A short proof of the strong normalization of the simply typed $\lambda\mu$-calculus
René David, Karim Nour

To cite this version:
René David, Karim Nour. A short proof of the strong normalization of the simply typed $\lambda\mu$-calculus. Chambéry-Krakow-Lyon: workshop on λ-calculus, type theory and mathematical logic, Computer science department, Cracovic, Pologne, 27-28 Juin 2003, Jun 2003, Cracovic, Poland. pp.27-33. hal-00382688

HAL Id: hal-00382688
https://hal.science/hal-00382688
Submitted on 11 May 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A short proof of the strong normalization of the simply typed $\lambda\mu$-calculus

René DAVID and Karim NOUR
LAMA - Equipe de Logique
Université de Chambéry
73376 Le Bourget du Lac
e-mail: {david,nour}@univ-savoie.fr

Abstract. We give an elementary and purely arithmetical proof of the strong normalization of Parigot’s simply typed $\lambda\mu$-calculus.

1. Introduction

This paper gives an elementary and purely arithmetical proof of the strong normalization of the cut-elimination procedure for the implicative propositional classical logic, i.e. the propositional calculus with the connectives \rightarrow and \bot. As usual, \bot codes the absurdity and the negation is defined by $\neg A = A \rightarrow \bot$.

This proof is based on a proof of the strong normalization of the simply typed λ-calculus due to the first author (see [2]) which, itself, is a simplification of the one given by R. Matthes in [3]. After this paper had been written we were told by P.L. Curien and some others that this kind of technique was already present in van Daalen (see [5]) and J.J. Levy (see [4]).

Since the proofs in the implicative propositional classical logic can be coded by Parigot’s $\lambda\mu$-terms and the cut elimination corresponds to the $\lambda\mu$-reduction, the result can be seen as a proof of the strong normalization of the simply typed $\lambda\mu$-calculus. The first proof of the strong normalization of the $\lambda\mu$-calculus for the types of Girard’s system F was done by Parigot in [6] in two different ways: by using reducibility candidates and by a CPS transformation to the λ-calculus.

The technique we present here can also be used to prove the strong normalization of the cut elimination procedure for the classical natural deduction (i.e. where all the connectives, in particular \lor, are present and permutative conversions are considered) but more elaborate ideas are necessary. This result was proved (see [1]) by using a CPS transformation. We will give a direct proof in a forthcoming paper.
2. The typed system

The $\lambda\mu$-terms, which extend the λ-terms, are given by the following grammar (where $x, y, ...$ are variables):

$$ T ::= x \mid \lambda x T \mid (T \ T) \mid \mu x T $$

The new constructor μ corresponds to the classical rule \bot_c given below.

$$ \Gamma, x : A \vdash x : A $$

$$ \Gamma \vdash \mu x M : A \bot $$

The cut-elimination procedure corresponds to the reduction rules given below.

A logical cut appears when the introduction of the connective \rightarrow is immediately followed by its elimination. The reduction rule is the usual β reduction of the λ-calculus:

$$ (\lambda x M \ N) \rightarrow M[x := N] $$

A classical cut appears when the classical rule is immediately followed by the elimination rule of \rightarrow. The reduction rule is:

$$ (\mu x M \ N) \rightarrow \mu y M[x := \lambda z (y (z \ N))] $$

It corresponds to the following transformation on the proofs (written in the natural deduction style):

$$ \frac{\frac{\frac{\frac{\vdash \bot}{\vdash A \rightarrow B}}{\vdash A \rightarrow B} \quad \frac{[\neg (A \rightarrow B)]}{\vdash B}}{\vdash A \rightarrow B} \quad \frac{\frac{\frac{\vdash \bot}{\neg (A \rightarrow B)}}{\vdash B}}{\vdash B}}{\neg B} \quad \frac{\frac{\frac{\vdash \bot}{\neg (A \rightarrow B)}}{\vdash B}}{\vdash B} $$

This coding, though slightly different from the one in [6], is essentially the same and the two systems are obviously equivalent.

- Parigot uses two sets of variables: the λ-variables (for the intuitionistic assumptions) and the μ-variables (for classical assumptions, i.e. the ones that are discharged by the absurdity rule \bot_c). Moreover his typing judgements have several conclusions.

- We use only one set of variables and sequents with only one conclusion. Thus, we do not need the new constructor $[\alpha]$ and the corresponding notion of substitution. The drawback is that the reduction introduces some “administrative” redexes. These notations and reductions rules are the ones used in the $\lambda\Delta$ of Rehof and Sorensen (see [7]).
3. Strong normalization

We first need some notations and lemmas.

3.1. Lemmas for the un-typed calculus

Notation 3.1 Let M be a $\lambda\mu$-term.

