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CERTIFICATES AND RELAXATIONS FOR INTEGER
PROGRAMMING AND THE SEMI-GROUP

MEMBERSHIP PROBLEM

J. B. LASSERRE AND E. S. ZERON

Abstract. We consider integer programming and the semi-group
membership problem. We develop and extend the approach started
in [5, 6] so as to provide the following theorem of the alternative:
the system b = Ax has no nonnegative integral solution x ∈ N

n if
and only if p(b) < 0 for some given polynomial p. The coefficients
of p form a vector which lies in some convex cone Ω, and so we
characterize Ω. We also provide a hierarchy of linear programming
relaxations, where the continuous case Ax = b describes the first
relaxation in the hierarchy for x ∈ R

n and x ≥ 0.

1. Introduction

This paper is concerned with certificates for integer programming
(IP) as well as with the semi-group membership problem. That is,
given a finitely generated abelian group G (e.g. Z

m), a semi-group
Ga ⊂ G generated by a finite family (ak)

n
k=1 ⊂ G, and an element

b ∈ G, we provide a certificate of b ∈ Ga or b 6∈ Ga. We build upon and
extend previous work of [5, 6, 9], notably on a discrete Farkas lemma
for IP. Among other things, we provide a hierarchy of linear program-
ming relaxations (LP-relaxations) for integer programming. The first
relaxation in the hierarchy is just the usual LP relaxation, which then
appears as a first-order (or linear) approximation to the discrete case,
whereas usually IP is viewed as an arithmetic refinement of LP. We
also provide a theorem of the alternative (or duality theorem) in the
form of a polynomial certificate associated with the IP problem, and
we compare with the certificate for LP obtained by the standard Farkas
lemma.

A central idea in nonconvex optimization is to replace a non convex
(hence hard) problem with a suitable easier convex problem in some
lifted space, but at the price of increasing the dimension. For instance
in the lift-and-project approach for polynomial optimization (e.g. 0-
1 problems) one replaces x ∈ R

n with the vector y = (xα) of all
moments and solves some hierarchy of appropriate linear or semidefinite

1



2 J. B. LASSERRE AND E. S. ZERON

relaxations. The interested reader is referred for more details to e.g.
Sherali and Adams [12, 13], Lovász and Schrijver [11], and Lasserre
[7, 8]; see also Laurent [10] for a comparison. Of course, any IP problem
can also be modeled via polynomial equations. For example, if the entry
xi is bounded by some integer M , then one may include the polynomial
constraint

∏M

k=0(xi − k) which forces xj to be an integer, and so the
above methodology applies. However, since the degree in the constraint
is M (as opposed to 2 in the Boolean case), the size of the first linear
or semidefinite relaxation in the hierarchy (in e.g. [8]) is already very
large because it includes moments up to order M .

Let A ∈ N
m×n be a fixed matrix. In the approach developed in [5, 6]

the integral solution x ∈ N
n to Ax = b is also lifted to some y ∈ R

p

with p ≤ n
∏

j(1+bj). But this time the lifting process has a different

meaning. Indeed there is some very simple matrix E ∈ R
n×p such that

x := Ey ∈ R
n is now a point in the integer hull of feasible solutions.

Furthermore, the vector y is a point of some polytope and several
interpretations can be deduced from the lifting process. For example it
was already shown in [5] that the lifting process can be used to prove
that b = Ax for some nonnegative integral vector x ∈ N

n if and only if
the polynomial zb−1 has a nonnegative representation in the binomial
ideal generated by the binomials (zAk−1). But this interpretation is
only one among many other interpretations as shown in the present
paper.

Interestingly, one can also use the lifting process to provide a hierar-
chy of LP relaxations for the IP problem, so that the continuous case
{Ax = b : x ∈ R

n, x ≥ 0} appears as a first-order (or linear) approxi-
mation of the discrete case with x ∈ N

n. This hierarchy also provides
us with a theorem of the alternative (or duality theorem) which uses
a non linear polynomial, a discrete analogue of the celebrated Farkas
Lemma in linear algebra and convex optimization. Recall that the
Farkas Lemma provides a membership certificate for the convex cone
Θ := {Ax : x ∈ R

n, x ≥ 0}, in the form b 6∈ Θ if and only if ω′b < 0 for
some ω with ω′A ≥ 0. In other words b 6∈ Θ if and only if the linear
polynomial z 7→ pω(z) := ω′z is negative when evaluated at z = b.

Contribution. Every finitely generated abelian group G can be iden-
tified with a subset of Z

m and so:

• We firstly show that the semi-group membership problem reduces
to the existence of a nonnegative integral vector x ∈ N

n, solution of
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some related linear system Ax = b for some nonnegative integral ma-
trix A ∈ N

m×n. Shevshenko [15, p. 11] developed a similar result in
the framework of additive semigroups with unity, contained in a finite
generated abelian group.

• Set p :=
∑n

k=1

∏m

j=1(1+bj−Aj;k). We next show that existence of
a nonnegative integral solution x ∈ N

n to the linear system Ax = b
reduces to the existence of a nonnegative real solution y ∈ R

p for a
system of linear equations of the form :

bj = y′A(ej), ∀ 1 ≤ j ≤ m;(1.1)

bibj = y′A(ei+ej), ∀ 1 ≤ i ≤ j ≤ m;(1.2)

. . . = · · ·

bz1

1 · · · bzm

m = y′A(z),

(
∀ 0 ≤ zj ≤ bj ,

z1+ · · ·+zm = δ;

)
(1.3)

. . . = · · ·

bb1
1 · · · bbm

m = y′A(b);(1.4)

for some appropriate nonnegative integer vectors A(ej), A(ei+ej), A(z) ∈
N

p with z ∈ N
m and z ≤ b. The parameter δ ≥ 1 in (1.3) is the

degree of the monomial b 7→ bz1

1 · · · bzm
m in (1.3). Therefore a certificate

of b 6= Ax for every x ∈ N
n is obtained as soon as any subsystem

of (1.1)-(1.4) has no solution y ∈ R
p; that is, one does not need to

consider the entire system (1.1)-(1.4).
We can index the entries of A(ej) = (A(ej)[k, u]) ∈ N

p in (1.1) in such
a way that A(ej)[k, u] = Aj;k for all u, 1 ≤ j ≤ m, and 1 ≤ k ≤ n. If we
also index the entries of y = (y[k, u]) ∈ R

p in the same way, the new
vector x̂ = (x̂k) ∈ R

n with x̂k :=
∑

u y[k, u] satisfies Ax̂ = b and belongs
to the integer hull of {x ∈ R

n : Ax = b, x ≥ 0}, whenever y is a solution
to (1.1)-(1.4). In this approach, LP (or the continuous case) appears
as a particular ”first order” (or ”linear”) approximation of IP (the
discrete case). Indeed, if one considers (1.1) alone (i.e. ignoring (1.2)-
(1.4) which have nonlinear right-hand-sides terms bz for ‖z‖ > 1) then
from any nonnegative solution y of (1.1) one obtains a real nonnegative
solution x̂ ∈ R

n of Ax̂ = b, and conversely.
To construct a natural hierarchy of LP-relaxations for the IP feasi-

bility problem Ax = b, x ∈ N
n, just consider an increasing number of

equations among the system (1.1)-(1.4), so that the last (and largest
size) LP-relaxation is the whole system (1.1)-(1.4) that describes the
integer hull of the set {x ∈ N

n : Ax = b}. Thus, if on the one hand the
discrete case is an arithmetic refinement of the continuous one, on the
other hand the discrete case can be approximated via LP-relaxations of
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increasing sizes, and these relaxations are different from the lift-and-
project ones described in e.g. ([10]). To the best of our knowledge
such a hierarchy has not been investigated before. Even if it is not
clear at the moment whether this hierarchy of linear relaxations is use-
ful from a computational viewpoint, it provides new insights for integer
programming.

On the other hand it was already proved in [5, 6] that existence of
a nonnegative integral solution x ∈ N

n to the linear system Ax = b,
reduces to the existence of a nonnegative real solution y ∈ R

p for a
system of the form

(1.5) (−1, 0, ..., 0, 1)′ = Θy,

where Θ is some appropriated network matrix (hence totally unimodu-
lar). We show that the system (1.1)-(1.4) can be deduced from (1.5) by
multiplying it from the left times a square invertible matrix ∆ ∈ R

s×s.
In particular ∆ is a Kronecker product of Vandermonde matrices.
Hence any real vector y ≥ 0 is solution of (1.5) if and only the same y
is solution of (1.1)-(1.4).

• We provide a polyhedral convex cone Ω ⊂ R
s associated with (1.1)-

(1.4) for some s ∈ N, such that a direct application of Farkas lemma to
the continuous system (1.1)-(1.4) implies that either b = Ax for some
integral vector x ∈ N

n or there exists ξ = (ξw) ∈ Ω such that pξ(b) < 0
for a polynomial pξ ∈ R[u1, ..., um] of the form

(1.6) u 7→ pξ(u) =
∑

w∈Nm, w 6=0

ξw uw.

Thus (1.6) provides an explicit nonlinear polynomial certificate for IP,
in contrast with the linear polynomial certificate fro LP obtained from
the classical Farkas lemma.

In the discrete Farkas lemma presented in [5, 6] the author defines a
polyhedral cone Ω2 ⊂ R

s associated with (1.5), and proves that either
b = Ax for some nonnegative integral vector x ∈ N

n or there exists
π ∈ Ω2 such that (−1, 0, ..., 0, 1) · π < 0. It turns out that the vector
ξ = (ξw) in (1.6) indeed satisfies π = ∆′ξ for a square invertible matrix
∆ defined as the Kronecker product of Vandermonde matrices.

• Inspired by the relationships between the systems (1.1)-(1.4) and
(1.5), we finally show that existence of a nonnegative integral solution
x ∈ N

n for the linear system Ax = b reduces to the existence of a
nonnegative real solution y ∈ R

p for a system of linear equations of the
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form:
M (−1, 0, ..., 0, 1)′ = M Θy,

where M ∈ R
s×s is any square invertible matrix. We can apply the

standard Farkas lemma to any one of the linear systems presented
above, and deduce a specific (Farkas) certificate for each choice the
invertible matrix M . Each certificate can be seen as a theorem of the
alternative of the form: the system b = Ax has no nonnegative integral
solution x ∈ N

n if and only if f(b) < 0 for some given function f .
For the particular choice M := ∆′, existence of a nonnegative integral
solution x ∈ N

n for the linear system Ax = b reduces to existence of
a nonnegative real solution y ∈ R

p for a system of linear equations of
the form:

ub − 1 = y′D[u], ∀ u ∈ N
m with u ≤ b,

for some appropriate nonnegative integer vectors D[u] ∈ N
p. In this

case, the function f involved in the Farkas certificate f(b) < 0 has the
exponential-like expansion

(1.7) u 7→ f(u) :=
∑

z∈Nm

ξz · (z
u − 1).

Both certificates (1.6) and (1.7) are different from the certificate
obtained from the superadditive dual approach of Gomory and Johnson
[2], Johnson [4], and Wolsey [16]. In particular, in [16] the linear system
associated with such a certificate has dimension s2 × s, which is larger
than the size ns × s of the system (1.5) of this paper.

The method. A theorem of the alternative is obtained in three steps:
{1} One first shows that a linear system Ax = b (with A ∈ N

m×n

and b ∈ N
m) has a nonnegative integral solution x ∈ N

n if and only
if the function f : Z

m→R given by z 7→ f(z) := bz can be written as
a linear combination of functions z 7→ fu(z) := (u+Ak)

z−uz weighted
by some nonnegative coefficients (for the indexes u ∈ N

m with u ≤ b).
{2} One then shows that computing the nonnegative coefficients in

the above linear decomposition of f is equivalent to finding a nonnega-
tive real solution to a finite system of linear equations whose dimension
is bounded from above by ns × s with s :=

∏
j(1+bj).

{3} Finally one applies the standard continuous Farkas lemma to
the linear system described in {2} and obtains the certificate (1.6).

