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SHAPE DERIVATIVE OF DRAG FUNCTIONAL

P. I. PLOTNIKOV AND J. SOKOLOWSKI

Abstract. In the paper compressible, stationary Navier-Stokes (N-S) equa-
tions are considered. The model is well-posed, there exist weak solutions
in bounded domains, subject to inhomogeneous boundary conditions. The
shape sensitivity analysis is performed for N-S boundary value problems, in
the framework of small perturbations of the so-called approximate solutions.
The approximate solutions are determined from Stokes problem and the small
perturbations are given by solutions to the full nonlinear model. Such solu-
tions are unique. The differentiability of the specific solutions with respect to

the coefficients of differential operators implies the shape differentiability of
the drag functional. The shape gradient of the drag functional is derived in
the classical and useful for computations form, an appropriate adjoint state is
introduced to this end. The shape derivatives of solutions to the Navier-Stokes
equations are given by smooth functions, however the shape differentiability
can be shown only in a weak norm. The proposed method of shape sensitivity
analysis is general. The differentiability of solutions to the Navier-Stokes equa-
tions with respect to the data leads to the first order necessary conditions for
a broad class of optimization problems. The boundary shape gradient as well
as the boundary value problems for the shape derivatives of solutions to state
equations and the adjoint state equations are obtained in the form of singular
limits of volume integrals. This method of shape sensitivity analysis seems to
be new and appropriate for nonlinear problems. It is an important observation
for the numerical methods of shape optimization in fluid mechanics.

1. Introduction

In the present paper we derive the boundary form of the shape gradient for the
drag functional. In [20] the weak material derivatives are employed to obtain the
shape derivative of the drag functional for the compressible Navier-Stokes equations.
It is shown in this way that the drag functional is shape differentiable in the sense
of [26]. For the smooth obstacle, by the so-called Hadamard representation formula
it follows that the shape gradient of the drag is given by the distribution supported
on the boundary of the obstacle. In such a formula, only the deformations of the
obstacle in the normal direction are present by the Hadamard formula. We use the
result and identify the density of the shape gradient by a direct approach. This
approach is interesting on its own, it furnishes a new method for the shape analysis
for nonlinear problems.

We introduce our method for a simple model problem, replacing the compressible
Navier-Stokes boundary value problem by a nonlinear elliptic equation.
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Example. Let us consider the bounded domain Ω with the smooth boundary.
Take the state equation in the form

−∆u(x) = F (x, u(x)) in Ω, u(x) = u0 ≡ const. on ∂Ω .

The shape optimization problem is an optimal choice of the domain within an
admissible class, in such a way that the boundary shape functional defined on ∂Ω
is minimized. The functional is selected in the form which looks like the drag, i.e.,

j(∂Ω) = u0

∫

∂Ω

∇u(x) · n(x)dS .

Using the Gauss formula we can rewrite this functional in the distributed form

(1.1) j(∂Ω) ≡
∫

Ω

(|∇u|2 − uF (u, x)) dx

Representation of such kind are common in viscous fluid dynamics since they have
clear physical meaning. For instance, the gradient parts represents the rate of dissi-
pation of the energy. However functional (1.1) is only weakly lower semicontinuous
in the energy space and can be used mostly for minimization problems. The other
approach employed in the paper can be describe in the following way. Introduce a
smooth scalar function η(x) such that η(x) ≡ 1 on ∂Ω and rewrite the expression
for j(∂Ω) in the equivalent form

J(Ω) = u0

∫

Ω

(∇η · ∇u− ηF (x, u)) dx .

This functional is weakly continuous, and its principle part is linear with respect
to state variable u. The technical difficulty is that the integrand contains an ar-
bitrary function η while the result is independent of η, and we have to eliminate
the influence of η on the results of calculations. For the latter shape functional we
perform the shape sensitivity analysis using the material derivatives, therefore in
the fixed domain setting. Given the shape derivative of J(Ω) supported everywhere
in Ω we perform the limit passage with the perturbations fields and evaluate the
singular limits of all integrals, formally the perturbations are supported on ∂Ω for
such limits. In this way the shape gradient of j(∂Ω) supported on the boundary is
identified.

It seems that the proposed method of shape sensitivity analysis of the drag
functional is new, and the simplest possible in the case of the drag functional
dependent on solutions to compressible Navier-Stokes equations.

Drag functional. We assume that the viscous gas occupies the double-connected
domain Ω = B\S, where B ⊂ R

3, is a hold-all domain with the smooth bound-
ary Σ = ∂B, and S ⊂ B is a compact obstacle. The boundary of the obstacle is
denoted by S := ∂S, for simplicity.

