
HAL Id: hal-00382687
https://hal.science/hal-00382687

Submitted on 11 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A semantics of realisability for the classical propositional
natural deduction

Karim Nour, Khelifa Saber

To cite this version:
Karim Nour, Khelifa Saber. A semantics of realisability for the classical propositional natural de-
duction. Second Workshop on Computational Logic and Applications (CLA 2004), Jun 2004, Lyon,
France. pp.31-39. �hal-00382687�

https://hal.science/hal-00382687
https://hal.archives-ouvertes.fr

CLA 2004 Preliminary Version

A semantics of realisability for the classical
propositional natural deduction

Karim NOUR

Equipe de Logique, Université de Savoie

73376 Le Bourget du Lac, France

Khelifa SABER

Equipe de Logique, Université de Savoie

73376 Le Bourget du Lac, France

Abstract

In this paper, we introduce a semantics of realisability for the classical propositional
natural deduction and we prove a correctness theorem. This allows to characterize
the operational behaviour of some typed terms.

Key words: classical natural deduction, semantics of realisability,
correctness theorem.

1 Introduction

Natural deduction system is one of the main logical system which was intro-
duced by Gentzen [4] to study the notion of proof. The full classical natural
deduction system is well adapted for the human reasoning. By full we mean
that all the connectives (→, ∧ and ∨) and ⊥ (for the absurdity) are considered
as primitive and they have their intuitionistic meaning. As usual, the nega-
tion is defined by ¬A = A →⊥. Considering this logic from the computer
science of view is interesting because, by the Curry-Howard correspondence,
formulas can be seen as types for the functional programming languages and
correct programs can be extracted. By this correspondence the corresponding
calculus is an extension of the λµ-calculus with product and co-product.

Until very recently (see the introduction of [3] for a brief history), no proof
of the strong normalization of the cut-elimination procedure was known for
full logic. In [3], P. De Groote gives a such proof for classical propositional

1 Email: knour@univ-savoie.fr
2 Email: ksabe@univ-savoie.fr

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

NOUR

natural deduction by using the CPS-transformation. R. David and the first
author give in [2] a direct and syntactical proof of this result. R. Matthes
recently found another semantical proof of this result (see [6]).

In order to prove the strong normalization of classical propositional natural
deduction, we introduce in [8] a variant of the reducibility candidates, which
was already present in [11]. This method has been introduced by J.Y. Girard.
It consists in associating to each type A a set of terms |A|, such that every term
is in the interpretation of its type (this is called “the adequation lemma”). To
the best of our knowledge, we obtain the shortest proof of this result.

In this paper, we define a semantics of realisability of classical propositional
natural deduction inspired by [8] and we estabilish a correctness theorem.
The idea is to replace the set of strongly normalizing terms used in the proof
presented in [8] by a set having the properties necessary to keep the adequation
lemma. This result allows to characterize the operational behaviour of terms
having some particular types.

The paper is organized as follows. Section 2 is an introduction to the typed
system and the relative cut-elimination procedure. In section 3, we define the
semantics of realisability and we prove the correctness theorem. In section 4,
we give some applications of this result.

2 Notations and definitions

Definition 2.1 We use notations inspired by the paper [1].

(i) Let X and A be two disjoint alphabets for distinguishing the λ-variables
and µ-variables respectively. We code deductions by using a set of terms
T which extends the λ-terms and is given by the following grammars:

T := X | λX .T | (T E) | 〈T , T 〉 | ω1T | ω2T | µA.T | (A T)
E := T | π1 | π2 | [X .T ,X .T]

An element of the set E is said to be an E-term.

(ii) The meaning of the new constructors is given by the typing rules below
where Γ (resp. ∆) is a context, i.e. a set of declarations of the form x : A
(resp. a : A) where x is a λ-variable (resp. a is a µ-variable) and A is a
formula.