This approach is similar in flavor but different from the one in [5, 6].
However, they are strictly equivalent and can be deduced one from each
other under some appropriate linear transformation whose associated
matrix ∆ ∈ N

s×s has a simple explicit form.
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2. Notation and definitions

The notation R, Z and N = {0, 1, 2, ...} stand for the usual sets of
real, integer and natural numbers, respectively. Moreover, the set of
positive integer numbers is denoted by N

∗ = N \ {0}. Given any vector
b ∈ Z

m and matrix A ∈ Z
m×n, the [k]-entry of b (resp. [j; k]-element of

A) is denoted by either bk or b[k] (resp. Aj;k or A[j; k]). The notation
A′ stands for the transpose of any matrix (or vector) A ∈ R

m×n; and
the kth column of the matrix A is denoted by Ak := (A1;k, ..., Am;k)

′.

The semi-group membership problem. A classical result in group
theory states that every abelian group G with m ∈ N

∗ generators is
isomorphic to some Cartesian product

G ∼= [Z/p1Z] × [Z/p2Z] × · · · × [Z/pqZ] × [Zm−q],

for some set of numbers {pj} ⊂ N
∗ and q ≤ m; see e.g. [1]. One may

even suppose that every pj divides pk whenever j < k. Therefore, if
one introduces the extended m-dimensional vector:

(2.1) P := (p1, p2, . . . , pq,∞, . . . ,∞)′,

the abelian group G is isomorphic to the group G̃ of vectors x ∈ Z
m

such that 0 ≤ xj < pj for every 1 ≤ j ≤ q; notice that q ≤ m. The

group sum x⊕ y of two elements x and y in G̃ ⊂ Z
m is then defined by

(2.2) x ⊕ y := (x + y) mod P in G̃,

where the sum x + y is the standard addition on Z
m and the modulus

of the sum (x+y) mod P is calculated entry by entry, so that for every
index 1 ≤ k ≤ m,

(2.3)
[
(x + y) mod P

]
k

=

{
(xk + yk) mod Pk if Pk < ∞,

(xk + yk) if Pk = ∞.

Hence from now on we suppose that G = G̃ ⊂ Z
m. Next let {ak} ⊂ G

be a collection of n elements of G. Each element ak can be seen as a
vector of Z

m, for 1 ≤ k ≤ n, so that the semi-group generated by {ak}
is the same as the set

Ga := {Ax mod P | x ∈ N
m}, with

A := [a1|a2| · · · |an] ∈ Z
m×n.

Thus, given b ∈ G, the semi-group membership problem of deciding
whether b ∈ Ga is equivalent to deciding whether the system of linear
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equations b = Ax mod P has a solution x ∈ N
n. This in turn is

equivalent to deciding whether the following system of linear equations

(2.4) b = Ax +

(
−B B
0 0

)
·

(
u
w

)
,

has a solution (x, u, w) in N
n × N

q × N
q, where

(2.5) B :=




p1 0 · · · 0
0 p2 · · · 0
...

... ·
...

0 0 · · · pq


 ∈ N

q×q.

Hence, with no loss of generality, the membership problem is equiva-
lent to deciding whether some related system of linear equations Ax = b
(with A ∈ Z

m×ℓ and b ∈ Z
m) has a solution x ∈ N

ℓ, which is the prob-
lem we will consider in the sequel.

3. Existence of integer solutions to {Ax = b, x ≥ 0}

Let R[z] = R[z1, . . . , zm] be the ring of real polynomials in the vari-
ables z = (z1, . . . , zm) of R

m. With A ∈ Z
m×ℓ we analyze existence of

a nonnegative integer solution x ∈ N
ℓ to the system of linear equations

Ax = b.
According to the computational complexity terminology in [14], let

ϕ be the facet complexity of the rational convex polyhedron P := {x ∈
R

ℓ : x ≥ 0,Ax = b}. That is, each inequality in Ax ≤ b, Ax ≥ b,
and x ≥ 0 has size at most ϕ. Corollary 17.1b in [14, p. 239] states
that P contains an integral vector of size at most 6ℓ3ϕ, if P contains
an integral vector x ∈ N

ℓ. Hence existence of an integral vector in P
is equivalent to analyze existence of an integral vector of the convex
(compact) polytope

P̂ := {x ∈ R
ℓ : x ≥ 0, Ax = b,

ℓ∑

i=1

xi ≤ MA,b},

where MA,b is obtained explicitly from the facet complexity of P.

3.1. Reduction to A ∈ N
m×n. In view of the above one may restrict

our analysis to the existence of a nonnegative integral solution x ∈ N
n

for a system of linear equations Ax = b associated with a rational
convex polytope P := {x ∈ R

n : Ax = b, x ≥ 0}, where A ∈ Z
m×n and

b ∈ Z
m. But this in turn implies that one may restrict our analysis to

existence of a nonnegative integral solution y ∈ N
n+1 to a system of

linear equations A⋆y = b⋆ where A⋆ ∈ N
[m+1]×[n+1] and b⋆ ∈ N

m+1.
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Indeed, if A ∈ Z
m×n and A 6∈ N

m×n, let α ∈ N
n be such that

(3.1) Âj;k := Aj;k + αk ≥ 0; ∀ 1 ≤ j ≤ m, 1 ≤ k ≤ n.

Since P is a (compact) polytope,

(3.2) ρ := max
x∈Nn, Ax=b

{ n∑

k=1

αkxk

}
< ∞.

In particular ρ ∈ N. Now define b̂ ∈ N
m by

(3.3) b̂ := b + ρ em ≥ 0 with em := (1, ..., 1)′ ∈ N
m.

Let Â ∈ N
m×n be defined as in (3.1). The solutions x ∈ N

n to
the original system Ax = b are in one-to-one correspondence with the
solutions (x, u) ∈ N

n × N to the extended system

(3.4)
Âx + emu = b̂,

α′x + u = ρ.

Indeed, if Ax = b with x ∈ N
n, then

Ax + em

[ n∑

k=1

αkxk

]
− em(α′x) + ρ em = b + ρ em.

The following identity follows from the definitions for Â ∈ N
m×n and

b̂ ∈ N
m given in (3.1)-(3.3) :

Âx + emu = b̂ with u := ρ − α′x ∈ Z.

