robust to
rotations. Moreover, the Laplacian pyramid is at the basis of the SVC standard
and thus our approach will be compatible with SVC.

2.4 Sparsity of the multiscale patches

As we have seen earlier, multiscale coefficients provide a sparse representation of
images by concentrating the information into a few coefficients of large amplitude
and this sparsity is exploited on the raw coefficients in thresholding methods.
As illustrated in Fig. 2, our experiments show that the patches of multiscale
coefficients of large overall energy (sum of the square of all coefficients in a patch)
also concentrate the information. More precisely, we selected a fixed proportion
of patches at each scale of the decomposition and proved that the resulting
similarity measure (defined in section 3) remains consistent (see [24] for details).
Since the total number of patches is 4/3N with N the number of pixel in an
image, the number of samples we have in the feature space is quite large as far as
measuring a similarity is concerned. The possibility of selecting a small number
of patches which represent the whole set well is highly desirable and we will
exploit it to speed up our computations.

Note that other selecting procedures may be investigated such as using the
energy of the central coefficient, using the sum of absolute differences in the
patches or thresholding based on the variance of the patches.

Let us now explain how we define a similarity in this feature space.



3 Similarity measure

3.1 Definition

Our goal is to define a similarity measure between two images I1 and I2 from
their feature space i.e. from their respective set of patches {w(I1)j,k}j,k and
{w(I2)j,k}j,k. When images are clearly similar (e.g. different views of the same
scene, images containing similar objects...), their patches w(I1)jo,ko

and w(I2)jo,ko

do not necessarily correspond. Hence a measure comparing geometrically corre-
sponding patches would not be robust to geometric transformations. Thus, we
propose to compare the pdfs of these patches. Specifically, for an image I, we
consider for each scale j the pdf pj(I) of the set of patches {w(I)j,k}k.

To compare two pdfs, we place ourselves in the framework of Bregman diver-
gences, which allows to generate a class of metrics that generalize the classical
squared Euclidean distance. These divergences do not necessarily satisfy the tri-
angle inequality nor are symmetric (they are not metrics) but share similar prop-
erties. A Bregman divergence is derived from a convex function. For example,
the square Euclidean distance stems from the square function f(x) = x2, while
the Kullback-Leibler divergence derives from the function f(x) = x log x [25,
26]. In this paper, we use the Kullback-Leibler divergence because it is a Breg-
man divergence that derives from the Shannon differential entropy (quantifies
the amount of information in a random variable through its pdf). The Kullback-
Leibler divergence (Dkl) is the following quantity [13]:

Dkl(p1||p2) =

∫
p1 log(p1/p2), (3)

This divergence has been successfully used for other applications in image pro-
cessing in the pixel domain [27, 16], as well as for evaluating the similarity
between images using the marginal pdf of the wavelet coefficients [18, 19]. In
this paper, we propose to measure the similarity S(I1, I2) between two images
I1 and I2 by summing over scales the divergences between the pdfs pj(I1) and
pj(I2):

S(I1, I2) =
∑

j

αjDkl(pj(I1)||pj(I2)) (4)

where αj is a positive weight that may normalize the contribution of the different
scales.

3.2 Limits of the parametric approaches to the estimation

The estimation of the similarity measure S consists of the evaluation of diver-
gences between pdfs pj(Ii) of high dimension. This raises two problems. Firstly,
estimating the KL divergence, even with a good estimate of the pdfs, is hard
because this is an integral in high dimension involving unstable logarithm terms.
Secondly, the accurate estimation of a pdf itself is difficult due to the lack of
samples in high dimension (curse of dimensionality). The two problems should
be embraced together to avoid cumulating both kinds of errors.