Γ, x : A ⊢ x : A ; ∆
ax

Γ, x : A ⊢ t : B; ∆

Γ ⊢ λx.t : A → B; ∆
→i

Γ ⊢ u : A → B; ∆ Γ ⊢ v : A; ∆

Γ ⊢ (u v) : B; ∆
→e

Γ ⊢ u : A; ∆ Γ ⊢ v : B; ∆

Γ ⊢ 〈u, v〉 : A ∧ B; ∆
∧i

Γ ⊢ t : A ∧ B; ∆

Γ ⊢ (t π1) : A; ∆
∧1

e

Γ ⊢ t : A ∧ B; ∆

Γ ⊢ (t π2) : B; ∆
∧2

e

2

NOUR

Γ ⊢ t : A; ∆

Γ ⊢ ω1t : A ∨ B; ∆
∨1

i

Γ ⊢ t : B; ∆

Γ ⊢ ω2t : A ∨ B; ∆
∨2

i

Γ ⊢ t : A ∨ B; ∆ Γ, x : A ⊢ u : C; ∆ Γ, y : B ⊢ v : C; ∆

Γ ⊢ (t [x.u, y.v]) : C; ∆
∨e

Γ ⊢ t : A; ∆, a : A

Γ ⊢ (a t) : ⊥; ∆, a : A
absi

Γ ⊢ t : ⊥; ∆, a : A

Γ ⊢ µa.t : A; ∆
abse

(iii) The cut-elimination procedure corresponds to the reduction rules given
below. They are those we need to the subformula property.
• (λx.u v) ⊲ u[x := v]
• (〈t1, t2〉 πi) ⊲ ti
• (ωit [x1.u1, x2.u2]) ⊲ ui[xi := t]
• ((t [x1.u1, x2.u2]) ε) ⊲ (t [x1.(u1 ε), x2.(u2 ε)])
• (µa.t ε) ⊲ µa.t[a :=∗ ε].

where t[a :=∗ ε] is obtained from t by replacing inductively each sub-
term in the form (a v) by (a (v ε)).

(iv) Let t and t′ be E-terms. The notation t ⊲ t′ means that t reduces to t′ by
using one step of the reduction rules given above. Similarly, t ⊲∗ t′ means
that t reduces to t′ by using some steps of the reduction rules given above.

The following result is straightforward

Theorem 2.2 (Subject reduction) If Γ ⊢ t : A; ∆ and t ⊲∗ t′, then Γ ⊢ t′ :
A; ∆.

We have also the following properties (see [1], [2], [3], [8] and [9]).

Theorem 2.3 (Confluence) If t⊲∗ t1 and t⊲∗ t2, then there exists t3 such that
t1 ⊲∗ t3 and t2 ⊲∗ t3.

Theorem 2.4 (Strong normalization) If Γ ⊢ t : A; ∆, then t is strongly
normalizable.

3 The semantics

Definition 3.1 (i) We denote by E<ω the set of finite sequences of E-terms.
The empty sequence is denoted by ∅.

(ii) We denote by w̄ the sequence w1w2...wn. If w̄ = w1w2...wn, then (t w̄) is
t if n = 0 and ((t w1) w2...wn) if n 6= 0. The term t[a :=∗ w̄] is the term
obtained from t by replacing inductively each subterm in the form (a v)
by (a (v w̄)).

(iii) A set of terms S is said to be µ-saturated iff:
• For each terms u and v, if u ∈ S and v ⊲∗ u, then v ∈ S.
• For each a ∈ A and for each t ∈ S, µa.t ∈ S and (a t) ∈ S.

(iv) Consider two sets of terms K, L and a µ-saturated set S, we define new
sets of terms:

3

NOUR

• K → L = {t / (t u) ∈ L, for each u ∈ K}.
• K ∧ L = {t / (t π1) ∈ K and (t π2) ∈ L}.
• K ∨L = {t / for each u, v: if (for each r ∈ K,s ∈ L: u[x := r] ∈ S and

v[y := s] ∈ S), then (t [x.u, y.v]) ∈ S}.

(v) Let S be a µ-saturated set and {Ri}i∈I subsets of terms such that Ri =
Xi → S for certains Xi ⊆ E<ω. A model M = 〈S; {Ri}i∈I〉 is the smallest
set of subsets of terms containing S and Ri and closed under constructors
→, ∧ and ∨.

Lemma 3.2 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M.

There exists a set X ⊆ E<ω such that G = X → S.

Proof By induction on G.

• G = S: Take X = {∅}, it is clear that S = {∅} → S.

• G = G1 → G2: We have G2 = X2 → S for a certain set X2. Take X = {u v̄
/ u ∈ G1, v̄ ∈ X2}. We can easly check that G = X → S.

• G = G1 ∧ G2: Similar to the previous case.

• G = G1 ∨ G2: Take X = {[x.u, y.v] / for each r ∈ G1 and s ∈ G2 , u[x :=
r] ∈ S and v[y := s] ∈ S}. By definition G = X → S.

�

Definition 3.3 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M, we define
the set G⊥ = ∪{X / G = X → S}.

