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I. INTRODUCTION

While finite-elements methods (FEM) are currently employed extensively for electromagnetic analysis and design, the use of adaptive finite-elements methods has increased considerably in recent years (AFEM). The quality of the meshes obtained after AFEM remains improvable, therefore, there is still a need for a procedure which insures good quality's meshes after AFEM iterations.

AFEMs consist in, given an error criterion, finding the set of elements (or nodes) where the error is large, and modifying the mesh at those locations in order to reduce the error. The error is defined as the difference between the estimation of the exact solution and the computed one.

There are two main families of procedure to address AFEMs:

• p-procedures that consist in increasing the degree of the interpolating function. These techniques are difficult to use due to the cost it requires to increase that degree.

• h-procedures that consist in subdividing the mesh where the error criterion is large, by increasing (or eventually decreasing) the discretisation. Conceptually, htype adaptive refinement is straightforward. However an effective implementation can be subject to practical limitations. For instance, the way the new elements are created where the error is large can affect the quality of the resulting mesh.

There are two main ways to add new elements in a mesh: -Using the Delaunay technique: Once an element needs to be modified, a node is inserted at the center of the element or in the middle of its longer edge. All the edges of the elements around this new node are destroyed freeing a certain number of nodes, and a new Delaunay procedure [START_REF] Delaunay | Sur la sphère vide[END_REF] is launched with these Manuscript received June 24, 2007. This work is the product of the collaboration between the G2elab and Cedrat with the goal of a high quality meshes and the implementation of the refinement process.

nodes in order to create new elements. This technique is correct, but does not allow really driving the number of nodes according to the error, since the number of new nodes is the same, whatever the error is.

-Using a subdivision technique where several strategies exist: One method, given in [START_REF] Tani | H-version Adaptative Finite Element Method Using Edge Element for 3D Non-Linear Magnetostatic Problems[END_REF] consists in inserting a certain number of nodes in the edges of an element that need to be modified. The elements with the larger error receive several new nodes, while those with lesser error receive fewer new nodes.

Both these methods share a common drawback: They do not focus on the quality of the resulting mesh at all. The inserted nodes can produce flat, long and thin elements that can lead to poorly conditioned finite element matrices, which in turn, can compromise the accuracy of the solution.

In this paper, we use a Bubble meshing method to remesh once the error criterion is computed. This technique allows obtaining a good initial mesh to start the AFEM, and keep this good quality all along the refinements iterations. It also leads the post AFEM meshes to match the error: the elements are smaller where the error is bigger and larger where the error is smaller.

II. THE BUBBLE MESHING METHOD

In this part, the global principle of the method will be presented. Improvements of this technique will also be presented, improvements that lead to a faster and better quality prone procedure.

A. Description of the technique

The Bubble Meshing Method consists in acting on a given mesh in order to improve its quality, or to create a new mesh insuring high quality elements. After this procedure, the mesh is said as "bubblelized".

The bubble meshing procedure can be summarized as follow [START_REF] Shimada | Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by sphere packing[END_REF], [START_REF] Yokoyama | 3-D automatic mesh generation for FEA using dynamic bubble system[END_REF]: In a given geometry, spheres (or circles in 2D) called bubbles are created in order to fill the whole geometry without gaps. These bubbles are then set into movement with a given interaction force and they reach a stable position, which is when all the bubbles are slightly touching their respective neighbors without significant overlaps and gaps between them. During this process, the control of the population of bubbles is made simultaneously in order to avoid overlaps and holes. Once the bubbles are in a stable position, the nodes of the future mesh are then created at the centre of these bubbles and a mesh with tetrahedra (3D) or triangles (2D) is obtained.

B. Problems faced

This technique has been implemented. While it produces better meshes than initial ones, it also raised some hurdles that need to be crossed in order to have a faster, more efficient and reliable technique. The following part deals with the solutions proposed to improve the technique.