Furthermore, we assume that the velocity of the gas coincides with a constant
given vector field U on the surface Σ. The state variables: the velocity field u

and the gas density ̺ satisfying the following equations along with the boundary
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conditions

∆u + λ∇div u = R̺u · ∇u +
R

ǫ2
∇p(̺) in Ω,(1.2a)

div(̺u) = 0 in Ω,(1.2b)

u = U on Σ, u = 0 on S,(1.2c)

̺ = ̺0 on Σin,(1.2d)

where the pressure p = p(̺) is a smooth, strictly monotone function of the density,
ǫ is the Mach number, R is the Reynolds number, λ is the viscosity ratio, ̺0 is a
positive constant, the inlet Σin and the outlet Σout are defined by

Σin = {x ∈ Σ : U · n < 0} , Σout = {x ∈ Σ : U · n > 0} ,
respectively. Here n stands for the outward normal to ∂Ω = Σ∪S. Boundary value
problem (1.2) can be regarded as mathematical model of viscous gas flow around
an airfoil S tested in wind tunnel. In our denotation the stress tensor is equal to

T =: ∇u + ∇u∗ + (λ− 1) div u I − R

ǫ2
pI ,

and the hydrodynamical force acting on the element ds of the obstacle boundary
S is −Tn ds. Hence the hydro-dynamical force acting on the body S is equal

J(S) =: −
∫

S

Tn ds = −
∫

S

(∇u + (∇u)∗ + (λ− 1) divuI − R

ǫ2
pI) · nds .

Note that this expression can be identically rewritten in the form of the volume
integral. To this end we fix an arbitrary function η ∈ C∞(Ω) such that η = 1 in
an open neighborhood of the obstacle S and η = 0 in a vicinity of Σ. Using the
identities

∫

S

Tn ds =

∫

Ω

(η div T + T∇η) dx, div T = R̺u∇u

we obtain

J(S) =: −
∫

Ω

(∇u + (∇u)∗ + (λ− 1) div uI − R

ǫ2
pI)∇η dx−R

∫

Ω

η̺u∇u dx(1.3)

The value of J is independent of the choice of the function η. The drag JD is a
work in unit time developed by the component of J parallel to the airfoil speed U,

(1.4) JD(S) = U · J(S).

The minimization of the drag is an important problem of applied aerodynamics.
From the mathematical point of view the drag optimization problem is the shape
optimization problem for the compressible Navier-Stokes equations. The existence
and compactness properties of solutions to drag minimization problem were ob-
tained in [9], [10] for non-stationary case and in [19] for stationary problem by
using direct methods of calculus of variations. For incompressible Navier-Stokes
equations, the existence of nontrivial shape derivatives of solutions and the formula
for the shape derivative of the drag functional and adjoint state were obtained in
[3], [4] and [22], see also [23] and [24] for some generalizations. For general theory of
optimization and control problems for incompressible Navier-Stokes equations see
[2] and [11]. The growing literature on numerical and applied aspects of the problem
is nicely surveyed in [12] and [15]. For compressible Navier-Stokes equations (1.2),
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the the formula for the shape derivative of the drag functional and adjoint state
were derived in [20] under the assumptions that the Reynolds and Mach numbers
are sufficiently small. The goal of this paper is to simplify the results of this work
and give an efficient representation for the adjoint state as well as of the shape
gradient of the drag functional.

In order to formulate the framework for the shape sensitivity analysis we choose
the vector field T ∈ C2(R3)3 vanishing in the vicinity of Σ, and define the mapping

(1.5) y = x+ εT(x),

which describes the perturbation of the shape of the obstacle. For small ε, the
mapping x→ y takes diffeomorphically the flow region Ω onto Ωε = B \Sε, where
the perturbed obstacle Sε = y(S). Let (ūε, ¯̺ε) be a solution to problem (1.2) in
Ωε. After substituting (ūε, ¯̺ε) into the formula for J(Sε), the drag becomes the
function of the parameter ε.

It is convenient to reduce such an analysis to the analysis of dependence of
solutions with respect to the coefficients of the governing equations. To this end,
we introduce the functions uε(x) and ̺ε(x) defined in the unperturbed domain Ω
by the formulas

uε(x) = Nūε(x + εT(x)), ̺ε(x) = ¯̺ε(x+ εT(x)),

where

(1.6) N(x) = det (I + εT′(x))(I + εT′(x))−1.

is the adjugate matrix of the Jacobi matrix I + εT′. Furthermore, we also use
the notation g(x) =

√
det N. Calculations show [20], that for uε, ̺ε, the following

boundary value problem is obtained,

∆uε + ∇
(

λg−1 div uε −
R

ǫ2
p(̺ε)

)

= A (uε) +RB(̺ε,uε,uε) in Ω,(1.7a)

div
(

̺εuε

)

= 0 in Ω,(1.7b)

uε = U on Σ, uε = 0 on S,(1.7c)

̺ε = ̺0 on Σin.(1.7d)

Here, the linear operator A and the nonlinear mapping B are defined in terms of
N,