Lemma 3.4 Let M = 〈S; {Ri}i∈I〉 be a model and G ∈ M.

We have G = G⊥ → S (G⊥ is the greatest X such that G = X → S).

Proof This comes from the fact that: if, for every j ∈ J , G = Xj → S,
then G = ∪j∈JXj → S. �

Definition 3.5 (i) Let M = 〈S; {Ri}i∈I〉 be a model. An M-interpretation
I is an application from the set of propositional variables to M which we
extend for any type as follows:
• I(⊥) = S
• I(A → B) = I(A) → I(B).
• I(A ∧ B) = I(A) ∧ I(B).
• I(A ∨ B) = I(A) ∨ I(B).
The set |A|M = ∩{I(A) / I an M-interpretation} is the interpretation
of A in M.

(ii) The set |A| = ∩{|A|M / M a model} is the interpretation of A.

Lemma 3.6 (Adequation lemma) Let M = 〈S; {Ri}i∈I〉 be a model, I a
M-interpretation, Γ = {xi : Ai}1≤i≤n, ∆ = {aj : Bj}1≤j≤m, ui ∈ I(Ai),
v̄j ∈ I(Bj)

⊥.

If Γ ⊢ t : A; ∆, then t[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m] ∈
I(A).

4

NOUR

Proof Let us denote by s′ the term

s[x1 := u1, ..., xn := un, a1 :=∗ v̄1, ..., am :=∗ v̄m].

The proof is by induction on the derivation, we consider the last rule:

(i) ax, →e and ∧e: Easy.

(ii) →i: In this case t = λx.u and A = B → C such that Γ, x : B ⊢ u :
C ; ∆. By induction hypothesis, u′[x := v] ∈ I(C) = I(C)⊥ → S for
each v ∈ I(B), then (u′[x := v] w̄) ∈ S for each w̄ ∈ I(C)⊥, hence
((λx.u′ v) w̄) ∈ S because ((λx.u′ v) w̄) ⊲∗ (u′[x := v] w̄). Therefore
t′ = λx.u′ ∈ I(B) → I(C) = I(A).

(iii) ∧i and ∨j
i : A similar proof.

(iv) ∨e: In this case t = (t1 [x.u, y.v]) with (Γ ⊢ t1 : B ∨ C; ∆), (Γ, x : B ⊢
u : A; ∆) and (Γ, y : C ⊢ v : A; ∆). Let r ∈ I(B) and s ∈ I(C), by
induction hypothesis, t′1 ∈ I(B) ∨ I(C), u′[x := r] ∈ I(A) and v′[y :=
s] ∈ I(A). Let w̄ ∈ I(A)⊥, then (u′[x := r] w̄) ∈ S and (v′[y :=
s] w̄) ∈ S, hence (t′1 [x.(u′ w̄), y.(v′ w̄)]) ∈ S, since ((t′1 [x.u′, y.v′)] w̄) ⊲∗

(t′1 [x.(u′ w̄), y.(v′ w̄)]) then ((t′1 [x.u′, y.v′)] w̄) ∈ S. Therefore t′ =
(t′1 [x.u′, y.v′]) ∈ I(A).

(v) abse: In this case t = µa.t1 and Γ ⊢ t1 :⊥ ; ∆′, a : A. Let v̄ ∈ I(A)⊥.
It suffies to prove that (µa.t′1 v̄) ∈ S. By induction hypothesis, t′1[a :=∗

v̄] ∈ I(⊥) = S, then µa.t′1[a :=∗ v̄] ∈ S and (µa.t′1 v̄) ∈ S.

(vi) absi: In this case t = (aj u) and Γ ⊢ u : Bj ; ∆
′, aj : Bj. We have to prove

that t′ ∈ S. By induction hypothesis u′ ∈ I(Bj), then (u′ v̄j) ∈ S, hence
t′ = (a (u′ v̄j)) ∈ S.

�

Theorem 3.7 (Correctness theorem) If ⊢ t : A, then t ∈ |A|.

Proof Immediately from the previous lemma. �

4 The operational behaviors of some typed terms

The following results are some applications of the correctness theorem.

Definition 4.1 Let t be a term. We denote Mt the smallest set containing
t such that: if u ∈ Mt and a ∈ A, then µa.u ∈ Mt and (a u) ∈ Mt. Each
element of Mt is denoted µ.t. For exemple, the term µa.µb.(a (b (µc.(a µd.t))))
is denoted by µ.t.