Notice that u ≥ 0 because ρ ≥ α′x according to (3.2), so that (x, u)
is the integer nonnegative solution of (3.4) that we are looking for.
Conversely let (x, u) ∈ Z

n+1 be a solution to (3.4). The definitions for

Â ∈ N
m×n and b̂ ∈ N

m given in (3.1)-(3.3) imply that

Ax + em

[ n∑

k=1

αkxk

]
+ emu = b + ρ em,

so that Ax = b with x ∈ N
n because u = ρ−α′x. Hence the existence

any solution x ∈ N
n to Ax = b is completely equivalent to the existence

any solution (x, u) ∈ N
n+1 to

(
b̂
ρ

)
= A⋆ ·

(
x
u

)
with A⋆ :=

(
Â em

α′ 1

)
,

and the new matrix A⋆ ∈ N
[m+1]×[n+1] has only nonnegative integer

entries.
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3.2. The main result. Given vectors b ∈ N
m and z ∈ R

m, the nota-
tion zb stands for the monomial zb1

1 zb2
2 · · · zbm

m ∈ R[z]. We also need to
define a pair of matrices ∆ and Θ that we will use in the sequel.

Definition 1. Let A ∈ N
m×n and β ∈ N

m be such that Ak ≤ β for
each index 1 ≤ k ≤ n. Set the integers

(3.5) s :=
m∏

j=1

(1+βj) and p :=
n∑

k=1

m∏

j=1

(
1+βj−Aj;k

)
≤ ns.

Let ∆ ∈ N
s×s be a square Vandermonde matrix whose rows and

columns are indexed with the nonnegative vectors z, w ∈ N
m (according

to e.g. the lexicographic ordering) so that the [z; w]-entry is given by

(3.6) ∆[z; w] = wz = wz1

1 wz2

2 · · ·wzm

m ∀ z, w ≤ β;

and where we use the convention that 00 = 1.
Let Θ ∈ Z

s×p be a network matrix whose rows and columns are
respectively indexed with the nonnegative vectors w ∈ N

m and (k, u) ∈
N×N

m, so that the (w; (k, u))-entry is given by

(3.7) Θ[w; (k, u)] =





−1 if w = u ≤ β−Ak,
1 if w = u+Ak ≤ β,
0 otherwise,

for all indexes w ≤ β, u ≤ β−Ak, and 1 ≤ k ≤ n.

The following result is straightforward.

Lemma 2. The square Vandermonde matrix ∆ ∈ R
s×s in (3.6) is

invertible. The matrix Θ ∈ R
s×p in (3.7) is a network matrix, and so

it is totally unimodular.

Proof. It is easy to see that ∆ is invertible because it is the Kroneker
product D[1] ⊗ D[2] ⊗ · · · ⊗ D[m] of m square Vandermonde matrices

(3.8) D[j] =




1 10 20 · · · (βj)
0

0 11 21 · · · (βj)
1

...
...

... ·
...

0 1βj 2βj · · · (βj)
βj


 ;

see e.g. [3, 17]. And each D[j] is obviously invertible. By inspection
it turns out that Θ is a network matrix, that is, it is a matrix with
only {0,±1} entries and with exactly two nonzero entries 1 and −1 in
each column. Therefore Θ is totally unimodular; see e.g. Schrijver [14,
p. 274]. �
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Definition 3. Given a finite set U ⊂ N
m and a collection of coefficients

q[u] ∈ R, we say that the polynomial

z → Q(z) =
∑

u∈U

q[u] zu =
∑

u∈U

q[u]zu1

1 zu2

2 · · · zm
um

has multivariate degree bounded by a vector β ∈ N
m if and only if u ≤ β

for every u ∈ U .

The following technical result was essentially shown in [5, 6] but we
include the proof for the sake of completeness.

Theorem 4. Let β, b ∈ N
m and A ∈ N

m×n be such that :

(3.9) β ≥ b and β ≥ Ak for all 1 ≤ k ≤ n.

The following three statements (a), (b) and (c) are all equivalent :

(a): The linear system Ax = b has a solution x ∈ N
n.

(b): The polynomial z 7→ zb−1 := zb1
1 zb2

2 · · · zbm
m −1 can be written

as follows :

(3.10) zb − 1 =
n∑

k=1

Qk(z)(zAk − 1)

for some real polynomials Qk ∈ R[z1, z2, ..., zm] with nonnega-
tive coefficients and multivariate degree bounded by the vector
β−Ak, for all 1 ≤ k ≤ n.

(c): There is a real nonnegative solution y ∈ R
p for the system of

linear equations

(3.11) b = Θy,

where Θ ∈ Z
s×p is given as in (3.7) of Definition 1 and the new

vector b ∈ Z
s has entries indexed with the nonnegative vector

w ∈ N
m, so that the [w]-entry is given by

(3.12) b[w] :=






−1 if w = 0,
1 if w = b,
0 otherwise.

∀ 0 ≤ w ≤ β.

Notice that Θ ∈ Z
s×p in (3.7) and (3.11) is determined only by the

entries of β ∈ N
m and A ∈ N

m×n, so that Θ is independent of b ∈ Z
m.

Observe that if b ≥ Ak for every 1 ≤ k ≤ n, then one may take β := b.



CERTIFICATES FOR INTEGER PROGRAMMING 11

Proof. (a) ⇒ (b). Suppose that b = Ax for some x ∈ N
n. Consider

the following polynomials (where we use the convention
∑−1

q=0(·) = 0)

z 7→ Q1(z) =

x1−1∑

q=0

zqA1 ,

z 7→ Q2(z) = zx1A1

x2−1∑

q=0

zqA2 ,

z 7→ Q3(z) = zx1A1zx2A2

x3−1∑

q=0

zqA3 ,

· · ·

z 7→ Qn(z) =

[ n−1∏

k=1

zxkAk

] xn−1∑

q=0

zqAn .

It is easy to see that the polynomials Qk satisfy equation (3.10).
Moreover each Qk has nonnegative coefficients, and the multivariate
degree of Qk is bounded by the vector β−Ak for 1 ≤ k ≤ n because
b ≤ β.