A (u) = ∆u− (N∗)−1 div
(

g−1NN∗∇(N−1u)
)

,

B(̺,u,w) = ̺(N∗)−1
(

u∇
(

N−1w
)

)

.
(1.8)

In the new variables the expression for the force J reads

J = −
∫

Ω

[

g−1
(

N∗∇(N−1uε) + ∇(N−1uε)
∗N− div uε

)

− qεI
]

N∗∇η dx−

R

∫

Ω

̺εuε∇(N−1uε) η dx,

(1.9)

where the effective viscous pressure q is given by

(1.10) qε =
R

ǫ2
p(̺ε) − λg−1 div uε.
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In the proposed framework the question of the existence and representation of the
derivative ∂εJD(Sε) is reduced to the question on dependence of solutions to the
boundary value problem on the coefficients of governing equations. The preference
of such an approach is that the equations are considered in fixed domain, which
makes the calculations more transparent, but formally more complicated. Moreover,
the obtained results depend on the extension of the mapping T(x) over R

3 which
leads to the different formulae for different choice of T. It is worthy to note that
the shape derivative depends only on restriction of the vector field T on S. It is

independent of the extension of T over the flow domain. Moreover, expression (1.9)
involves an arbitrary function η while the shape derivative is independent of η.

The other approach widely used in the shape optimization is a direct analysis
of the problem in variable domain. This leads to the representation of the shape
derivative in the form of the integral over S with the integrand depending only
on T · n which can be regarded as infinitesimal shift of S. The goal of the paper
is to compare both these approaches and to prove that the expression for shape
derivatives in the form of surface integral is a singular limit of the derivative of
functional (1.9) for the perturbation T which is concentrated near the boundary.
Before formulation of the result we recall the expression for the shape derivative of
the drag and the formulation of adjoint state equation.

We follow approach proposed in [18], [20] and restrict our considerations by the
case λ ≫ 1, R ≪ 1, and ǫ ≪ 1 which corresponds to almost incompressible flow
with low Reynolds number. In such a case a solution (u0, q0) to the Stokes equations

∆u0 −∇q0 = 0, div u0 = 0 in Ω,(1.11)

u0 = U on Σ, u0 = 0 on S, Πq0 = q0 Πq =: u− 1

measΩ

∫

Ω

q dx.

and a constant ̺0 can be regarded as an approximation for a solution to problem
(1.7). Instead of the Mach number we introduce the new parameters

σ0 = R/(λǫ2), σ = σ0ρ0p
′(ρ0).

Hence we can look for such a solution to this problem in the form

(1.12) uε = u0 + v, ̺ε = ̺0 + ϕ, qε = q0 + λσ0p(̺0) + π + λm,

with the unknowns functions ϑ = (v, π, ϕ) and the unknown constant m. The pe-
culiarity of stationary boundary problem for compressible Navier-Stokes equations
is that mass balance equation (1.7b) degenerates at points where uε vanishes. The
simple algebraic scheme which allows to cope with this difficulty was proposed in
[18]. The basic idea is to consider the effective viscous pressure as new unknown
variable, next, to add equality (1.10) to basic system (1.7), and finally, eliminate
the divergence uε from mass balance equation (1.7b) using relation (1.10). Thus
we come to the following boundary problem for the triplet (v, π, ϕ),

∆v −∇π = A (uε) +RB(̺ε,uε,uε) in Ω,

div v = g
( σ

̺0
ϕ− Ψ −m

)

in Ω,

uε · ∇ϕ+ σϕ = Ψ1 +mg̺ in Ω,

v = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π,

(1.13a)
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where

Ψ1 = g
(

̺Ψ − σ

̺0
ϕ2

)

+ σϕ(1 − g), Ψ =
q0 + π

λ
− σ

p′(̺0)̺0
H(ϕ),

H(ϕ) = p(̺0 + ϕ) − p(̺0) − p′(̺0)ϕ,

the vector field uε and the function ̺ε are given by (1.12). Next it is necessary
to specify the constant m. Since the mean value of div v is null, the constant m
is proportional to the mean value of the quantity g(ψ − ̺−1

0 σϕ). The mean value
of the latter quantity involves a large parameter σ and it is convenient to replace
it by more complicated relation which is independent of the large parameter σ.
Following [20] we can introduce such a condition in the form

(1.13b) m = κ

∫

Ω

(̺−1
0 Ψ1 ζ − gΨ) dx, κ =

(

∫

Ω

g(1 − ζ − ̺−1
0 ζϕ) dx

)−1

,

where the auxiliary function ζ is a solution to the adjoint boundary value problem

(1.13c) − div(uεζ) + σζ = σg in Ω, ζ = 0 on Σout,

As it is shown in [20], relations (1.13) define a system of differential equations
and boundary conditions which is equivalent to basic problem (1.7). The proposed
algebraic scheme works properly in the range of parameters R ∼ λǫ2. The results
are available for larger domain in the space of parameters, but in this case the
modified equations involve non-local operators, see [16], [17], and [21] for details.
The following proposition guarantees the existence and uniqueness of solution to
boundary value problem (1.13).