III. IMPROVEMENTS BROUGHT TO THE BUBBLE MESHING METHOD

A. Initial bubbles placement

One of the main problems with this technique is the choice of initial localisation of the bubbles. Some studies packed bubbles directly on the geometry, based on a quadtree approach for instance [START_REF] Shimada | Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by sphere packing[END_REF]. We have chosen in this paper to start with an initial mesh obtained by existing methods such as the well known Delaunay triangulation, each node having a given weight. This discrete set of weights defines a size map that can be interpolated on the whole geometry. Bubbles are created at the nodes of the mesh. During their movement, their size is adapted according to their new location to match the size map.

The main part of this technique, in addition of the definition of the size map, is thus the succession (10 iterations) of movement and control of the population. Those two steps need to be optimized in order to improve the method performances.

B. Adaptive Population Control 1) Ideal number of neighbors for a bubble

In a geometry with a uniform size of bubbles, the ideal number of neighbors for a bubble is six (in 2D) to avoid gaps and overlaps. When the size map is no more constant, it becomes complicated to find out the correct number of neighbors. We use the overlapping ratio i β , introduced in [3] to determine whether the neighborhood of the ith bubble is overloaded (the number of nearby bubbles is superior to i β ) or open (the number of nearby bubbles is inferior to i β ). Thus excess bubbles will be removed and new bubbles will be added. i β is defined as follows:
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where i r is the radius of the ith bubble, ij d is the distance between the ith bubble and its jth neighbor, i N being the number of its neighbors

In an ideal situation where all bubbles have the same size and are tightly packed, β = 2.0 for an edge, β = 6.0 on a face and β = 12.0 in a volume.

2) Remaining gaps between bubbles

Toward the end of the movement / control process, an instable situation may appear, bubbles being added in some place whereas few other bubbles being also deleted, leading to some residual gaps between the bubbles. This is solved by deactivating the suppression of bubbles (the control of the population can only add bubbles) in the last four iterations.

C. Optimization of the movement

Whereas the quality of the bubblelized mesh drastically improves, the cost of the whole procedure could be very high in terms of computation time. Two aspects can minimize this drawback: a correct choice of the force and an optimal simulation of the movement.

1) Force model -A repulsive force is probably the best choice if the number of bubbles has to remain constant. The bubbles won't touch each other at the end of the regularization procedure, but will be uniformly spread like gas molecules in a closed box. However, when inserting a new bubble, all the bubbles will move in the next step of movement since they are all disturbed.

-An attractive-repulsive force is ideal when new bubbles need to be inserted as it creates holes and thus facilitates the insertion of new bubbles: only the very close neighbors of the new bubbles will be disturbed, the rest remaining stable. Hence, the next steps of movement will be faster. This is a model we have chosen to use since we also control the population.
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) Force simulation

The force that governs the movement of a bubble submitted to the influence of its neighbors is the sum of each force generated by each of these neighbors. To gain performance during simulation of movement, we have first modeled the movement of a single bubble attracted by one fixed neighbor. Then this model has been extended to the case with several nearby bubbles.

The force between two bubbles [START_REF] Shimada | Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by sphere packing[END_REF] is such as, at an ideal distance (the sum of the radius of both bubbles), the force is repulsive and becomes attractive over that ideal distance. Therefore, this force is much like the force of a spring. The equation of its movement is then

X c X k X m & & & . . . - - = (2)
where k is the spring constant (directly related to the force), m, the mass of the bubble, and c the coefficient of friction.

These parameters are the ones, in addition to the step time and the integration method, that need to be addressed in order to optimize the movement.

• The spring constant k: We use the value given in [3] that gives for each bubble (3).

• The mass of the bubble m: the mass is chosen as normalized instead of being proportional to the surface (volume) of the bubble. This allows us to keep the step time constant whereas it needs to be adjusted if the mass varies to avoid numerical instability of the integration procedure.

• The coefficient of friction c: The system described is similar to a second order system in Control Theory [5]. Therefore we can make analogy with the transfer function given in [5]. We extract the damping ratio ξ which can be written in our case. To ensure the best compromise between the speed of the system and its stability [5], ξ must be taken so that ξ = 0.7. Given ( 4), all the parameters involved in (5) already described and addressed
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• The stop criterion: In order to improve the speed of the process, we have developed a criterion that, when a certain limit is reached, stops the movement. It is based on the kinetic energy of the bubbles. At each time step, the total kinetic energy of all bubbles is calculated and compared to an estimated energy threshold, corresponding to a movement of all bubbles of 1/10 th of their radius. The movement is stopped once the energy goes under a fraction (a thousandth) of this value.