1. $M \to M'$ (resp. $M \to^{\ast} M'$) means that M reduces to M' by using one step (resp. some steps) of the reduction rules given above.

2. $\text{ctxy}(M)$ is the number of symbols occurring in M.

3. M is strongly normalizable (this is denoted by $M \in SN$) if there is no infinite sequence of \to reductions. If $M \in SN$, $\eta(M)$ is the length of the longest reduction of M.

4. \overrightarrow{N} (resp. $\overrightarrow{\mu}$) represents a sequence of $\lambda\mu$-terms (resp. of λ or μ abstractions). If \overrightarrow{N} is the sequence $N_1...N_n$, $(M \overrightarrow{N})$ denotes the $\lambda\mu$-term $(M N_1...N_n)$.

5. In a proof by induction, IH will denote the induction hypothesis.

Lemma 3.1 Every $\lambda\mu$-term M can be written as $\overrightarrow{\lambda\mu}(R \overrightarrow{O})$ where R is either a redex (called the head-redex of M) or a variable (in this case, M is in head normal form).

Proof By induction on $\text{ctxy}(M)$.

Definition 3.1 Let M be a $\lambda\mu$-term.

1. $\text{hred}(M)$ is the term obtained from M by reducing its head-redex, if any.

2. $\text{arg}(M)$ is the set of terms defined by:

 $\bullet \text{arg}(\overrightarrow{\lambda\mu}(x O_1...O_n)) = \{O_1,...,O_n\}$.

 $\bullet \text{arg}(\overrightarrow{\lambda\mu}(\lambda x P Q O_1...O_n)) = \text{arg}(\overrightarrow{\lambda\mu}(\lambda x P Q O_1...O_n)) = \{P,Q,O_1,...,O_n\}$.

Lemma 3.2 Let M, N be $\lambda\mu$-terms. Then, $\text{arg}(M[x := N]) \subseteq \text{arg}(N) \cup \{N\} \cup \{Q[x := N] / Q \in \text{arg}(M)\}$.

Proof Immediate.

Lemma 3.3 Let M be a $\lambda\mu$-term. Then, $M \in SN$ if $\text{arg}(M) \subseteq SN$ and $\text{hred}(M) \in SN$.

Proof \Rightarrow is immediate. \Leftarrow : If $M = \overrightarrow{\lambda\mu}(x \overrightarrow{O})$ the result is trivial.

- If $M = \overrightarrow{\lambda\mu}(R \overrightarrow{O})$ where $R = \lambda x P Q$ since $\text{arg}(M) \subseteq SN$, an infinite reduction of M must look like: $M \to^{\ast} \overrightarrow{\lambda\mu}(\lambda x P_1 Q_1 \overrightarrow{O}_1) \to^{\ast} \overrightarrow{\lambda\mu}(P_1[x := Q_1] \overrightarrow{O}_1) \to^{\ast} ...$. The result immediately follows from the fact that $(P[x := Q] \overrightarrow{O}) \to^{\ast} (P_1[x := Q_1] \overrightarrow{O}_1)$.

- If $M = \overrightarrow{\lambda\mu}(R \overrightarrow{O})$ where $R = \mu x P Q$: the proof is similar.
Lemma 3.4 Let \(M \in SN \) be \(\lambda \mu \)-term. Then \((M y) \in SN \).

Proof We prove by induction on \((\eta(M), c t y(M)) \) that, if \(M \in SN \), then \((M[\sigma] y) \in SN \) where \(\sigma \) is a substitution of the form: \([x_1 := \lambda u(x_1 (u y)), ..., x_n := \lambda u(x_n (u y))] \). It follows immediately from the IH that, if \(N \) is a strict sub-term of \(M \), then \(N[\sigma] \in SN \) and thus \(arg((M[\sigma] y)) \subseteq SN \). By lemma 3.3, it is thus enough to prove that \(N = hred((M[\sigma] y)) \in SN \). In each case the result follows easily from the IH:

- If \(M = (x \, \overline{O}) \) and \(\sigma(x) = x \): then \((M[\sigma] y) = (x \, \overline{O}[\sigma] y) \).
- If \(M = (x \, O_1 \, \overline{O}) \) and \(\sigma(x) = \lambda u(x (u y)) \): then \(N = (x (O_1[\sigma] y) \overline{O}[\sigma] y) \).
- If \(M = (\lambda x P \, Q \, \overline{O}) \): then \(N = (M'[\sigma] y) \) where \(M' = hred(M) \) and thus \(\eta(M') < \eta(M) \).
- If \(M = (\mu x P \, Q \, \overline{O}) \): similar.
- If \(M = \lambda x P \): then \(N = P[\sigma][x := y] \).
- If \(M = \mu x P \): then \(N = \mu x P[\sigma'] \) where \(\sigma' = \sigma \cup [x := \lambda u(x (u y))] \). \(\square \)

3.2. Proof of the strong normalization of the typed calculus

The following result is straightforward.