For s ∈ (0,∞), r ∈ (1,∞), denote by Xs,r and Xs,r the Banach spaces

Xs,r = W s,r(Ω) ∩W 1,2(Ω), Y s,r = W s+1,r(Ω) ∩W 2,2(Ω).

Here W s,r(Ω) denotes the Sobolev space for an integer s and the fractional Sobolev-
Slobodetski space otherwise. We assume that Ω satisfies the following condition

Condition 1.1. The flow domain Ω has a boundary of class C∞ and it admits

the representation Ω = B \ S, S ⋐ B, in which the hold all domain B with the

boundary Σ = ∂B is strictly convex.

Proposition 1.2. Let U be a given vector field and the exponents s, r satisfy the

inequalities

(1.14) 1/2 < s < 1, 1 < r < 3/(2s− 1), sr > 3.

Then there is σ∗, depending only on s,r, Ω, and U, with the following property. If

σ > σ∗, then there exist µ0 > 0 and ε0 > 0, depending only on σ, s,r, Ω, and U,

such that for all µ ∈ (0, µ0), ε ∈ [0, ε0], and

(1.15) R+ λ−1 < µ,

problem (1.13) has a solution (v, ϕ, ζ,m) ∈ Y s,r × (Xs,r)3 × R. Moreover, this

solution admits the estimates

(1.16) ‖uε‖Y s,r + ‖ζ‖Xs,r ≤ c0, |m| + ‖ϕ‖Xs,r ≤ c0µ,

where the constant c0 is independent of µ and ε.
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Note that by virtue of (2.3), (v, ϕ, ζ) ∈ C1+γ(Ω) × Cγ(Ω)2 with γ(r, s) > 0 and
the drag functional JD(S) is well defined. Recalling the expressions for A , B, and
g we conclude that the coefficients of equations (1.13) are analytic functions of the
parameter ε. Formal differentiation of both sides of (1.13) leads to the following
equations for the variations

(δv, δπ, δϕ, δζ, δm) =
d

dε
(v, π, ϕ, ζ,m)

∣

∣

∣

ε=0
,

∆δv −∇δπ = C (δϕ, δv) + D(D),

div δv = b21 δϕ+ b22 δπ + b23 δm+ b20 Tr T′,

u∇δϕ+ σδϕ = −δv∇ϕ+ b11 δϕ+ b12 δπ + b13 δm+ b10 Tr T′,

− div (δζ u) + σ δζ = div (ζ δv ) + σTr T′,

δm = κ

∫

Ω

(b31 δϕ+ b32 δπ + b34 δζ + b30 Tr T′) dx,

(I − Π)δπ = 0,

(1.17)

where the matrix D and the linear forms C , D are given by the equalities

D =
dN

dε

∣

∣

∣

ε=0
= (Tr T′)I − T′,

dg

dε

∣

∣

∣

ε=0
= Tr T′ ≡ div T,

C (δϕ, δv) = Rδϕu∇u +R̺u∇δv +R̺ δv∇u,

D(D) = div
[(

(Tr T′)I − D− D∗
)

∇u
]

+ D∗∆u + ∆(Du)−
R̺D∗(u∇u) −R̺u∇(Du),

(1.18)

respectively and the coefficients bij are given by the formulae

b11 = Ψ +m− 2σ

̺0
ϕ− ̺σ

p′(̺0)̺0
H ′(ϕ), b12 =

̺

λ
,

b13 = ̺, b10 = ̺(Ψ +m) − σ

̺0
ϕ2 − σϕ,

b21 =
σ

̺0
+

σ

p′(̺0)̺0
H ′(ϕ), b22 = − 1

λ
, b23 = −1, b20 =

σ

̺0
ϕ− Ψ −m,

b31 =
ζ

̺0

(

(Ψ +m) − 2σ

̺0
ϕ
)

+
σ

p′(̺0)̺0
(1 − ̺ζ

̺0
)H ′(ϕ)

b32 =
1

λ

( ̺

̺0
ζ − 1

)

, b34 =
1

̺0

(

̺(Ψ +m) − σ

̺0
ϕ2

)

,

b30 =
( ̺

̺0
ζ − 1

)

(Ψ +m) − σ̺

̺2
0

ϕζ,

(1.19)

in which

u = uε

∣

∣

∣

ε=0
, ̺ = ̺ε

∣

∣

∣

ε=0

Formal differentiation of equality (1.9) leads to the following expression for the
shape derivative of the drag functional

d

dε
JD(Sε)

∣

∣

∣

ε=0
= Le(T) + Lu(δv, δπ, δϕ),(1.20)
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where the linear forms Le and Lu are defined by the equalities

Le(T) = U

∫

Ω

Tr T′(∇u + ∇u∗ − div uI)∇η dx−

U

∫

Ω

[

D∗∇u + ∇u∗D−∇(Du) −∇(Du)∗
]

∇η dx−

U

∫

Ω

[

∇u + ∇u∗ − div u− qI
]

D∗∇η dx+

RU

∫

Ω

̺u∇(Du)η · dx ,

(1.21)

and

(1.22) Lu(δv, δπ, δϕ) = −U

∫

Ω

[

(∇δv+∇δv∗−div δv−δπ)∇η+RC (δv, δϕ)η
]

dx.

