René David
email: david@univ-savoie.fr

Karim Nour
email: nour@univ-savoie.fr

Why the usual candidates of reducibility do not work for the symmetric λµ-calculus

Keywords:

The symmetric λµ-calculus is the λµ-calculus introduced by Parigot in which the reduction rule µ ′ , which is the symmetric of µ, is added. We give examples explaining why the technique using the usual candidates of reducibility does not work. We also prove a standardization theorem for this calculus.

Introduction

Since it has been understood that the Curry-Howard isomorphism relating proofs and programs can be extended to classical logic, various systems have been introduced: the λ c -calculus (Krivine [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF]), the λ exn -calculus (de Groote [START_REF] De Groote | A simple calculus of exception handling[END_REF]), the λµ-calculus (Parigot [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF]), the λ Sym -calculus (Barbanera & Berardi [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]), the λ ∆ -calculus (Rehof & Sorensen [START_REF] Rehof | The λ ∆ -calculus[END_REF]), the λµμ-calculus (Curien & Herbelin [START_REF] Curien | The duality of computation[END_REF]), ... The first calculus which respects the intrinsic symmetry of classical logic is λ Sym . It is somehow different from the previous calculi since the main connector is not the arrow as usual but the connectors or and and. The symmetry of the calculus comes from the de Morgan laws.

The second calculus respecting this symmetry has been λµμ. The logical part is the (classical) sequent calculus instead of natural deduction. Natural deduction is not, intrinsically, symmetric but Parigot has introduced the so called Free deduction [START_REF] Parigot | Free Deduction: An analysis of "computations[END_REF] which is completely symmetric. The λµ-calculus comes from there. To get a confluent calculus he had, in his terminology, to fix the inputs on the left. To keep the symmetry, it is enough to keep the same terms and to add a new reduction rule (called the µ ′ -reduction) which is the symmetric rule of the µ-reduction and also corresponds to the elimination of a cut. We get then a symmetric calculus that is called the symmetric λµ-calculus.

The µ ′ -reduction has been considered by Parigot for the following reasons. The λµ-calculus (with the β-reduction and the µ-reduction) has good properties : confluence in the un-typed version, subject reduction and strong normalization in the typed calculus. But this system has, from a computer science point of view, a drawback: the unicity of the representation of data is lost. It is known that, in the λ-calculus, any term of type N (the usual type for the integers) is β-equivalent to a Church integer. This no more true in the λµ-calculus and we can find normal terms of type N that are not Church integers. Parigot has remarked that by adding the µ ′ -reduction and some simplification rules the unicity of the representation of data is recovered and subject reduction is preserved, at least for the simply typed system, even though the confluence is lost.

Barbanera & Berardi proved the strong normalization of the λ Sym -calculus by using candidates of reducibility but, unlike the usual construction (for example for Girard's system F), the definition of the interpretation of a type needs a rather complex fix-point operation. Yamagata [START_REF] Yamagata | Strong normalization of second order symmetric lambda-mu calculus[END_REF] has used the same technique to prove the strong normalization of the βµµ ′ -reduction where the types are those of system F and Parigot, again using the same ideas, has extended Barbanera & Berardi's result to a logic with second order quantification.

The following property trivially holds in the λµ-calculus:

If (λxM N P 1 ...P n) ⊲ * (λxM ′ N ′ P ′ 1 ...P ′ n) ⊲ (M ′ [x := N ′] P ′ 1 ...P ′ n)
, then we may start the reduction by reducing the β redex, i.e (λxM N P 1 ..

.P n) ⊲ (M[x := N] P 1 ...P n) ⊲ * (M ′ [x := N ′] P ′ 1 ...P ′ n).
This point is the key in the proof of two results for this calculus:

(1) If N and (M[x := N] P 1 ...P n) are in SN, then so is (λxM N P 1 ...P n). Sim- ilarly, if N and (M[α = r N] P 1 ...P n) are in SN, then so is (µαM N P 1 ...P n).
They are at the base of the proof of the strong normalization of the typed calculus.

(2) The standardization theorem.

Even though this result remains (trivially) true in the symmetric λµcalculus and the standardization theorem still holds in this calculus, point (1) above is no more true. This simply comes from the fact that an infinite reduction of (λxM N) does not necessarily reduce the β redex (and similarly for (µαM N)) since it can also reduce the µ ′ redex.

The other key point in the proof of the strong normalization of typed calculus is the following property which remains true in the symmetric λµcalculus.

(3) If M 1 , ..., M n are in SN, then so is (x M 1 ... M n).
This paper is organized as follows. Section 2 defines the symmetric λµcalculus and its reduction rules. We give the proof of (3) in section 3. Section 4 gives the counter-examples for [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]. Finally we prove the standardization theorem in section 5.