(b) ⇔ (c). Existence of polynomials Qk ∈ R[z1, z2, ..., zm] with
nonnegative coefficients and multivariate degree bounded by the vec-
tor β−Ak (for all 1 ≤ k ≤ n) is equivalent to the existence of real
coefficients y[k, u] ≥ 0 such that

Qk(z) =
∑

u∈Nm, u≤β−Ak

y[k, u]zu ∀ 1 ≤ k ≤ n.

Then rewrite equation (3.10) as follows:

(3.13) zb − 1 =
n∑

k=1

∑

u∈N
m,

u≤β−Ak

y[k, u]
(
zu+Ak − zu

)
,

The vector of coefficients y = (y[k, u]) ≥ 0 satisfies (3.13) if and only
if it satisfies the following system of linear equations

(3.14) b = Θ ·




y[1, (0, ..., 0, 0)]
y[1, (0, ..., 0, 1)]

...
y[n, (β − An)]


 ,
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where b ∈ Z
s is given in (3.12) and the matrix Θ ∈ Z

s×p is given in
(3.7), that is, such that

Θ[w; (k, u)] =






−1 if w = u ≤ b−Ak,
1 if w = u+Ak ≤ b,
0 otherwise.

Each row in (3.14) is indexed with the monomial zw ∈ N
m, for w ∈

N
m and w ≤ b (according to e.g. the lexicographic ordering).

(c) ⇒ (a). Let y = (y[k, u]) ≥ 0 be a real vector such that (3.11) and
(3.14) hold. The matrix Θ is totally unimodular according to Lemma 2,
and so there exists a nonnegative integer solution ŷ = (ŷ[k, u]) ≥ 0 to
(3.11) and (3.14) because the left-hand-side of (3.14) is an integral
vector. Therefore (3.13) also holds with the new vector ŷ, that is:

zb − 1 =

n∑

k=1

∑

u∈N
m,

u≤β−Ak

ŷ[k, u]
(
zu+Ak − zu

)
.

Given a fixed index 1 ≤ j ≤ m, differentiate both sides of the equation
above with respect to the variable zj and evaluate at the point z =
(1, 1, ..., 1), so as to obtain:

(3.15) bj =

n∑

k=1

Aj;kxk, with xk :=
∑

u∈N
m,

u≤β−Ak

ŷ[k, u].

The nonnegative integer vector x = (x1, ..., xn)′ ∈ N
m satisfies the

desired result Ax = b. �

Remark 5. One linear constraint in (3.11) is redundant, because the
addition of all the rows in (3.11)-(3.12) yields the trivial equality 0 =
0y (recall that Θ is a matrix with only {0,±1} entries and with exactly
two nonzero entries 1 and −1 in each column).

Remark 6. The matrix Θ ∈ Z
s×p in (3.7) is independent of b and

contains all information about all the integer problems Ax = b for
x ∈ N

n and b ∈ N
m with b ≤ β.

The linear system b = Θy in (3.11) of Theorem 4 is quite interesting
in the sense that existence of a real solution y ≥ 0 is totally equiva-
lent to the existence of a nonnegative integer solution x ∈ N

n for the
problem Ax = b, but it is not easy to see at first glance what is the
relation between the two solutions y and x. Moreover equation (3.11)
in Theorem 4 is not unique at all. We can multiply both sides of (3.11)
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by any square invertible matrix M ∈ R
s×s and we obtain that y ≥ 0 is

a real solution to (3.11) if and only if y is also a solution for

M b = M Θy.

An interesting issue is to determine what is an adequate matrix M
such that relationship between the solutions y ≥ 0 and x ∈ N

n is
evident. We claim that one of such matrix M is the square Vander-
monde matrix ∆ ∈ N

s×s presented in (3.6) of Definition 1. We use the
convention that 00 = 1 and 0z = 0 whenever 0 6= z ∈ N

m.

Theorem 7. Let β, b ∈ N
m and A ∈ N

m×n be such that :

(3.16) β ≥ b and β ≥ Ak for all 1 ≤ k ≤ n.

The following three statements (a), (b) and (c) are all equivalent :

(a): The linear system Ax = b has a solution x ∈ N
n.

(b): There is a real nonnegative solution y = (y[k, u]) ∈ R
p to

the system of linear equations

(3.17) bz − 0z =

n∑

k=1

∑

u∈Nm,

u≤β−Ak

y[k, u]
(
(u+Ak)

z − uz
)
,

for every z ∈ N
m with 0 ≤ z ≤ β.

(c): There is a real nonnegative solution y = (y[k, u]) ∈ R
p to the

system of linear equations

(3.18) zb − 1 =
n∑

k=1

∑

u∈Nm,

u≤β−Ak

y[k, u]
(
zu+Ak − zu

)
,

for every z ∈ N
m with 0 ≤ z ≤ β.

Proof. The equivalence (a) ⇔ (b) easily follows from Theorem 4 after
noticing that the [z; (k, u)]-entry (resp. [z]-entry) of the product ∆Θ
(resp. ∆b) is given by

(∆Θ)[z; (k, u)] =
(
(u+Ak)

z − uz
)
∈ N,(3.19)

resp. (∆b)[z] =
(
bz − 0z

)
,(3.20)

for all nonnegative indexes z ∈ N
m and (k, u) ∈ N×N

m with z ≤ β,
u ≤ β−Ak and 1 ≤ k ≤ n.



14 J. B. LASSERRE AND E. S. ZERON

The equivalence (a) ⇔ (c) is proved in a similar way; we only need
to observe that multiplying by the transpose ∆′ is equivalent to inter-
change the exponentials z → wz by powers z → zw, so that:

(∆′ Θ)[z; (k, u)] =
(
zu+Ak − zu

)
∈ N,

and (∆′ b)[z] =
(
zb − z0

)
.

�

Remark 8. A nonnegative real vector y ∈ R
p is a solution of equation

(3.11) in Theorem 4 if and only if y is also a solution of (3.17) and
(3.18). Moreover the linear system (3.18) can be directly deduced from
(3.10) by evaluating at z ∈ N

m with z ≤ b.

4. A hierarchy of linear programming relaxations

Let β, b ∈ N
m and A ∈ N

m×n be such that β ≥ b and β ≥ Ak for all
1 ≤ k ≤ n. Consider the matrices ∆ ∈ R

s×s and Θ ∈ R
s×p given in

equations (3.6)-(3.7) of Definition 1; and define the new vector b ∈ Z
s

whose entries are indexed with the non negative vector w ∈ N
m, so

that the [k]-entry is given by (3.12) :

(4.1) b[w] :=





−1 if w = 0,
1 if w = b,
0 otherwise,

∀ 0 ≤ w ≤ β.

The fact that ∆ is invertible (according to Lemma 2) allows us to
give two equivalent definitions of the following polytope in R

p,

P := {y ∈ R
p : y ≥ 0, ∆Θy = ∆b}(4.2)

= {y ∈ R
p : y ≥ 0, Θy = b} ⊂ R

p.

As it is state in Remark 8, any nonnegative vector y ∈ R
p is a

solution to (3.17) if and only if y lies in P. Let y = (y[k, u]) be an
element of P. The entries of y are indexed according to Theorems 4
and 7. Equation (3.17) implies that x ∈ R

n with xk :=
∑

u y[k, u], is
a solution to Ax = b. Indeed bj =

∑
k Aj;kxk for 1 ≤ j ≤ m after

evaluating (3.17) at z = ej, the basic vector whose entries are all equal
to zero, except the j-entry which is equal to one, so that wej = wj for all
w ∈ Z

m. The relationship between x and y comes from a multiplication
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by some matrix E ∈ N
n×p, that is :

(4.3) x = Ey with E :=




p1 p2 pn︷ ︸︸ ︷
1 . . . 1

︷ ︸︸ ︷
0 . . . 0 · · ·

︷ ︸︸ ︷
0 . . . 0

0 . . . 0 1 . . . 1 · · · 0 . . . 0
· · · · · · · · · ·

0 . . . 0 0 . . . 0 · · · 1 . . . 1


,

where pk :=
∏m

j=1

(
1+βj−Aj;k

)
for 1 ≤ k ≤ n, so that p =

∑
k pk

according to (3.5) in Definition 1. We obtain the following result as a
consequence of Theorem 7.

Corollary 9. Let β, b ∈ N
m and A ∈ N

m×n be such that β ≥ b and
β ≥ Ak for each index 1 ≤ k ≤ n.

(a): Existence of a nonnegative integral solution x ∈ N
n to the linear

system Ax = b reduces to the existence of a nonnegative real solution
y = (y[k, u]) ∈ R

p to the system of linear equations :

bi = y′A(ej), ∀ 1 ≤ j ≤ m;(4.4)

bibj = y′A(ei+ej), ∀ 1 ≤ i ≤ j ≤ m;(4.5)

. . . = · · ·

bz1

1 · · · bzm

m = y′A(z),

(
∀ 0 ≤ zj ≤ bj ,

z1+ · · ·+zm = δ;

)
(4.6)

. . . = · · ·

bβ1

1 · · · bβm

m = y′A(β);(4.7)

for some appropriate nonnegative integer vectors A(ej), A(ei+ej), A(z) ∈
N

p with z ∈ N
m and z ≤ β. The parameter δ ≥ 1 in (4.6) is the degree

of the monomial b 7→ bz, and we use the indexation for the entries
of y given in Theorems 4 and 7. In particular all vectors A(z) are
independent of b, and the entries of A(ej) ∈ N

p in (4.4) are given by :

A(ej)[k, u] := Aj;k,

for all u ∈ N
m, 1 ≤ j ≤ m, and 1 ≤ k ≤ n with u ≤ β−Ak.

(b): Let y ∈ R
p be a nonnegative real solution to (4.4)-(4.7) and

x̂ = Ey, i.e. x̂k :=
∑

u y[k, u] for 1 ≤ k ≤ n. Then x̂ belongs to the
integer hull H of {x ∈ R

n : Ax = b, x ≥ 0}. Therefore a certificate
of b 6= Ax for any x ∈ N

n is obtained as soon as any subsystem of
(4.4)-(4.7) has no solution y ∈ R

p.
Moreover, any nonnegative vector y ∈ R

p is a solution to (4.4)-(4.7)
if and only if y ∈ P (with P as in (4.2)); and there is a one-to-one
correspondance between the vertices of H and P.
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Proof. (a) It is straightforward to see that (4.4)-(4.7) is just an explicit
description of (3.17) in Theorem 7. The right-hand-side terms of (4.4)-
(4.7) are the function bz−0z evaluated at z ∈ N

m with z ≤ β and∑
j zj equal to 1, 2, 3, etc., until the maximal degree

∑
j βj. Each

vector A(z) ∈ N
p is then the transpose of the [z]-row of the product

∆Θ calculated in (3.19), so that

A(z)[k, u] := (∆Θ)[z; (k, u)] =
(
(u+Ak)

z − uz
)
∈ N,

for all appropriated indices z, k, and u. Evaluating (3.17) at z = 0
yields the trivial identity 0 = 0y (recall Remark 5), because we are
using the convention that 00 = 1 and 0w = 0 for every w 6= 0. While
evaluating (3.17) at z = ej , yields the linear constraints

bj =

n∑

k=1

Aj;k

∑

u∈N
m,

u≤β−Ak

y[k, u] ∀ 1 ≤ j ≤ m,

because wej = wj for all w ∈ Z
m. Constraints (4.4) are easily deduced

after defining the vectors A(ej) ∈ N
p by A(ej)[k, u] := Aj;k for all u and

1 ≤ k ≤ n. We also have that b = Ax̂ with x̂ = Ey and E ∈ N
n×p the

matrix given in (4.3), e.g. x̂k =
∑

u y[k, u] for 1 ≤ k ≤ n.

(b) Let P ∈ R
p be the polytope given in (4.2), and H ⊂ R

n be the
integer hull of {x ∈ R

n : Ax = b, x ≥ 0}. From Theorem 4 and the
proof of Theorem 7, any nonnegative vector y ∈ R

p is a solution to
(3.17) if and only if y ∈ P, because Θy = b; and we have already
stated in the proof of (a) that (4.4)-(4.7) is completely equivalent to
(3.17). We also deduced that x̂ = Ey is a solution to Ax̂ = b for
any feasible solution y ∈ P. Conversely, given any nonnegative integer
solution x ∈ N

n to Ax = b and working as in the proof of Theorem 4,
we can associate with x a nonnegative integer vector y(x) ∈ N

p such
that Θy(x) = b and x = Ey(x); hence y(x) ∈ P.

Let {y[ℓ] ∈ N
p} be the vertices of P. Every y[ℓ] has nonnegative

integer entries, because Θ is totally unimodular and the vector b in
(4.1) has integer entries. Each vector Ey[ℓ] ∈ N

n has nonnegative
integer entries and satisfies AEy[ℓ] = b, so that Ey[ℓ] ∈ H . Any feasible
solution y ∈ P can be expressed as the sum y =

∑
ℓ ξℓy

[ℓ] with
∑

ℓ ξℓ =
1 and ξℓ ≥ 0 for each l. Hence,

E y =
∑

ℓ

ξℓ E y[ℓ] with Ey[ℓ] ∈ H ∀ ℓ,

and so x̂ := Ey ∈ H . Conversely, let {x[c] ∈ N
n} be the vertices of

H . We claim that every y(x[c]) is a vertex of P; otherwise if y(x[c]) =
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∑
ℓ ξℓy

[ℓ] for 0 ≤ ξℓ < 1, then

x[c] = Ey(x[c]) =
∑

ℓ

ξℓEy[ℓ] with Ey[ℓ] ∈ H,

is a combination of vertices (Ey[ℓ]) of H , in contradiction with the fact
that x[c] itself is a vertex of H . �

4.1. A hierarchy of LP-relaxations. Let |z| := z1+ · · ·+zm for ev-
ery z ∈ N

m. Consider the following integer and linear programming
problems, for 1 ≤ ℓ ≤ |β|,

J• := min
x

{ c′x : Ax = b , x ∈ N
n };(4.8)

Jℓ := min
y

{
c′E y :

bz = y′A(z), y ∈ R
p, y ≥ 0,

z ∈ N
m, 1 ≤ |z| ≤ ℓ

}
.(4.9)

We easily have the following result.

Corollary 10. Let β, b ∈ N
m and A ∈ N

m×n be such that β ≥ b and
β ≥ Ak for every index 1 ≤ k ≤ n. Let J• and Jℓ be as in (4.8) and
(4.9) respectively.

Then : J1 ≤ J2 ≤ . . . ≤ J|β| and J|β| = J•.

Proof. It is obvious that Jℓ ≤ Jℓ∗ whenever ℓ ≤ ℓ∗. Moreover :

J• = min
x

{c′x : x ∈ H} and J|β| = min
y

{c′Ey : y ∈ P},

where H is the integer convex hull of {x ∈ R
n : Ax = b, x ≥ 0} and P

is given in (4.2). Thus J• = c′x[d] for some vertex x[d] of H . Working as
in the proof of Corollary 9, y(x[d]) is a vertex of P and x[d] = Ey(x[d]),
so that

J|β| ≤ c′E y(x[d]) = J•.

On the other hand, J|β| = c′Ey[κ] for some vertex y[κ] of P. Again,

as in the proof of Corollary 9, Ey[κ] ∈ H , so that

J• ≤ c′E y[κ] = J|β|.

�

Hence the sequence of LP problems {Jℓ}1≤ℓ≤|β| in (4.9) provides a
monotone sequence of lower bounds for J• with finite convergence limit
J|β| = J•. Observe that all linear programs (4.9) have the same number
p of variables (since y ∈ R

p) and an increasing number of constraints
starting from m when ℓ = 1 to s =

∏
j(βj+1) when ℓ = |β|. The most

interesting case happens when we take b = β ≥ Ak (for every index
1 ≤ k ≤ n).
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Of course p (< ns) is large; but in principle the LP problems (4.9) are
amenable to computation for reasonable values of ℓ by using column
generation techniques (in order to avoid handling the full vector y ∈
R

p). However the vectors A(z) ∈ N
p may contain very large values

when |z| = ℓ is large, and so some numerical ill-conditioned cases are
likely to appear for large values of ℓ.

Therefore it is not completely clear whether the hierarchy of linear
relaxations presented in Corollary 9 is useful from a computational
point of view, but we think this hierarchy provides some new insights
into integer programming problems from a theoretical point of view.

4.2. A polynomial certificate. Let β, b ∈ N
m and A ∈ N

m×n be
such that β ≥ b and β ≥ Ak for every index 1 ≤ k ≤ n. Consider
the matrices ∆ ∈ N

s×s and Θ ∈ Z
s×p given in (3.6)-(3.7) of Defini-

tion 1. Lemma 2 states that ∆ is invertible, and so Theorem 4 implies
that existence of a nonnegative integer solution x ∈ N

n to Ax = b is
equivalent to the existence of a nonnegative real solution y ∈ R

p to

(4.10) ∆Θy = ∆b and y ≥ 0,

where b ∈ Z
s is given in (3.12) or (4.1). Moreover it was already stated

in (3.20) that the entries of the product ∆b can be indexed with the
nonnegative vector z ∈ N

m with z ≤ β, and that they have the simple
representation :

(4.11) (∆b)[z] = (bz − 0z) =

{
0 if z = 0,
bz if z 6= 0,

using the conventions 00 = 1 and 0w = 0 for every w 6= 0.
To obtain a polynomial certificate we apply Farkas lemma to the

linear programming problem (4.10). Consider the polyhedral cone
Cβ ⊂ R

s defined by

(4.12) Cβ := { ξ ∈ R
s : (∆Θ)′ξ ≥ 0 }.

With every element ξ = (ξz) ∈ Cb, we can associate a specific polyno-
mial pξ ∈ R[u1, . . . , um] defined by:

(4.13) u 7→ pξ(u) :=
∑

z∈N
m,

z 6=0, z≤β

ξz uz,

and notice that in view of (4.11), pξ(b) = ξ′∆b.