The expression for the form Lu can be identically rewritten in terms of the so-called
adjoint state. To this end note that, since ∇η = 0 on ∂Ω and div (̺u) = 0, we have

−U

∫

Ω

[(∇δv + ∇δv∗ − div δv]∇η dx =

∫

Ω

δv · ∆(ηU) dx.

and

−U

∫

Ω

ρηu∇δv dx =

∫

Ω

ρ (u∇η)U dx

This leads to the integral representation of Lu in L2(Ω) scalar product

(1.23) Lu =

∫

Ω

(A · δv +B δπ + C δϕ) dx ,

where

A = ∆(ηU) −Rη̺∇uU +R̺(u · ∇η)U,
B = U · ∇η, C = −Rη(u∇u) · U.(1.24)

We define the adjoint state (h∗, g∗, ς∗, υ∗, l∗) as a solution of the boundary value
problem for the system of differential equations adjoint to system (1.17)

∆h∗ −∇g∗ −R̺∇uh∗ +R̺u∇ h∗ + ς∗∇ϕ+ ζ∇υ∗ = A,(1.25a)

div h∗ − Π(b12ς
∗ + b22g

∗ + κb32l
∗) = B,(1.25b)

− div(uς∗) + σς∗ −R(u∇u) · h∗ − b21g
∗ − b11ς

∗ − κb31l
∗ = C,(1.25c)

u∇υ∗ + συ∗ − κb34l
∗ = 0,(1.25d)

l∗ −
∫

Ω

b13ς
∗ dx = 0(1.25e)

h∗ = 0 on ∂Ω, ς∗ = 0 on Σout, υ∗ = 0 on Σin, g∗ = Πg∗.(1.25f)

Using the notion of the adjoint state we can rewrite the expression for Lu in the
form

(1.26) Lu ≡
∫

Ω

[

Tr T′
(

b10ς
∗ + b20g

∗ + συ∗ + b30l
∗
)

+ D(D)h∗
]

dx,

It is important to note that the adjoint state equations are independent on T, but
involve an arbitrary function η. Notice also that the value of the shape derivative
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depends only on the restriction of T to S, i.e., only on the perturbation of the
surface S. In the generic case the perturbation of S can be taken as follows

(1.27) Sε = {x = ω + εf(ω)n(ω), ω ∈ S},
where the normal shift f(ω) is a smooth function defined on S. This relation shows
that the mapping T satisfies the boundary condition

T(ω) = f(ω)n(ω) for ω ∈ S.
It is reasonable to eliminate η and T from formulae (1.20) and reformulate the
expressions for the forms Le and Lu, only in terms of the normal shift f(ω). The
corresponding result is given by the following theorem which is the main result of
this paper.

Theorem 1.3. Let parameters R, λ, σ, flow domain Ω, and exponents s, r meet all

requirements of Proposition 1.2, and the perturbed surface Sε is defined by equation

(1.27) with f ∈ C∞(S), then

(1.28)
d

dε
JD(Sε)

∣

∣

∣

ε=0
=

∫

S

f(ω)
[

b10ς + b020g + συ + lb30 − (∂nh · n)(∂nu · n)
]

ds,

with the adjoint state variables

(h, g, ς, υ, l) ∈W 1+s,r(Ω) × ΠW s,r(Ω) ×W s,r(Ω)2 × R,

satisfying the following equations and boundary conditions

∆h −∇g −R̺∇uh +R̺u∇ h + ς∇ϕ+ ζ∇υ = 0,(1.29a)

div h − Π(b12ς + b22g + κb32l) = 0,(1.29b)

− div(uς) + σς −R(u∇u) · h − b21g − b11ς − κb31l = 0,(1.29c)

u∇υ + συ − κb34l = 0,(1.29d)

l −
∫

Ω

b13ς dx = 0(1.29e)

h = 0 on Σ, h = −U on S, ς = 0 on Σout, υ = 0 on Σin, g = Πg.(1.29f)

Remark 1.4. It is easily seen that solutions to equations (1.25) and (1.29) are

connected by the simple relation

(1.30) (h∗, g∗, ς∗, υ∗, l∗) = (ηU, 0, 0, 0, 0) + (h, g, ς, υ, l).