The symmetric λµ-calculus

The set (denoted as T) of λµ-terms or simply terms is defined by the following grammar where x, y, ... are λ-variables and α, β, ... are µ-variables:

T ::= x | λxT | (T T) | µαT | (α T)
Note that we adopt here a more liberal syntax (also called de Groote's calculus) than in the original calculus since we do not ask that a µα is immediately followed by a (β M) (denoted [β]M in Parigot's notation).

Even though this paper is only concerned with the un-typed calculus, the λµ-calculus comes from a Logic and, in particular, the µ-constructor comes from a logical rule. To help the reader un-familiar with it, we give below the typing and the reduction rules.

The types are those of the simply typed λµ-calculus i.e. are built from atomic formulas and the constant symbol ⊥ with the connector →. As usual ¬A is an abbreviation for A →⊥.

The typing rules are given by figure 1 below where Γ is a context, i.e. a set of declarations of the form x : A and α : ¬A where x is a λ (or intuitionistic) variable, α is a µ (or classical) variable and A is a formula.

Γ, x :

A ⊢ x : A ax Γ, x : A ⊢ M : B Γ ⊢ λxM : A → B → i Γ ⊢ M : A → B Γ ⊢ N : A Γ ⊢ (M N) : B → e Γ, α : ¬A ⊢ M : ⊥ Γ ⊢ µαM : A ⊥ e Γ, α : ¬A ⊢ M : A Γ, α : ¬A ⊢ (α M) : ⊥ ⊥ i Figure 1.
Note that, here, we also have changed Parigot's notation but these typing rules are those of his classical natural deduction. Instead of writing

M : (A x 1 1 , ..., A xn n ⊢ B, C α 1 1 , ..., C αm m) 3
we have written

x 1 : A 1 , ..., x n : A n , α 1 : ¬C 1 , ..., α m : ¬C m ⊢ M : B
The cut-elimination procedure corresponds to the reduction rules given below. There are three kinds of cuts.

• A logical cut occurs when the introduction of the connective → is immediately followed by its elimination. The corresponding reduction rule (denoted by β) is:

(λxM N) ⊲ M[x := N]
• A classical cut occurs when ⊥ e appears as the left premiss of a → e . The corresponding reduction rule (denoted by µ) is:

(µαM N) ⊲ µαM[α = r N]
where M[α = r N] is obtained by replacing each sub-term of M of the form (α U) by (α (U N)).

• A symmetric classical cut occurs when ⊥ e appears as the right premiss of a → e . The corresponding reduction rule (denoted by µ ′) is:

(M µαN) ⊲ µαN[α = l M] where N[α = l M] is obtained by replacing each sub-term of N of the form (α U) by (α (M U)).

Remark

It is shown in [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF] that the βµ-reduction is confluent but neither µµ ′ nor βµ ′ is. For example (µαx µβy) reduces both to µαx and to µβy. Similarly (λzx µβy) reduces both to x and to µβy.

The following property is straightforward.

Theorem 2.1 If Γ ⊢ M : A and M ⊲ M ′ then Γ ⊢ M ′ : A. 3 If M 1 , ..., M n are in SN , then so is (x M 1 ... M n)
The proofs are only sketched. More details can be found in [START_REF] David | Arithmetical proofs of strong normalization results for the symmetric λµ-calculus[END_REF] where an arithmetical proof of the strong normalization of the βµµ ′ -reduction for the simply typed calculus is given. Definition 3.1 • cxty(M) is the number of symbols occurring in M.

• We denote by N ≤ M (resp. N < M) the fact that N is a sub-term (resp. a strict sub-term) of M.

• The reflexive and transitive closure of ⊲ is denoted by ⊲ * .

• If M is in SN i.e. M has no infinite reduction, η(M) will denote the length of the longest reduction starting from M.

(µαN M i) µα(α(λz(α (z M i))M i)) µα(α (α (M i M i))) ֒→ µα(α (α 1)) (b) (λxM µαN) ⊲ * µα(α (λxM λz(α (λxM z)))) ⊲ * µα(α (λxM λz(α (z M 1), (z M 0)))) ⊲ * µα(α (α (M 1 M 1), (M 1 M 0)), (α (M 0 M 1), (M 0 M 0))) ⊲ * µα(α (α 1, (∆ ∆)), (α 1, (∆ ∆)))
and thus (λxM µαN) ∈ SN. and thus (µβM ′ µαN) ∈ SN.

Standardization

In this section we give a standardization theorem for the βµµ ′ -reduction. It also holds for the µµ ′ -reduction and its proof simply is a restriction of the

Proposition 4 . 4 M

 44 [x := µαN] ∈ SN but (λxM µαN) ∈ SN.Proof (a) Since M[x := µαN] = (µαN M 1), (µαN M 0) , by theorem 3.10, to show that M[x := µαN] ∈ SN, it is enough to show that (µαN M i) ∈ SN.