Theorem 11. Let β, b ∈ N
m and A = [A1| · · · |An] ∈ N

m×n be such that
β ≥ b and β ≥ Ak for every index 1 ≤ k ≤ n. Consider the polyhedral
cone Cβ ⊂ R

s given in (4.12) and the following two statements :

(a): The system Ax = b has an integer solution x ∈ N
n.
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(b): pξ(b) < 0 for some ξ ∈ Cβ and pξ ∈ R[u] as in (4.13). .

Then one and only one of statements (a) or (b) is true.

Proof. The fact that ∆ is invertible (because of Lemma 2) and Theo-
rem 4 imply that the system Ax = b has a nonnegative integer solution
x ∈ N

n if and only if (4.10) holds for some real nonnegative vector
y ∈ R

p. Farkas lemma implies that (4.10) holds if and only if ξ′∆b ≥ 0
for every ξ ∈ Cβ; however from (4.11),

0 ≤ ξ′∆b =
∑

z∈N
m,

z 6=0, z≤β

ξz bz = pξ(b),

the desired result. �

It is interesting to compare Theorem 11 with the standard Farkas
lemma for (continuous) linear systems. The continuous Farkas lemma
provides a linear certificate of the form ω′b < 0 for some ω ∈ R

m that
satisfies A′ω ≥ 0; in contrast (the discrete) Theorem 11 provides a
non-linear polynomial certificate pξ(b) < 0.

Example 12. Let A := [3, 4] ∈ N
2, β = 5, and 0 ≤ b ≤ 5; i.e. the

Frobenius equation 3x1 + 4x2 = b with x1, x2 ∈ N. Then s = 6,

∆ =

[ 1 1 1 1 1 1
0 1 2 3 4 5
0 1 4 9 16 25
0 1 8 27 64 125
0 1 16 81 256 625
0 1 32 243 1024 3125

]
, and Θ =




−1 0 0 −1 0
0 −1 0 0 −1
0 0 −1 0 0
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1


 .

The pair (4.10)-(4.11) reads as follows :



0 0 0 0 0
3 3 3 4 4
9 15 21 16 24
27 63 117 64 124
81 255 609 256 624
243 1023 3093 1024 3124







y[1, 0]
y[1, 1]
y[1, 2]
y[2, 0]
y[2, 1]




=




0
b
b2

b3

b4

b5




.

Notice that ∆Θ =
[

0
S

]
with S ∈ N

5×5 an invertible matrix. Whence
there is a nonnegative solution y ≥ 0 if and only if

y(b) = S−1[b, b2, b3, b4, b5]′ ≥ 0.

We can easily verify that y(5) = [0,−1, 0, 1, 1] 6≥ 0. We also have that
y(b) ≥ 0 for b = 0, 3, 4; and that y(b) 6≥ 0 for b = 1, 2, 5.

On the other hand, we can use the transpose ∆′ instead of ∆ in
equations (4.10) to (4.12). Thus existence of a nonnegative integer
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solution x ∈ N
n to Ax = b is equivalent to existence of a nonnegative

real solution y ∈ R
p to

∆′Θy = ∆′b, where (∆′b)[z] = (zb − 1).

Consider the polyhedral cone C∗
β ⊂ R

s defined by

C∗
β := { ξ ∈ R

s : Θ′∆ ξ ≥ 0 },

and with every ξ = (ξz) ∈ C∗
β, associate the exponential-like function

(4.14)
∑

z∈Nm, z≤β

ξz · (z
u − 1).

Observe that fξ(b) = ξ′∆′b. By Farkas lemma, one and only one of the
following statements holds :

(a): The system Ax = z has an integer solution x ∈ N
n.

(b*): fξ(b) < 0 for some ξ ∈ C∗
β and fξ as in (4.14).

References

[1] D. S. Dummit, R. M. Foote. Abstract Algebra. 2nd edition. John Wiley and
Sons, New York, 1999.

[2] R.E. Gomory, E.L. Johnson. The group problem and subadditive functions, in:
Mathematical Programming, T.C. Hu and S.M. Robinson, editors. Academic
Press, New York, 1973.

[3] R.A. Horn, C.R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, 1991.

[4] E.L. Johnson, Integer Programming: Facets, Subadditivity, and Duality for

Group and Semi-group Problems, Society for Industrial and Applied Mathe-
matics, Philadelphia, 1980.

[5] J.B. Lasserre. A discrete Farkas lemma. Discr. Optim. 1 (2004), 67–75.
[6] J.B. Lasserre. Integer programming duality and superadditive functions. Con-

temp. Math. 374 (2005), 139–150.
[7] J. B. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM J. Optim. 11 (2001), 796–817.
[8] J. B. Lasserre. An explicit equivalent positive semidefinite program for non-

linear 0-1 programs. SIAM J. Optim. 12 (2002), 756–769.
[9] J.B. Lasserre. Linear and Integer Programming versus Linear Integration and

Counting, Springer, New York, 2009.
[10] M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and

Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28 (2003), 470–
496.

[11] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 opti-
mization. SIAM J. Optim. 1 (1991), 166–190.

[12] H.D. Sherali and W.P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems.
SIAM J. Discr. Math. 3 (1990), 411–430.



CERTIFICATES FOR INTEGER PROGRAMMING 21

[13] H.D. Sherali and W.P. Adams. A reformulation-linearization technique for

solving discrete and continuous nonconvex problems. Kluwer Academic Pub-
lishers, Dordrecht, 1999.

[14] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, 1986.

[15] V.N. Shevchenko. Qualitative Topics in Integer Linear Programming, Trans-
lations of Mathematical Monographs, volume 156. American Mathematical
Society, Providence, 1997.

[16] L.A. Wolsey. Integer programming duality: Price functions and sensitivity
analysis. Math. Program. 20 (1981), 173–195.

[17] F. Zhang. Matrix Theory, Basic Results and Techniques. Springer-Verlag, New
York, 1999.

LAAS-CNRS and Institute of Mathematics, LAAS 7 Avenue du Colonel

Roche, 31077 Toulouse cedex 4, France

E-mail address : lasserre@laas.fr
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