• The step time: the settling time of the system, which is the time taken for the mobile to reach 98% of its final position, is known by [5] and is • The integration method: we have done comparisons between the first order Runge-Kutta method (RK1) and the fourth-order Runge-Kutta method (RK4) [6].

The RK4 is four times more costly but is also much more accurate and less unstable. Doing some numerical comparisons, we decided to keep RK4 as an optimal choice.

Results of this Bubble meshing technique are given in part V of this paper.

IV. MESH REFINEMENT

Fig2. The classic refinement method (left) and our proposed one (right).

As we have seen in the previous part, the Bubble Method improves the mesh quality, according to a size map. The fig. 2 shows the difference between the classic h-refinement technique and our technique introducing the Bubble meshing method. In the standard method, the mesh is directly modified as described in part I of this paper. In our method, the distribution of the error on the domain directly gives a new size map that drives the bubble regularization and adaptation process.

This technique, used in the refinement process presents some advantages: First, the size map can either decrease or increase the number of nodes, thus leading to an optimal cost of simulation. Next new refined meshes present a very good overall quality, which also lead to a reduction of the conditioning matrix (compared to a refined with the classic technique mesh).

Next part presents some regularization as well as refinement results.

V. RESULTS

In this part, a quality criterion will be presented, then the way the error affects the size map is shown, and finally results for both the bubble meshing technique and meshes refinement using this technique will be shown.

A. The quality criterion

The optimal shape of an element in 2D is the one where each angle of the triangle is 60°. Therefore, the minimum angle in a triangle appears to be a simple but valuable criterion. The more this minimum angle is, the better the shape of the element is. For each element, we have computed the minimum angle (Am), the quality of the element being determined as follows: Angle min (Am) Am>50° 35°<Am<50° 20°<Am<35° Am<20°

Table 1: definition of the different quality criteria

B. The Bubble meshing method

Fig. 3 represents a quarter of an induction motor. In fig3.a, the initial mesh, together with the level of quality of the elements is showed. The fig 3.b represented the same mesh, after a bubblelisation, the level of excellent elements has risen from 40% to 85%, and the level of good elements has fallen from 55% to 12% as it is shown in table 2 which presents the number of elements (%) in each level for the initial mesh and the bubblelized one. We can safely conclude that both the bubble meshing method and the improvements brought have been well implemented. It appears that the bubblelized versions have more nodes, approximately 10%more, than the initial meshes, but the overall better quality of the elements (4) guarantees a more accurate solution, thus a gain in the future refinement process. To transform the computed error into a size map, we use a function that multiplies the initial weight of a node by a coefficient according to the node error: Fig. 5.a shows the shape of the two transformation functions, linear and parabolic. Fig 5 .b shows the results of their efficiency on the same problem. To reduce the mean error by 80%, the parabolic function is faster and less expensive since it needs only 6 refinements instead of 10 for the linear function. A similar transformation is made in [START_REF] Matsutomo | An error evaluation scheme based on rotation of magnetic field in adaptive finite element analysis[END_REF], but the transformation function is not fully explained there.

D. Mesh refinement

Several error criteria exist in the literature such as in [START_REF] Yamada | Error estimation for Transient Finite Element[END_REF].

Choosing one of them, fig. 4 shows the results of the refinement process on a contactor. Fig. 4a is the initial mesh, fig. 4b, the error map, and fig. 4c the refined mesh after 4 iterations, including the proposed regularization. It can be noticed that the new mesh keeps its quality, while being denser in corners.

Fig4. Mesh refinement of a contactor

VI. CONCLUSION AND PERSPECTIVES

In conclusion, the Bubble Meshing method provides good initial meshes to start with, and the importance of a good initial mesh is well known. After the refinement, the new mesh perfectly matches the distribution of the error in the whole domain. The mesh quality remains good during the refinement process. Even if the paper deals with 2D cases, the procedure can be implemented in 3D since the Bubble meshing method is extensible in 3D.
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 2 quality comparison between an initial and a bubblelized mesh