Hence the dependence of the adjoint state on η is additive, while the dependence of

JD on η is multiplicative.

Remark 1.5. If a solution to problem (1.29) has continuous derivatives, then u∇ς,
u∇υ vanish on S and equations (1.29c), (1.29d) give simple algebraic relations for

boundary values of functions g, ς, and υ. Using these relations we can eliminate ς
and υ from formula (1.28).

It follows from (1.20) that we can split the expression for the shape derivative
into the geometrical part Le and dynamical part Lu. The geometrical part depends
only on the shape perturbation and state variables u and ̺. The calculation of the
dynamical part is more complicated and requires the solution of boundary value
problem for adjoint state equations. Theorem 1.3 shows that the geometrical part
of the shape derivative vanishes and therefore, can not be used in the numerical
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process of the shape optimization in our framework.
The remaining part of the paper is devoted to the proof of Theorem 1.3. In Section 2
we prove the existence of solutions to problems (1.25) and (1.29) with continuously
differentiable vector fields h∗ and h. In the next section we discuss the properties of
the normal coordinates in a neighborhood of S. In Section 4 we derive the formulae
for the singular limits of integrals of functions concentrated near S. Finally, in
Section 5 the proof of Theorem 1.3 is completed.

2. Estimates of solutions to adjoint state equations

In this section we prove the well-posedness and derive a priori estimates for
solutions of the adjoint state equations.
Function spaces. First we recall some basic facts from the theory of Sobolev-
Slobodetsky spaces, which can be found in [1] and [25]. Let Ω be the whole space
R

d, d ≥ 1, or a bounded domain in R
d with the boundary ∂Ω of class C1. For an

integer l ≥ 0 and for an exponent r ∈ [1,∞), we denote by W l,r(Ω) the Sobolev
space endowed with the norm ‖u‖W l,r(Ω) = sup|α|≤l ‖∂αu‖Lr(Ω). For real 0 < s < 1,

the fractional Sobolev space W s,r(Ω) is obtained by the real interpolation method
between Lr(Ω) and W 1,r(Ω), and consists of all measurable functions with the finite
norm

‖u‖W s,r(Ω) = ‖u‖Lr(Ω) + |u|s,r,Ω,

where

|u|rs,r,Ω =

∫

Ω×Ω

|x− y|−d−rs|u(x) − u(y)|r dxdy.(2.1)

In the general case, the Sobolev space W l+s,r(Ω) is defined as the space of measur-
able functions with the finite norm ‖u‖W l+s,r(Ω) = ‖u‖W l,r(Ω)+sup|α|=l ‖∂αu‖W s,r(Ω).

Furthermore, the notation W s,r
0 (Ω), 0 ≤ s ≤ 1, stands for the closed subspace

of W s,r(Rd) which consists of all functions u ∈ W s,r(Rd) vanishing outside of Ω.
We will identify functions of W s,r

0 (Ω) with their extensions by zero to R
d. Recall

that W s,r(Ω) = W s,r
0 (Ω) for sr < 1. It is important to note that C∞

0 (Ω) is dense
in W s,r

0 (Ω), but the space W s,r
0 (Ω) coincides with the completion of C∞

0 (Ω) in the
norm of W s,r(Ω) if and only if s 6= 1/r + integer.

For all 0 < s < 1 and 1 < r <∞, we denote by Ws,r
0 (Ω) the interpolation space

[W0,r
0 (Ω),W1,r

0 (Ω)]s,r endowed with the one of the equivalent norms defined by real
interpolation method. In other words, Ws,r

0 (Ω) is obtained by real interpolation

of the subspace W1,r
0 (Ω) = W 1,r

0 (Ω) ⊂ W 1,r(Ω) and W0,r
0 (Ω) = Lr(Ω). Generally

speaking, Ws,r
0 (Ω) is not a subspace of W s,r(Ω), and its norm is stronger than the

norm of W s,r(Ω). The question on the interpolation of subspaces is one of the
difficult questions of the interpolation theory. In our particular case the following
result was obtained in [8] and [13], see also [14] for complete account of the theory,

(2.2) Ws,r
0 (Ω) = W s,r

0 (Ω) for s 6= 1/r + integer.

The other application of results [13],[14] is the interpolation of subspaces of finite
codimension. Recall denotation (1.11) for the projection Π. We have for s ∈ (0, 1)

(2.3) ΠW s,r(Ω) = [ΠLr(Ω),ΠW 1,r
0 (Ω)]s,r .
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Embedding theorems. For sr > d and 0 ≤ α < s− r/d, the embedding W s,r(Ω) →֒
Cα(Ω) is continuous and compact. Moreover, for sr > d, and all u, v ∈W s,r(Ω),

(2.4) ‖uv‖W s,r(Ω) ≤ c(r, s)‖u‖W s,r(Ω)‖v‖W s,r(Ω).