Proposition 4 . 5 M

 45 ′ [β = r µαN] ∈ SN but (µβM ′ µαN) ∈ SN. Proof (a) (λx(x M i) µαN) has two redexes thus either (λx(x M i) µαN) ⊲ (µαN M i) µα(α(λz(α (z M i)) M i)) µα(α (α (M i M i))) ֒→ µα(α (α 1)) or (λx(x M i) µαN) ⊲ µα(α(λx(x M i) λz(α (λx(x M i) z)))) ֒→ µα(α (α (M i M i)))֒→ µα(α (α 1))Thus (λx(x M i) µαN) ֒→ µα(α (α 1)) and, by theorem 3.10, it follows thatM ′ [x := µαN] = (β (λx(x M 1) µαN)), (β (λx(x M 0) µαN)) ∈ SN. (b) (µβM ′ µαN) ⊲ * µα(α (µβM ′ λz(α (µβM ′ z)))) ⊲ * µα(α (µβM ′ λz(α µβ (β (z M 1)), (β (z M 0)))))⊲ * µα(α µβ (β (α µβ (β 1), (β (∆ ∆)))), (β (α µβ (β (∆ ∆)), (β 1))))

• We denote by N ≺ M the fact that N ≤ M ′ for some M ′ such that M ⊲ * M ′ and either M ⊲ + M ′ or N < M ′ . We denote by the reflexive closure of ≺. Proof By induction on η(M) + η(N).

Lemma 3.4 The term (x M 1 ... M n) never reduces to a term of the form λyM.

Proof By induction on n. Use lemma 3.2.

Definition 3.5 • Let M 1 , ..., M n be terms and 1 ≤ i ≤ n. We will denote by

• We will denote by Σ x the set of simultaneous substitutions of the form

Proof By induction on M.

The next lemma is the key of the proof of theorem 3.10. Though intuitively clear (if the cause of non SN is the substitution δ = i (P 1 ...P n), this must come from some (δ M ′) ≺ M) its proof is rather technical. Lemma 3.9 Let M be a term and σ

Proof See [START_REF] David | Arithmetical proofs of strong normalization results for the symmetric λµ-calculus[END_REF] for more detail.

Proof

We prove a more general result. Let M 1 , ..., M n be terms and σ 1 , ..., σ n be in Σ

The counter-examples

Definition 4.1 Let U and V be terms.

• U ֒→ V means that each reduction of U which is long enough must go through V , i.e. there is some n 0 such that, for all n > n 0 , if U = U 0 ⊲ U 1 ⊲ ... ⊲ U n then U p = V for some p.

• U V means that U has only one redex and U ⊲ V .

Remark

It is easy to check that if U ֒→ V (resp. U V) and V ∈ SN, then U ∈ SN. Definition 4.2 • Let M 0 = λx(x P 0) and M 1 = λx(x P 1) where 0 = λxλyy, 1 = λxλyx, P = λxλyλz (y (z 1 0) (z 0 1) λd1 ∆ ∆) and ∆ = λx(x x).

• Let M = (x M 1), (x M 0) , M ′ = (β λx(x M 1)), (β λx(x M 0)) where T 1 , T 0 denotes the pair of terms, i.e. the term λf (f T 1 T 0) where f is a fresh variable.

• Let N = (α λz(α z)).

1.

DAVID other one.

Definition 5.1 (i)

The sequence (M i) 1≤i≤n is standard iff one of the following cases hold: (a) For all i, M i = λxN i (resp.

and the sequence (N i) 1≤i≤n is standard (b) There are standard sequences (N i) 1≤i≤k and (P i) k≤i≤n such that, for 1 ≤ i ≤ k, M i = (N i P k) and, for k ≤ i ≤ n, M i = (N k P i). (c) There is a standard sequence (N i) 1≤i≤k and Q such that, either, for 1 ≤ i ≤ k, M i = (N i Q) and N k = λxP and N k-1 does not begin with λ and M k+1 = P [x := Q] and the sequence (M i) k+1≤i≤n is standard. or, for 1

Remarks and notation

• The clauses in 1 above correspond to a definition by induction on the ordered pair (n, cxty(M 1)).

• It is easy to check that, restricted to the λ-calculus, this definition is equivalent to the usual definition of a standard reduction.

• Clearly, if M ⊲ st M ′ then M ⊲ * M ′ . In this case, we will denote the length of the reduction by lg(M ⊲ st M ′). Proof This is proved by induction on (lg(M ⊲ st P), cxty(M)) and by case analysis on the reduction M ⊲ st P . The only case which is not immediate is the following: