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1 Introduction

Let B denote the unit N-ball and X = 0B. If p is a distribution on 3 we denote by P(u)
its Poisson potential in B, that is

P(u)(z) =< p, P(x,.) >x, Vz € B, (1.1)

where <, >y, denotes the pairing between distributions on ¥ and functions in C*°(X). In
the particular case where y is a measure, this can be written as follows

P(() = [ Pa)duty). Vae B (1.2)

In [4] it is proved that for ¢ > 1 the Besov space W~%%4(X) is characterized by an
integrability condition on P(u) with respect to a wheight function involving the distance
to the boundary, and more precisely that there exists a positive constant C = C(N,q)
such that for any distribution p on ¥ there holds

1/q
C Ml 200y < </B P(p)|*(1 — |3:|)d:£> < Cllpllw-2/0.0(x)- (1.3)

The aim of this article is to prove that for all 1 < ¢ < oo any negative Besov spaces
B7%49(%) can be described by an integrability condition on the Poisson potential of its
elements. More precisely, we prove

Theorem 1.1 Let s >0, ¢ > 1 and u be a distribution on X. Then
p€ B5UY) <= P(u) € LYB; (1 — |=|)* 1dx).

Moreover there exists a constant C' > 0 such that for any u € B~%4(X),

1/q
o—luuuBs,q(Ds(L |P<u>|q<1—|:c|>sq—1dw) <Ol easy  (14)



The key idea for proving such a result is to use a lifting operator which reduces the estimate
question to an estimate between Besov spaces with positive exponents. In one direction
the main technique relies on interpolation theory between domain of powers of analytic
semigroups. In the other direction we use a new representation formula for harmonic
functions in a ball.

Acknowledgment. The research of MM was supported by The Israel Science Foundation
grant No. 174/97.

2 The left-hand side inequality (1.4)

We recall that for 1 <p<oo,r¢ N, r=k+nwithkeNand0<n<1,

|DYp(x) — D¥p(y)[”

B"P(RY) = {gp e WFP(RY) : / dzdy < co,Ya € N, |a| =k, }
Rd

R? |z — y| TP
with norm
|Do(x +y) — D*p(x)]”
1ol = ]2, + / dedy.
o " mZ::k ReJR4 jy 7
When r € N,

BP(RY) = {(p € Wr—Lp(RY) :

|D%p(z + 2y) + DY (x) — 2D%p(z + y) [P
R/ R ly[P+

drdy < oo,Va € N, |q :7‘—1,},

with norm

ey = 1@l

|D%p(x + 2y) + D%0(x) — 2D%p(x + y)[”
+ Z /Rd/Rd P dxdy.

|a|=r—1

The relation of the Besov spaces with integer order of differentiation and the classical
Sobolev spaces is the following [3], [2]

BP(RY) ¢ WrP(RY) if 1 <p <2,
Wr2(R?) = B™2(R), (2.1)
WrP(RY) c BrP(RY) if p > 2.

Since for rN, and 1 < p < oo, the space B~"P(R?) is the space of derivatives of LP(R%)-
functions, up to the total order k, for noninteger r, r = k+n with k e Nand 0 <np < 1
B~"P(R%) can be defined by using the real interpolation method [3] by

W_k’p(Rd), W—k—l,p(Rd) — B_T7P(Rd).
777p



The spaces B™"P(R%), or 1 < p < oo and r > 0 can also be defined by duality with
B~ (R%). The Sobolev and Besov spaces W*?(X) and B"P(X) are defined by using
local charts from the same spaces in RV,

Now we present the proof of the left-hand side inequality in the case N > 3. However,
with minor modifications, the proof applies also to the case N = 2 (see the remark ). Let
(r,0) € [0,00) x SN=1 (with S¥~! ~ %) be spherical coordinates in B and put ¢t = — Inr.
Suppose that g € B=%9(SN=1) let u = P(u) and denote by 7 the function u expressed in
terms of the coordinates (t,0). Then

N -1

1
Upp + U+ 5 8gu =0, in(0,1) SNt (2.2)

and
Gy — (N — 2)ii; + Api =0, in (0,00) x V7L, (2.3)

Then the right inequality in (1.4) obtains the form
= t 1_—Nt
/0 /SN1 jal* (1 —e™")* e™Mdodt < C Il f-oqgn1y - (2.4)

Clearly it is sufficient to establish this inequality in the case that u € M (SN 1) (or even
p € C°(SN=1)), which is assumed in the sequel. We define k& € N* by

20k —1) < s < 2k, (2.5)

with the restriction s > 0 if £ = 1. We denote by B the elliptic operator of order 2k
_9)2 k
S (CEL SN

and call f the unique solution of
p=Bf inSVNL

Then f € W2~59(SN=1) since B is an isomorphism between the spaces B2*~%4(SN=1) and
B=54(SN=1). Put v = P(f) in B, then v satisfies the same equation as u in (0,1) x SNV,
Let © denote this function in terms of the coordinates (¢,0). Then

{Eﬁ =y — (N —2)5, + Agd =0 in Ry x SN-1, 26)

B)t=0 = f, in SNV-L

Since the operator B commutes with A, and 9/0¢t, and this problem has a unique solution
which is bounded near t = oo, it follows that

P(Bf) = B. (2.7)

Hence,
u=P(u) =PBf) =DBo. (2.8)



If v* := e *N=2/25 then

v;ft—(N4)v + Ayv* =0, inR, x SN
= f, in SN,

Note that
_9)2 1/2
v* = e (f) where A=— <%I— Ag> — A% =B

where e is the semigroup generated by A in L(SN~1). By the Lions-Peetre real inter-
polation method [3],

[W2k7q(sN—1)’Lq(SN—l)] _ B2k—s,q(SN—1)‘

1—s/2k,q

Since D(A2?) = W24(SN-1), D(A%F) = W2k4(SN-1). The semi-group generated by A is
analytic as any semi-group generated by the square root of a closed operator, therefore by
[8] p 96,

= s . a dt
e~ WV + - (1020 4240 )
1 q dt
~ HfH‘iq(SNl)Jr/O (tSHA%v*HLq(SN,IQ n (2.10)

1
_ s, —t(N—2)/2 adt
sy + | (2 Bl o) 5

where the symbol ~ denotes equivalence of norms. Therefore, by (2.10),

' - adt
||fHW2k s.q(Sn—1) > CHfH%q(Ang _|_C’/ tse—t(N—Q)/2 HuHLQ(SN*l)) ?
(2.11)
> Ol gy +C / 9 g1y € NE50 .
Furthermore,
/ H&H%q(sN,l)(1—et)sq—1e—Ntdt < C/ ||uHLq (V- 1)(1_6 tysa—1e=Nt gy
’ (2.12)
< 0 gy e N

This is a consequence of the inequality

/ 1S < (r/p)N ! / u2ds,
637- 6Bp

which holds for 0 < r < p, for every harmonic function u in B. By a straightforward
computation, this inequality implies that

/led 91— 1) dz < () / ul?(1 — 7 da,

y<|z|<1



for every v € (0,1).
In view of the definition of f,

”N”?gfs,q(snfl) ~ ”f”?/v%fs,q(snfl) . (2.13)
Therefore, the right hand side inequality in (2.4) follows from (2.11), (2.12) and (2.13).

3 The right-hand side inequality (1.4)

Suppose that p is a distribution on S¥~1 such that P(u) € LY(B; (1 — |z|*"). Then we
claim that p € B=*9(SV~1) and

1/q
Ol ey < ( J o - |:c|>sq—1dw) . (3.1)

Because of estimate (2.10) it is suffficient to prove that

£l pagsn—1y < Cllull pagp,(1-r)sa-1 dz) - (3:2)
With u = Bv this relation becomes

Hf”Lq(stl) <C ||BU||Lq(B;(1_r)sq71 dz)

1 1/q
S C </0\ HUH(II/VQIC,Q(Asq\],l)(l — T)Sq—l ’]‘N_ldr> .

In order to simplify the exposition, we shall first present the case where 0 < s < 2.

(3.3)

3.1 Thecase 0 <s<?2

We take k = 1. Since the imbedding of B2~%4(SV~1) into LI(S™~!) is compact, for any
€ > 0 there is C; > 0 such that

ol Lagsv-1y < €llell p2-saggn-1) + Celloll prgv-1y, Vo € B2sa(SN=1),

Therefore the following norm for B2=%49(SV~1) is equivalent to the one given in (2.4)

g a dt
T Ty A (o e (3.4
and estimate (3.3) will be a consequence of
1
s 2, % q di

”f”Ll SN-1) S/O (t HA v HLq(SNﬂ)) T (3.5)
Integrating (2.9) and using the fact that

Jim [[0%| oo gv-1y = B {[v7 ][ poo g5-1) = 0, (3.6)



yields to
Vi (t o) = —/ A2 (s, 0)ds, (L, 0) € (0,00) x SN,

*(t,0) ; / A2v*(1,0)drds, )

and

A% (1,0)(T — t)dT, Y(t,0) € (0,00) x SN~L.

Letting ¢t — 0 and integrating over S™~!, one obtains

/ |fldo < / / |A%0* | rdodT
gN-1 0o JsN-1

o 1/q
< C(N,s,q,9) (/ / ‘A2v*|qe‘5T7’8q_ld0d7‘>
0o Jsn-1

for any 6 > 0 (0 will be taken smaller that (N — 2)q/2) is the sequel), where
1/q

(3.8)

C(N, s, q, 5) = <‘SN—1‘ /OOT(tH-l—sq)/(q—l)6—67/(q_1)d7_>
0

Notice that the integral is convergent since (¢ + 1 —sq)/(qg — 1) > —1 <= s < 2. Going
back to v

/ / ‘sz*‘qeéTTSq_ldadT = / / |A2T)‘qe(‘s_(N_mq/z)Tqu_ldadT.
0 SN-—-1 0 SN-—-1

Since v is harmonic
/ (71, .)|%do < / la(72,.)|%do, VO < 1 <71,
gN-1 gN-1
or equivalently,
/ A% (m, )| "do < / 1A%, )|"do, M0 <7y <7y, (3.9)
SN-1 SN-1
Applying (3.9) between 7 and 1/7 for 7 > 1 yields to

/oo/ |A2,U|qe(6 (N=2)q/2)7 ~sq— 1d0’d7’</ / ‘A22~}|qe(6—(N—2)q/2)—r*1T—sq—ldo.d,r
1 JeN-1

SN-1
(3.10)
Moreover there exists C' = C'(N, q,d) > 0 such that

e(5—(N—2)q/2)t’1t—sq—1 < Ce(é—(N—2)q/2)ttsq—1’ Y0 <t < 1.

Plugging this inequality into (3.9) and using (3.8), one derives

1 1/q
/ |fldo < C </ / ‘sz*|q65Tqu_1dadT> (3.11)
SN-1 0 SN-1

for some positive constant C', from which (3.5) follows.



3.2 the general case

We assume that k& > 1. Since the imbedding of B%~%9(SN~1) into LI(SN~1) is compact,
for any € > 0 there is C; > 0 such that

”QOHLQ(SNfl) < E”(pHBQlcfs,q(SN—l) + CE”(PHLl(SNfly V(p c B2k_8’q(SN_1),

Thus the following norm for B%~%9(SN=1) is equivalent to the one given in (2.4)

q ! s 2k, x 1 dt
Ve = vy + [ (t A% LWU) i (3.12)
and estimate (3.3) will follow from
! 9 dt
q s 2k, * @b
HfHLl(SNl)g/O (t A%y Lq(sN1)> = (3.13)
From (3.7),
Vv (t, o) = / A20*(7,0)(r — B)dr, Y(t,0) € (0,00) x SNL. (3.14)
t

Since the operator A? is closed,

sz*(t, o) = / A4v*(7', o)(t —t)dr,
t
and

v* o) = > _ > 4, % _
(t,0) / (t — 1) / Al (t,0)(t2 — ) dbadty, -
/ / (11 — D) (ts — 1) AV* (b, 0)dtadtr, V(t,0) € (0,00) x SN-1.

Iterating this process one gets, for every (¢,0) € (0,00) x SN,
0o k
vi(t,0) = / / / 11 - ti-) A0 (t, 0)dtpdty_y .. . dty. (3.16)
t t1 th—1 j=1

where we have set t = ¢y in the product symbol. The following representation formula is
valid for any k € N,.

Lemma 3.1 For any (t,0) € (0,00) x SN=1,

(g _ 2k—1
v*(t,0) :/t %A%v*(sm)ds. (3.17)



Proof. We proceed by induction. By Fubini’s theorem

to
/ / tl — t)(tg — tl)A4 *(tg, )dtgdtl / A%y * tg, )/ (751 — t)(tg — tl)dtldtg
t1 t
:/ MA4U*(t2,O')dt2.
t 6

Suppose now that for ¢ > 0, £ < k and any smooth function ¢ defined on (, c0),

0 00 B o
/t/t / Ht — tj-)p(te)diedtey ... d :/t %g@(m)dt@. (3.18)

Then

/ / / —1)@(terr)dtpprdty ... dty
t t1 t

/ / H§=1(tj —tj_1)®(ty)dtedt,—q . .. dty,
t1

ty—1

)2€ 1
_/t 7(%_1)- (1) dty,
with -
(ty) =/ (ter1 —te)o(terr)dtosr.

ty
But

/mw/m@ —t) (t )dt dt
.-, 41 = Le) P let1)ateq1 0ty
0 tell+1 (t( _ t)QZ 1
:/ 90(756-1-1)/ W(UH te)dtedtoy
t t

o0 teyj+1—t 25
= t — (¢ —t—T1)drdt
/t i e+1)/0 or= 1),( r41 T)drdtrg

0 20+1
togg1 — T
=/ so(tz+1)(+—)dtz+1
t .

1 1 1 1

(20 — 1),(27 ST 1) = @1 Taking o(tgy1) = A%v*(tey1,0) implies (3.17).

as

End of the proof. From (3.16) and Lemma 3.1 with ¢ = 0, we get

/ |f|do < / / | A%y | dO’dT
SN-1 N-1 Qk‘ (3.19)

1/q
< C(N,s,k,q,9) </ / ‘A%v*‘qe‘STqu_ldadT>
0 Jon-1



for any ¢ > 0 (§ will be taken smaller that (N — 2)q/2) is the sequel), where
e 1/¢
C(N,s,k,q,0) = <‘5N—1| / T(2k—s—1/q’)4’e—éT/(q—l)dT> '
0

Notice that the integral is convergent since (2k — s —1/¢')¢’ > —1 <= s < 2k. As in the
case s < 2 we return to ¢ and @ = A%*@, use the harmonicity of u in order to derive

/OO/ ‘A2kl~}‘qe(é_(N_2)q/2)TT5q_1dO'dT
1 SN-1

1
< / / |A2k1~)|qe(5_(N—2)4/2)T71T—sq—ldo,dT
0 JSN-1

(3.20)
as in (3.10) and finally

1 1/q
/ |fldo < C ( / / AP o s ldodr |
SNt 0 JsvT v (3.21)
<’ </ / ]@]qTSq_ldadT> ,
0 SN—I

which ends the proof of Theorem 1.1.
Remark. If N = 2 the lifting operator is

2 \"
B=|1-—
(-am)
and the proof is similar. moreover, since B is an isomorphism between B*~%1(S') and
B~%1(S1), the result of Theorem 1.1 holds also in the case ¢ = 1.

4 A regularity result for the Green operator

Put (1 — |z|) = &(z). By duality between LI(B;d*~'dz) and L9 (B; 5% 'dx), we write

/P(u)wsq‘ldw = —/]P’(M)A(da; _ [
B

S, 4.1
; Lo (4.1)

where ( is the solution of

(=0 on 0B. (4.2)

In (4.1), the boundary term should be written < u,d¢/0v >y if u is a distribution on 3.
Then the adjoint operator P* is defined by

{ —~AC=6%"1 in B,

0
P* = ——G(6%7! 4.
(¥) = 5 GETY), (13)
where G(3°¢~14)) is the Green potential of §°9~14). Consequently, Theorem 1.1 implies

that there exists a constant C' > 0 such that



_ 0 so—
O™ Wlawpn-ram < [ oG H0) < Ol ipgn gy (1)

Bsd' (%)

But
¢ e LY (B; 8% M) < 671 € LY (B; 667 D0=4) qy).

Putting ¢ = §*14¢) and replacing ¢’ by p, implies the following result

Theorem 4.1 Let s >0 and 1 < p < oco. Then

@ € LP(B; P11 dy) = a%@(cp) € B*P(%).

Moreover there exists a constant C' > 0 such that for any ¢ € LP(B; 6?05~ dx)

0

+=G(p)

ov < CHQDHLP(B;(;p(lfs)—l)dx)- (4.5)

B ()

o P
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