A first idea consists in parametrizing the shape of the pdf. The marginal pdf
of multiscale coefficients is well modeled by generalized Gaussians. In this case,
the KL divergence is an analytic function of the pdf parameters. This technique
has been used in [18, 19] to compare images on the basis of the marginal pdf
of their wavelet coefficients. To our knowledge, the generalized Gaussian model
cannot be extended to account for correlations in higher dimension. Mixture of
Gaussians on the other hand are efficient multidimensional models accounting
for correlations that fit well the pdf of wavelet coefficients patches [22]. However
the KL divergence is not an analytic function of the model parameters.

Thus, we propose to make no hypothesis on the pdf at hand. We therefore
spare the cost of fitting model parameters but we have to estimate the diver-
gences in this non-parametric context. Conceptually, we combine the Ahmad-Lin
approximation of the entropies necessary to compute the divergences with “bal-
loon estimates” of the pdfs using the kNN approach.

3.3 Non-parametric estimation of the similarity measure

The KL divergence can be written as the difference between a cross-entropy Hx

and an entropy H (see Eq.(3)):

Hx(p1, p2) =−

∫
p1 log p2, H(p1)=−

∫
p1log p1. (5)

Let us explain how to estimate these terms from an i.i.d sample set W1 =
{w1

1,w
1
2, ..,w

1
N1

} of p1 and an i.i.d sample set W2 = {w2
1,w

2
2, ..,w

2
N2

} of p2.

(The samples are in R
d.)

Assuming we have estimates p̂1, p̂2 of the pdfs p1, p2, we use the Ahmad-Lin
entropy estimators [28]:

Hal
x (p̂1, p̂2) = − 1

N1

N1∑

n=1

log[p̂2(w
1
n)], Hal(p̂1) = − 1

N1

N1∑

n=1

log[p̂1(w
1
n)]. (6)

General non-parametric pdf estimators from samples can be written as a sum
of kernels K with (possibly varying) bandwidth h (see [29] for a review):

p̂1(x) = 1
N1

∑N1

n=1
Kh(W1,x)(x − w1

n). (7)

– Parzen estimators h(W1, x) = h: the bandwidth is constant. They perform
very well with samples in one dimension but become unadapted in high
dimension due to the sparsity of the samples: the trade-off between a band-
width large enough to perform well in low local sample density (which may
oversmooth the estimator) and a bandwidth small enough to preserve lo-
cal statistical variability (which may result in an unstable estimator) cannot
always be achieved. To cope with this problem, kernel estimators using adap-
tive bandwidth have been proposed;



– Sample point estimators h(W1, x) = hW1(w1
i ), i ∈ {1, N1}: the bandwidth

adapts to each sample w1
i given the sample set W1;

– Balloon estimators h(W1, x) = hW1(x): the bandwidth adapts to the point
of estimation x given the sample set W1.

We use a balloon estimator with a binary kernel and a bandwidth computed in
the k-th nearest neighbor (kNN) framework [29]. This is a dual approach to the
fixed size kernel methods and was firstly proposed in [30]: the bandwidth adapts
to the local sample density by letting the kernel contain exactly k neighbors of
x among a given sample set:

Kh(x)(x − w1
n) =

1

vd ρd
k,W1(x)

δ
[
||x − w1

n|| < ρk,W1(x)
]

(8)

with vd the volume of the unit sphere in R
d and ρk,W(x) the distance of x

to its k-th nearest neighbor in W. Although this is a biased pdf estimator (it
does not integrate to one), it has proved to be efficient for high-dimensional
data [29]. Plugging Eq.(8) in Eq.(6), we obtain the following estimators of the
(cross-)entropy:

Hknn(p̂1) = log[N1 vd] − log(k) +
d

N1

N1∑

n=1

(
log[ρk,W1(w1

n)]
)
, (9)

Hknn
x (p̂1, p̂2) = log[N2 vd] − log(k) +

d

N1

N1∑

n=1

(
log[ρk,W2(w1

n)]
)
. (10)

As previously stated, these estimates are biased. A correction of the bias has
been derived in [31] in a different context. In the non-biased estimators of the
(cross)-entropy the digamma function ψ(k) replaces the log(k) term:

Hknn(p̂1) = log[(N1−1)vd] − ψ(k) +
d

N1

N1∑

n=1

(
log[ρk,W1(w1

n)]
)
, (11)

Hknn
x (p̂1, p̂2) = log[N2 vd] − ψ(k) +

d

N1

N1∑

n=1

(
log[ρk,W2(w1

n)]
)
. (12)

And hence the KL divergence reads:

Dkl(p1||p2) = log
[

N2

N1−1

]
+ d

N1

N1∑

n=1

log[ρk,W2(w1
n)]− d

N1

N1∑

n=1

log[ρk,W1(w1
n)]. (13)

This estimator is valid in any dimension d and robust to the choice of k.

4 Application: Image Retrieval

4.1 Content-based image retrieval

With the rapid growing of general-purpose image collections, performing effi-
ciently a search on such large datasets becomes a more and more critical task.



Content-based image retrieval (CBIR) systems tackle this task by analyzing the
content of images in order to provide meaningful signatures of them. Automatic
search of the target images is made possible by defining a similarity measure
on the underlying signature space which has a reduced dimension. As a result,
content based image retrieval mainly relies on describing the image content in
a relevant way (the feature space) and defining a quantitative measure on this
space (the similarity measure): the retrieval task is then accomplished by ranking
images in increasing order of the pseudo-distance between their feature vector
and the one of a given query image.

As seen in the introduction, a variety of descriptors and similarity measures
have been proposed to represent image content. In this paper, we will compare
our SMP approach to three different approaches to image retrieval, two of them
relying on the same similarity measure. The first approach is based on SIFT

descriptors [3], which are considered state-of-the-art amongst local descriptors.
Salient points are extracted by detecting the highest coefficients in the wavelet
transform of the image and SIFT features are then represented by histograms
of the gradient orientation in regions of interest. Matching the SIFT features
obtained in two images allows then to quantify their similarity. The other meth-
ods to which we compared ours use a segmentation-based fuzzy logic approach
called UFM for Unified Feature Matching [32]. The descriptors are fuzzy features
(called fuzzy sets) reflecting the color, texture, and shape of each segmented re-
gion. The UFM measure then integrates the fuzzy properties of all the regions
to quantify the similarity between two images. Using this measure, the authors
proposed two image retrieval algorithms. The first one is a strictly content-based
approach (similarly to ours): it consists in ranking the database images based
solely on their UFM distance to the query. We refer to it as the UFM approach.
The retrieval accuracy is improved by a second method called CLUE : the UFM

distances between target images themselves are used to obtain a clustering of
the data from which the ranking is obtained. Consequently, this method in-
volves additional information compared to strict content-based systems such as
our approach.

4.2 Database and parameter settings

Databases

Numerical experiments were performed on two different databases. The first one
contains small categories and allows to evaluate specific performances of a re-
trieval system such as its robustness to deformations; while the second database,
with larger categories, allows to test global retrieval performances.

One of these databases contains 1,000 images of the Nister Recognition
Benchmark collection [33]. The images of size 640x480 pixels are grouped by
sets of four images showing the same scene or object. Their content is quite vari-
ous, from indoor scenes with a single object to outdoor scenes. Images belonging
to the same group are related by geometric deformations (rotation, translation,
zoom and perspective) as well as radiometric deformations (changes of bright-



ness and contrast). The ground-truth for any query image is clear: exactly the
three other images of the same group are relevant.

The SMP retrieval method was also tested on a general-purpose image data-
base from COREL that has been widely used for CBIR evaluation purposes. In
particular, results presented in [34] can be considered as a reference. We used
the same subset of the COREL database as in [34]. It includes 1,000 images
of size 384 × 256 or 256 × 384 which are classified in 10 semantic categories
(Africa, Beach, Buildings, Buses, Dinosaurs, Flowers, Elephants, Horses, Food,

Mountains). In some categories, the visual similarity between two given images
is not always obvious since the grouping has been made in a semantic sense (e.g.,
category “Africa”).