In the next of the paper, the letter P denotes a propositional variable
which represents an arbitrary type.

5

NOUR

4.1 Terms of type ⊥→ P “Ex falso sequitur quodlibet”

Example 4.2 Let T = λz.µa.z. We have T :⊥→ P and for every term t
and ū ∈ T <ω, ((T t) ū) ⊲∗ µa.t.

Remark 4.3 The term (T t) modelizes an instruction like exit(t) (exit is
to be understood as in the C programming language). In the reduction of a
term, if the sub-term (T t) appears in head position (the term has the form
((T t) ū)), then after some reductions, we obtain t as result.

The general operational behavior of terms of type ⊥→ P is given in the
following theorem:

Theorem 4.4 Let T be a closed term of type ⊥→ P , then for every term t
and ū ∈ E<ω, ((T t) ū) ⊲∗ µ.t.

Proof Let t be a term and ū ∈ E<ω. Take S = {v / v ⊲∗ µ.t} and R =
{ū} → S. It is clear that S is µ-saturated set and t ∈ S. Let M = 〈S; R〉
and I an M-interpretation such that I(P) = R. By the theorem 3.7, we have
T ∈ S → ({ū} → S), then ((T t) ū) ∈ S and ((T t) ū) ⊲∗ µ.t. �

4.2 Terms of type (¬P → P) → P “Pierce law”

Example 4.5 Let C1 = λz.µa.(a (z λy.(a y))) and

C2 = λz.µa.(a (z (λx.a(z λy.(a x))))).

We have ⊢ Ci : (¬P → P) → P for i ∈ {1, 2}.

Let u, v1, v2 be terms and t̄ ∈ E<ω, we have :

((C1 u) t̄) ⊲∗ µa.a ((u θ1) t̄) and (θ1 v1) ⊲∗ (a (v1 t̄))

and

((C2 u) t̄)⊲∗µa.((a ((u θ1) t̄)) t̄), (θ1 v1)⊲
∗(a ((u θ2) t̄)) and (θ2 v2)⊲

∗(a (v1 t̄)).

Remark 4.6 The term C1 allows to modelizing the Call/cc instruction in
the Scheme functional programming language.

The following theorem describes the general operational behavior of terms
with type (¬P → P) → P .

Theorem 4.7 Let T be a closed term of type (¬P → P) → P , then for every
term u and t̄ ∈ E<ω, there exist m ∈ N and terms θ1, ..., θm such that for every
terms v1, ..., vm, we have:

((T u) t̄) ⊲∗ µ.((u θ1) t̄)

(θi vi) ⊲∗ µ.((u θi+1) t̄) for every 1 ≤ i ≤ m − 1

(θm vm) ⊲∗ µ.(vi0 t̄) for a certain 1 ≤ i0 ≤ m

Proof Let u be a λ-variable and t̄ ∈ E<ω. Take S = {t / ∃m ≥ 0, ∃θ1, ..., θm

: t ⊲∗ µ.((u θ1) t̄), (θi vi)⊲∗ µ.((u θi+1) t̄) for every 1 ≤ i ≤ m−1 and (θm vm)⊲∗

µ.(vi0 t̄) for a certain 1 ≤ i0 ≤ m} and R = {t̄} → S. It is clear that S
is a µ-saturated set. Let M = 〈S; R〉 and an M-interpretation I such that
I(P) = R. By the theorem 3.7, T ∈ [(R → S) → R] → ({t̄} → S). It is

6

NOUR

suffies to check that u ∈ (R → S) → R. For this, we take θ ∈ (R → S) and
we prove that (u θ) ∈ R i.e. ((u θ) t̄) ∈ S. But by the definition of S, it suffies
to have (θ vi) ∈ S, which is true since the terms vi ∈ R, because (vi t̄) ∈ S. �

4.3 Terms of type ¬P ∨ P “Tertium non datur”

Example 4.8 Let W = µb.(b ω1µa.(b ω2λy.(a y))). We have ⊢ W : ¬P ∨ P .

Let x1, x2 be λ-variables, u1, u2, v terms and t̄ ∈ E<ω. We have:

(W [x1.u1, x2.u2]) ⊲∗ µb.(b u1 [x1 := θ1
1])

(θ1
1 t̄) ⊲∗ µa.(b u2 [x2 := θ2

2])

(θ2
2 v) ⊲∗ (a(v t̄))

where θ1
1 = µa.(b (ω2λy.(a y) [x1.u1, x2.u2])) and θ2

2 = λy.(a (y t̄)).