If sr < d and t−1 = r−1 − d−1s, then the embedding W s,r(Ω) →֒ Lt(Ω) is con-
tinuous, [1] Th. 7.57. We have also, [1] Th.7.58, for α < s, (s − α)r < d and
β−1 = r−1 − d−1(s− α),

(2.5) ‖u‖W α,β(Ω) ≤ c(r, s, α, β,Ω)‖u‖W s,r(Ω).

Duality. Let s ∈ [0, 1]. We define

(2.6) 〈u, v〉 =

∫

Ω

u v dx

for all functions such that the right hand side make sense. For r ∈ (1,∞), each

element v ∈ Lr(Ω) determines the functional Lv of (W s,r′

0 (Ω))′, r′ = r/(r − 1), by
the identity Lv(u) = 〈u, v〉. We introduce the (−s, r)-norm of an element v ∈ Lr(Ω)
to be by definition the norm of the functional Lv, that is

(2.7) ‖v‖W−s,r(Ω) = sup

u ∈W s,r′

0 (Ω)
‖u‖

W s,r′

0
(Ω)

= 1

|〈u, v〉|.

Let W−s,r(Ω) denote the completion of the space Lr(Ω) with respect to (−s, r)-
norm. The spaceW−s,r(Ω) is topologically and algebraically isomorphic to (W s,r′

0 (Ω))′.
Similarly, we can define the dual space W−s,r(Ω) as the completion of Lr(Ω) in

the norm

(2.8) ‖v‖W−s,r(Ω) = sup

u ∈ Ws,r′

0 (Ω)
‖u‖

Ws,r′

0
(Ω)

= 1

|〈u, v〉|.

The space W−s,r(Ω) is topologically and algebraically isomorphic to (Ws,r′

0 (Ω))′.

Moreover, we can identify W−s,r(Ω) with the interpolation space [Lr(Ω),W−1,r
0 (Ω)]s,r ,

see [5]. Since s−1/r′ is not integer for a non-integer −s−1/r, it follows from (2.2)
that

(2.9) W−s,r
0 (Ω) = W−s,r

0 (Ω) for − s 6= 1/r + integer.

It is well known that the operator ∇ : W s,r(Ω) 7→ W s−1,r(Ω) is continuous for
s = 0, 1. It follows from this that ∇ : W s,r(Ω) 7→ Ws−1,r(Ω) is continuous for all
s ∈ (0, 1) and hence

(2.10) ‖∇u‖W s−1,r(Ω) ≤ c(s, r)‖u‖W s,r(Ω) for all s 6= 1/r + integer, s ∈ [0, 1]

The above results leads to the following lemmas which will be used in the proof of
the solvability of the adjoint state equations.

Lemma 2.1. Let Ω ⊂ R
3 be a bounded domain with ∂Ω of class C2, and (F,G, ) ∈

W s−1,r(Ω) × ΠW s,r(Ω),

s ∈ [0, 1], r ∈ (1,∞), s 6= 1/r + integer.
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Then the boundary value problem

∆v −∇π = F, div v = ΠG in Ω,

v = 0 on ∂Ω, Ππ = π,
(2.11)

has a unique solution (v, π) ∈W s+1,r(Ω) × ΠW s,r(Ω) such that

(2.12) ‖v‖W s+1,r(Ω) + ‖π‖W s,r(Ω) ≤ c(Ω, r, s)(‖F‖W s−1,r(Ω) + ‖G‖W s,r(Ω)).

Proof. For s = 0, 1, the lemma is a classical result of the theory of Stokes
equations (see [7]). Hence the mapping (F,G) → (v, π) defines the continuous
operator from W s−1,r × ΠW s,r(Ω) to W s+1,r × ΠW s,r, s = 0, 1. By the main
theorem of the interpolation theory, this operator is continuous from Ws−1,r ×
ΠW s,r(Ω) to W s+1,r × ΠW s,r for all s ∈ (0, 1). In particular, we have

‖v‖W s+1,r(Ω) + ‖π‖W s,r(Ω) ≤ c(Ω, r, s)(‖F‖Ws−1,r(Ω) + ‖G‖W s,r(Ω)),

which along with (2.9) gives (2.12). �

The next lemma gives the multiplicative estimate in fractional Sobolev space.
Assume that exponents s, s′ and r, r′ satisfy the conditions

(2.13) s′ + s = 1,
1

r
+

1

r′
= 1, , s, s′ ∈ (0, 1), r, r′ ∈ (1,∞).

Lemma 2.2. Let Ω ⊂ R
d be a bounded domain with the Lipschitz boundary. Fur-

thermore, assume that exponents s, s′ and r, r′ satisfy (2.13) and the conditions

(2.14) sr > d, 1/2 < s, s 6= 1/r + integer.