Parameter settings

To build the patches as defined in section 2.2, the Laplacian pyramid was com-
puted for each channel of the image (in the YUV color space) with a 5-point
binomial filter w5 = [1 4 6 4 1]/16, which is a computationally efficient approxi-
mation of the Gaussian filter classically used to build Laplacian pyramids. Three
high-frequency subbands plus the low-frequency approximation were used.

In the following experiments, 1/64 (resp. 1/32, 1/16 and all) of the patches
were selected in the first high-frequency (resp. second, third and low-frequency)
subband to describe an image (see 2.4). At each scale, the KL divergence was
estimated in the kNN framework, with k = 10. The contributions to the similar-
ity measure from the divergences of all subbands were equally weighted (αj = 1
in Eq.(4)).

Note that the use of the Jensen-Shannon divergence, which is a symmetrized
version of the KL divergence, has also been studied. We found that the perfor-
mances of this symmetric measure are less good than with the KL divergence,
and so until further understanding of this phenomenum, we report here only the
results with the KL divergence.

4.3 Numerical experiments

This section presents an experimental analysis of the SMP method; the patch-
based retrieval algorithm is evaluated in terms of its ability to retrieve similar
images in a query-by-example context. Images belonging to the Nister database
were used to evaluate the robustness of the method to different geometric trans-
formations. A set of artificially-degraded images of this database was also used
to evaluate the retrieval performances with respect to radiometric deformations
(JPEG2000 compression noise). The global retrieval performances on the Nis-
ter database were evaluated by ROC (Receiver Operating Characteristic) curves
and our method was compared to a reference SIFT -based retrieval algorithm.
For the COREL database, the global retrieval performances were evaluated by
precision curves and our method was compared with the fuzzy, segmentation-
based UFM approach. Note that for all the following experiments, the given
distance between images is S (Eq. (4)), hence the smaller the given distance is
the more similar the two considered images are.



Robustness to geometric deformations

The robustness of a retrieval system to geometric deformations is its ability
to find relevant images in spite of some transformations of the query, such as
changes of viewpoint, rotations, zoom. This is an important requirement in image
retrieval, e.g. for finding a given object in different images independently of
the viewpoint. Because of its structure, the Nister database allows to evaluate
the robustness of the proposed method to geometric deformations. Indeed, the
database is composed of groups of four images containing the same object or
scene under different viewpoints and/or lightening conditions.

Examples of retrieval for five query images taken from the database are pre-
sented in Fig. 3. In this figure, each row displays the retrieval result for the
query image shown in the leftmost column. From the second column on, one can
see the first 4 retrieved images ranked in increasing order of their distance to
the query. Hence the second leftmost image is the most similar one, excluding
the query image which is always ranked first with a distance of zero. The first
retrieved images are generally relevant for the query, in spite of rotations (row
2), changes of viewpoint (rows 1, 3, 5) and zooms (rows 2, 4). This shows that
the proposed descriptors and similarity measure are robust in terms of geometric
deformations for the retrieval problem.

Robustness to JPEG2000 compression

Another important requirement for content-based retrieval systems is the robust-
ness to radiometric deformations. Transmission on heterogeneous networks re-
quires compression. This process induces a loss of quality that can be significant
especially in critical transmission conditions. A retrieval system is expected to
be robust to compression quality. To test the proposed method on this specific
point, groups of images from the Nister database were expanded. Namely, three
highly-compressed versions of one image were added to each group. They were
obtained by setting three different quality levels of JPEG2000 compression.