Lemma 3.5 If \(\Gamma \vdash M : A \) and \(M \rightarrow^* N \) then \(\Gamma \vdash N : A \).

Lemma 3.6 Let \(M \in SN \) be a \(\lambda \mu \)-term and \(\sigma \) be a substitution. Assume that the substituted variables all have the same type and, for all \(x \), \(\sigma(x) \in SN \). Then \(M[\sigma] \in SN \).

Proof This is done by induction on \((lgt(\sigma), \eta(M), c t y(M), \eta(\sigma)) \) where \(lgt(\sigma) \) is the number of connectives in the type of the substituted variables and \(\eta(\sigma) \) is the sum of the \(\eta(N) \) for the \(N \) that are actually substituted, i.e. for example if \(\sigma = [x := N] \) and \(x \) occurs \(n \) times in \(M \), then \(\eta(\sigma) = n \eta(N) \). The cases \(M = \lambda x P \), \(M = \mu x P \) and \(M = (y \, \overline{P}) \) for \(y \neq x \) are trivial. Otherwise, by the IH and lemma 3.2, \(arg(M[\sigma]) \subseteq SN \). By lemma 3.3, it is thus enough to show that \(hred(M[\sigma]) \in SN \):

- If \(M = (\lambda y P \, Q \, \overline{O}) \): \(hred(M[\sigma]) = hred(M)[\sigma] \) and the result follows from the IH since \(\eta(hred(M)) < \eta(M) \).
- \(M = (\mu y P \, Q \, \overline{O}) \): similar.
- \(M = (x \, P \, \overline{O}) \): by our definition of \(\eta(\sigma) \), we may assume, without loss of generality, that \(x \) occurs only once in \(M \). Let \(N = \sigma(x) \).
 - If \(N \) is not in head normal form, \(hred(M[\sigma]) = M[\sigma'] \) where \(\sigma'(y) = \sigma(y) \) for \(y \neq x \) and \(\sigma'(x) = hred(N) \). The result follows from the IH since \(\eta(\sigma') < \eta(\sigma) \).
 - If \(N = (y \, \overline{N}_1) \), the result is trivial.
If \(N = \lambda y N_1 \) then \(hred(M[\sigma]) = (N_1[y := P[\sigma]] \overline{O[\sigma]}) \). By the IH, since \(lgt(P[\sigma]) < lgt(\sigma) \), \(N_1[y := P[\sigma]] \in SN \) and thus, by the IH, \(hred(M[\sigma]) = (z \overline{O[\sigma]}) [z := N_1[y := P[\sigma]]] \in SN \) since \(lgt(N_1) < lgt(\sigma) \).

If \(N = \mu y N_1 \) then \(M[\sigma] = (\mu y N_1 P[\sigma] \overline{O[\sigma]}) \). Let \(M_1 = (\mu y N_1 z) \) where \(z \) is a fresh variable. By lemma 3.4, \(M_1 \in SN \). Since \(lgt(P[\sigma]) < lgt(\sigma) \), by the IH, \((\mu y N_1 P[\sigma]) = M_1[z := P[\sigma]] \in SN \). But \(M[\sigma] = M_2[u := (\mu y N_1 P[\sigma])] \) where \(M_2 = (u \overline{O[\sigma]}) \) and \(u \) is a fresh variable. Since \(lgt((\mu y N_1 P[\sigma])) < lgt(\sigma) \), the result follows from the the IH. □

Theorem 3.1 Every typed \(\lambda \mu \)-term is strongly normalizable.

Proof By induction on \(cxty(M) \). The cases \(M = x, M = \lambda x N \) or \(M = \mu x N \) are trivial. If \(M = (N_1 N_2) \) the result follows from lemma 3.6 and the IH since \(M = (x N_2)[x := N_1] \) where \(x \) is a fresh variable. □

Remarks

1. In the proof of theorem 3.1, the case \(M = (N_1 N_2) \) can also be solved by writing \(M = (N_1 x)[x := N_2] \) where \(x \) is a fresh variable and using lemma 3.3.

2. In the proof of lemma 3.4, the case \(M = (x P \overline{O}) \) and \(N = \lambda y N_1 \) can be solved exactly as the case \(N = \mu y N_1 \) by using \(M_1 = (\lambda y N_1 z) \) where \(z \) is a fresh variable.

4. **References**