Remark 4.9 The term W allows to modelizing the try...with... instruction
in the Caml programming language.

The following theorem gives the behavior of all terms with type ¬P ∨ P .

Theorem 4.10 Let T be a closed term of type ¬P ∨ P , then for every λ-
variables x1, x2 and terms u1, u2 and (t̄n)n≥1 a sequence of E<ω, there exist
m ∈ N and terms θi

1, ..., θ
i
m 1 ≤ i ≤ 2 such that for all terms v1, ..., vm, we

have:

(T [x1.u1, x2.u2]) ⊲∗ µ.ui[xi := θi
1]

(θ1
j t̄j) ⊲∗ µ.ui[xi := θi

j+1] for all 1 ≤ j ≤ m − 1

(θ2
j vj) ⊲∗ µ.ui[xi := θi

j+1] for all 1 ≤ j ≤ m − 1

(θ1
mt̄m) ⊲∗ µ.(vp t̄q) for a certain 1 ≤ p ≤ m and a certain 1 ≤ q ≤ m

(θ2
m vm) ⊲∗ µ.(vp t̄q) for a certain 1 ≤ p ≤ m and a certain 1 ≤ q ≤ m

Proof Let u1, u2 be terms and (t̄n)n≥1 a sequence of E<ω. Take then S = {t
/ ∃m ≥ 0, ∃θi

1, ..., θ
i
m 1 ≤ i ≤ 2 : t⊲∗µ.ui[xi := θi

1], (θ1
j t̄j)⊲

∗µ.ui[xi := θi
j+1] for

all 1 ≤ j ≤ m − 1, (θ2
j vj) ⊲∗ µ.ui[xi := θi

j+1] for all 1 ≤ j ≤ m − 1, (θ1
m t̄m) ⊲∗

µ.vp(t̄q) for certain (1 ≤ p ≤ m and 1 ≤ q ≤ m) and (θ2
m vm) ⊲∗ µ.(vp t̄q) for

certain (1 ≤ p ≤ m and 1 ≤ q ≤ m)}. R = {t̄1, ..., t̄n} → S. By definition S
is a µ-saturated set. Let M = 〈S; R〉 and an M-interpretation I such that
I(P) = R. By the theorem 3.7, T ∈ [R → S] ∨ R. Let θ ∈ R, then, for
all i, (θ t̄i) ∈ S. Let θ′ ∈ R → S, hence (θ′ vi) ∈ S since vi ∈ R (because
(vi t̄i) ∈ S), therefore (T [x1.u1, x2.u2]) ∈ S. �

References

[1] Y. Andou. Church-Rosser property of simple reduction for full first-order

classical natural deduction. Annals of Pure and Applied Logic 119 (2003) 225-
237.

[2] R. David and K. Nour. A short proof of the Strong Normalization of Classical

Natural Deduction with Disjunction. Journal of Symbolic Logic, vol 68, num 4,

7

NOUR

pp 1277-1288, 2003.

[3] P. de Groote. Strong normalization of classical natural deduction with

disjunction. In 5th International Conference on Typed Lambda Calculi and
Applications, TLCA’01. LNCS (2044), pp. 182-196. Springer Verlag, 2001.

[4] G. Gentzen. Recherches sur la déduction logique. Press Universitaires de France,
1955. Traduction et commentaires par R. Feys et J. Ladrière.

[5] J.-L. Krivine. Lambda calcul, types et modèle. Masson, Paris, 1990.

[6] R. Matthes. Inductive Constructions for Classical Natural Deduction. To be
submitted.

[7] K. Nour. Mixed Logic and Storage Operators. Archive for Mathematical Logic,
vol 39, pp. 261-280, 2000.

[8] K. Nour and K. Saber. A semantical proof of strong normalization natural

classical deduction with disjunction. Manuscript, 2004.

[9] K. Nour and K. Saber. Church- Rosser property of full propositional classical

natural deduction. Manuscrit, 2004.

[10] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural

deduction. Lecture Notes in Artificial Intelligence, 624, Springer Verlag, 1992.

[11] M. Parigot. Proofs of strong normalization for second order classical natural

deduction. Journal of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

8

	Introduction
	Notations and definitions
	The semantics
	The operational behaviors of some typed terms
	Terms of type P ``Ex falso sequitur quodlibet''
	Terms of type (P P) P ``Pierce law''
	Terms of type P P ``Tertium non datur''

	References