Queries were launched on this dataset with both original and compressed
images. An example of the results is shown in Fig. 4, where a non-compressed
image is used as a query. The distance from the three compressed versions to
the query image being quite small, the system ranked them first and before any
geometrically deformed version of the query. This behavior is general and still
holds when compressed images are used as queries, confirming the reliability
of the proposed similarity measure in terms of its robustness to compression.
Moreover, the distance to the query increases as the compression level increases.
This is shown in Fig. 4, where images A, B, C are compressed versions of the
query image in decreasing order of quality, the PSNR being respectively of 31.8,
29.7 and 29.3 dB.

Image retrieval performances (I): ROC curves and comparison with a
SIFT -based method

The overall performances of the SMP retrieval method were evaluated by ana-



Image #17 Dist = 17.1 Dist = 20.5 Dist = 24.9 Dist = 39.8

Image #72 Dist = 31.1 Dist = 39.5 Dist = 42.6 Dist = 44.0

Image #396 Dist = 61.5 Dist = 75.9 Dist = 78.2 Dist = 82.8

Image #625 Dist = 6.4 Dist = 6.6 Dist = 9.5 Dist = 12.9

Image #782 Dist = 21.1 Dist = 31.6 Dist = 39.2 Dist = 44.0

Fig. 3. Retrieval results for 5 images of the Nister database. For each row, left to right:
query image; first 4 ranked images of the database (excluding the query). For each
retrieved image, the distance to the query is also shown (smaller distances meaning
more similar).

lyzing retrieval results on the Nister dataset; namely, each of the 1,000 images
was used as a query and the similarity measure to all other images was com-
puted. The same experiment was conducted by using a state-of-the-art retrieval
method based on (local) SIFT descriptors [35]. For this method, the similarity
measure is defined as the number of points of interest that can be matched be-
tween two images. The results of both methods were quantitatively compared
by means of ROC curves. These are recall versus 1 − precision curves1 aver-
aged over all queries. The larger the precision and recall values, the better the
retrieval performances (this corresponds to the top left side of the plot of an
ROC curve).

The results of our SMP retrieval method are shown in Fig. 5 for different
subset sizes of the database. Namely, average results on the first 100, 200 or 500
images are compared to those on the whole dataset (1000 images). Although
the probability of retrieval errors increases with the size of the database, global

1 Recall or positive rate = D

R
, 1-precision or false positive rate = 1 − D

C
,

with R=#{relevant images for a given query}, C=#{desired number of retrieved
images} or cut-off, D=#{correctly detected images}.



Fig. 4. Evaluation of the robustness to JPEG compression for one query image. Dis-
played distances are from the query to the 6 relevant images - 3 compressed (A, B, C)
and 3 geometrically transformed versions of the query - and to the first 2 non-relevant
images. PSNR of the compressed versions: A: 31.8dB, B: 29.7dB and C: 29.3dB.

performance is still satisfactory for a larger dataset. In any case, the best trade-
off between precision and recall was reached when we retrieved three images,
i.e. when the cut-off value matches exactly the number of relevant images; as a
result, there is a high probability that the retrieved images are all and only the
relevant ones.

Finally, the results for our SMP and the SIFT -based approach are shown
in Fig. 6. The latter were obtained by running a publicly available Matlab im-
plementation of the SIFT algorithm [35]. Because of the long processing time
of the SIFT implementation (4.8 s on average for each comparison between two
images), performing a query with each image of the database could not be done
in a reasonable time. In consequence, a comparison was made by querying a
subset of 100 images. In light of the ROC curves, the performances of our SMP

method and the SIFT -based algorithm are comparable for this experiment.

Image retrieval performances (II): precision curve and comparison
with the UFM method

The SMP retrieval method was also tested on a subset of the COREL
database and compared to the UFM and CLUE methods [34]. This database is
made of a small number of categories (10) containing a large number of images
per category (100). Hence, ROC curves are not adapted to evaluate the global
performances of a retrieval system in this case. Instead, we used the Average



Fig. 5. Retrieval performance of the SMP method for different subset sizes of the
Nister database; the roc curves were obtained for cut-off values ranging from 1 to 9.

Precision to evaluate the retrieval performances for each category (the precision
values for a cut-off equal to 100 were averaged over all images of the category)
as in [34].

Examples of our retrieval results are shown in Fig. 7 and the Average Pre-

cision is given for each category in Fig. 8 (dark blue bars). The results of the
UFM and CLUE approaches are also displayed in this latter figure for compar-
ison. Fig. 7 illustrates the fact that the most of time, the first four retrieved
images belong to the query’s category (row 1, 4, and 5). This figure also illus-
trates well the difficulties encountered in this task: since the categories are quite
large and diverse, images belonging to different categories may have very similar
visual properties that are picked by our method. For example, the elephant and
building (row 2 of Fig. 7) have dominating vertical structures and same dominant
colors. Likewise, images belonging the “mountains” or “beaches” are freqently
mismatched (row 3 of Fig. 7). These retrieval errors are common to all methods
comparing images solely on the basis of the image content (i.e. introducing no
semantics) and explain the fluctuation of the results displayed in Fig. 8 for all
three methods. Our method compares well with the two established methods
displayed here: it is more accurate than UFM (gray bars) for six categories out
of ten; the accuracy is also better than or comparable to CLUE (white bars)
for five categories out of ten. On average, our method performs better than
the UFM approach and slightly less well than the CLUE one. As pointed out
in Section 4.1, the SMP and UFM approaches are strictly content-based ap-
proaches. The CLUE method, while performing better, uses additional image
distances and is therefore much more time-consuming. Thus, the performances
of our method seem quite promising for three reasons:



Fig. 6. Comparison of the retrieval performances of the SMP approach and the SIFT -
based algorithm; the roc curves were obtained for cut-off values going from 1 to 9.

– It performs slightly better than the UFM approach which relies on the same
information.

– The results are not far from those of the more advanced CLUE approach
which relies on more information.

– A similar clustering processing as the one applied with the UFM measure
in CLUE may be applied to improve the SMP approach.

In conclusion, in its current state of development, the proposed SMP measure
does not outperform the state-of-the-art methods selected as benchmark here.
However, it does bring a novel approach to tackle the problem of image retrieval.

4.4 Computational speed-up(s)

The evaluation of our SMP similarity requires the computation of several KL
divergences in a non-parametric framework. Since this is a time-consuming task,
we propose two ways to speed-up the computations. The first one is based on
a GPU implementation of the algorithm, the second on a preselection of the
relevant images in the database.

GPU implementation

When computing the similarity between two images with the SMP approach,
most of the time is devoted to the search of the k-th nearest neighbors in the
evaluation of the KL divergences. Indeed, finding a k-th nearest neighbor requires
to compute and sort distances between features (here the patches). The “brute
force” algorithm has a complexity of order O(N2) for N samples in the feature



Flowers #64 Dist = 15.8 Dist = 22.0 Dist = 23.5 Dist = 25.5

Elephants #61 Dist = 2.0 Dist = 5.3 Dist = 6.0 Dist = 6.3

Beach #51 Dist = 12.4 Dist = 12.6 Dist = 12.8 Dist = 12.9

Buildings #87 Dist = 14.4 Dist = 15.7 Dist = 17.7 Dist = 20.0

Food #56 Dist = 16.3 Dist = 18.1 Dist = 18.5 Dist = 19.1

Fig. 7. Retrieval results for 5 images of the Corel database. For each row, left to
right: query image; first 4 ranked images of the database (excluding the query image).
For each retrieved image, the SMP similarity measure to the query is also shown.

set. Smarter algorithms with a lower complexity (typically of order O(N log N))
such as the classical KD-tree (ANN) algorithm [36] have been designed. Nev-
ertheless, in practice, the computation time of a similarity between two images
with the SMP approach remains large even with this low-complexity algorithm:
on average 2.2s on a Pentium 4 3.4 GHz (2GB of DDR memory) with the ANN
algorithm.

To speed up the computation time, we developed a parallel implementation
of the kNN search on a Graphic Processing Unit (GPU) [37] using CUDA. This
implementation is based on a brute force approach since recursive algorithms
(the preferred strategy when using trees such as in ANN) are not parallelizable.
It was implemented on an NVIDIA GeForce 8800 GTX card with 768 MB of
memory. The computation time for one similarity measure between two images
required 0.2s on average (i.e., 10 times less than with the CPU implementation
of ANN).



Fig. 8. Average Precision for each category of the Corel database. Dark blue bars:
SMP approach; gray bars: UFM approach; white bars: CLUE approach.

As of today, the brute force algorithm parallelized on GPU is by far the
fastest implementation of our method. Developing smart algorithms (such as the
KD-tree one), which may not be parallelizable but have a very low complexity,
is a topic of active research, as is the development of GPU for computational
purposes. Hence both types of methods should be kept in mind for efficient
implementations in the near future.

Preselection of the relevant images

The computational speed can be improved by splitting the retrieval task into
two steps:

1. Only the low frequency contribution to the similarity measure defined in
Eq. (4) is computed for all images in the database. This “partial” similarity
measure produces a first ranking of the database images from which the first
n images are selected for the next step.

2. The complete similarity measure is computed between the query and the n
selected images.

This procedure saves computation time as it computes the whole similarity mea-
sure only for a reduced number of images (computing only part of it for images
that are unlikely to be relevant to the query). The smaller the size of the pres-
elected subset, the greater the improvement in terms of computation time. For
example, when a query on the Nister database is processed following the de-
scribed two-step procedure with a selected subset of 50 images, the average
computation time per image drops from 0.2s to about 0.06s with the GPU im-
plementation (and with similar retrieval performances). It is clear however that
the number of preselected images cannot be arbitrarily small without seriously



affecting retrieval performances. It should be large enough compared to the num-
ber of images in the database as well as the number of relevant images for the
query.

5 Conclusion

In this paper, we proposed a new image similarity framework based on high-
dimensional probability distributions of patches of multiscale coefficients which
we call Sparse Multiscale Patches. Feature sets are represented by these patches
of subband coefficients that take into account intrascale, interscale and inter-
channel dependencies. The similarity between two images was defined as a lin-
ear combination of the “closeness” between the distributions of their features at
each scale measured by the Kullback-Leibler divergence. The Kullback-Leibler
divergences are estimated in a non-parametric framework, via a kNN approach.
The proposed similarity measure seems to be stable when selecting a reduced
number of patches, proving that a few significant patches are enough to repre-
sent the image features. This is a consequence of the sparsity of the multiscale
transform.

We applied this framework to image retrieval. The proposed approach takes
advantage of the properties of its global multiscale descriptors. In particular,
it is robust to JPEG2000 compression (i.e. it matches the visual similarity be-
tween images with different amounts of blur or compression noise). Retrieval
experiments were conducted on two publicly available datasets of real world
images (Nister Recognition Benchmark and the COREL database) to evaluate
the average performances of the method. In particular, the Nister dataset was
used to benchmark the robustness to several geometric image deformations, such
as change of viewpoint, rotation and zoom. Our results showed the reliability of
the SMP approach with respect to these deformations. In addition, although our
method is new, its performances tested on two databases are very close to those
of several established retrieval methods: a reference retrieval method based on
(local) SIFT descriptors and two versions of a fuzzy, segmentation-based UFM

approach: UFM and CLUE . This indicates that the SMP approach adapts to
quite different retrieval tasks, from the object level (on the Nister database) to
the level of general categories (on the COREL database). Finally, our Sparse
Multiscale Patches approach follows the same multiscale philosophy as the new
compression standard SVC [38], presuming nearly straightforward use of low-
level bitstream components for retrieval purposes. This framework can also be
used for other image processing tasks such as tracking or denoising.
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