Then there is a constant c, depending only on r, s, and Ω, such that for all ς ∈
W s,r(Ω) and u ∈ W s′,r′

(Ω),

(2.15) ‖uς‖W s′,r′ (Ω) ≤ c‖u‖W s′,r′ (Ω)‖ς‖W s,r(Ω)

If u ∈ W s′,r′

0 (Ω), then ςu ∈ W s′,r′

0 (Ω). Moreover, if in addition sr 6= d + integer
and ϕ ∈ W s,r(Ω), then ς∇ϕ ∈W s−1,r(Ω) and

(2.16) ‖ς∇ϕ‖W s−1,r(Ω) ≤ c‖ϕ‖W s,r(Ω)‖ς‖W s,r(Ω).

Proof Since the embedding W s,r(Ω) →֒ C(Ω) is continuous, we have

∫

Ω×Ω

|x− y|−d−r′s′ |ς(x)u(x) − ς(y)u(y)|r′

dxdy ≤

∫

Ω×Ω

|x− y|−d−r′s′ |u(x)|r′ |ς(x) − ς(y)|r′

dxdy+

‖ς‖r′

W s,r(Ω)

∫

Ω×Ω

|x− y|−d−r′s′ |u(x) − u(y)|r′

dxdy ≤

∫

Ω×Ω

|x− y|−d−r′s′ |u(x)|r′ |ς(x) − ς(y)|r′

dxdy + c
(

‖ς‖W s,r(Ω)‖u‖W s′,r′ (Ω)

)r′

(2.17)

Now set

t−1 = (r′)−1 − d−1s′, β = d(s′)−1, α−1 = 1 − r′t−1 = r′β−1, t, β, α ∈ (1,∞).
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By virtue of (2.14) there is δ > 0 satisfying the inequalities

(2.18) s > 1 − s+ δ ≡ s′ + δ and d− rs+ rδ ≥ 0.

Fix such δ and set

M(x) =

∫

Ω

|x−y|−d−r′s′ |ς(x)−ς(y)|r′

dy, N(x) =

∫

Ω

|x−y|−d−β(s′+δ)|ς(x)−ς(y)|β dy.

Since the embedding W s′,r′

(Ω) →֒ Lt(Ω) is continuous for, we have from the Hölder
inequality

∫

Ω×Ω

|x− y|−d−r′s′ |u(x)|r′ |ς(x) − ς(y)|r′

dxdy =

∫

Ω

|u(x)|r′

M(x) dx ≤ ‖u‖r′

Lt(Ω)‖M‖Lα(Ω) ≤ c‖u‖r′

W s′,r′ (Ω)
‖M‖Lα(Ω),

(2.19)

Next note that

|x− y|−d−r′s′ |ς(x) − ς(y)|r′

= (|x − y|−d−β(s′+δ)|ς(x) − ς(y)|β)r′/β |x− y|−γ

where

γ = d+ s′r′ − r′

β
[d+ (s′ + δ)β) = d

β − r′

β
− r′δ and γ

β

β − r′
< d.

From this and Hölder inequality we conclude that

M ≤ N r′/β

∫

Ω

|x− y|−γ β

β−r′ dy ≤ c(δ,Ω)N r′/β ,

and Mα ≤ N . From this and (2.19) we obtain

∫

Ω×Ω

|x− y|−d−r′s′ |u(x)|r′ |ς(x) − ς(y)|r′

dxdy ≤ c‖u‖r′

W s′,r′ (Ω)

(

∫

Ω

N dx
)1/α

= c‖u‖r′

W s′,r′ (Ω)

(

∫

Ω×Ω)

|x− y|−d−β(s′+δ)|ς(x) − ς(y)|β dy
)r′/β

≤

c‖u‖r′

W s′,r′ (Ω)
‖ς‖r′

W s′+δ,β(Ω)
.

(2.20)

Notice that by virtue the identity s′ = 1 − s and inequalities (2.18), we have

s > s′ + δ. Let us prove that the embedding W s,r(Ω) →֒ W s′+δ,β(Ω) is bounded.
If r(s− s′ − δ) ≥ d it is bounded for all β <∞. For r(s− s′ − δ) ≤ d it is bounded
if and only if β satisfies the inequality

1

β
≡ s′

d
≥ 1

r
− 2s− 1 − δ

d
,

which obviously follows from (2.18). Thus we get ‖ς‖W 1−s+δ,β(Ω) ≤ ‖ς‖W s,r(Ω).
Combining this result with (2.17) and (2.20) we finally obtain

∫

Ω×Ω

|x− y|−d−r′s′ |ς(x)u(x) − ς(y)u(y)|r′

dxdy ≤ c‖u‖r′

W s′,r′ (Ω)
‖ς‖r′

W s,r(Ω),
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which yields (2.15).

Now assume that u ∈ W s′,r′

0 (Ω). Recall, see [25], that a function u ∈ W s′,r′

0 (Ω)

belongs to W s′,r′

0 (Ω) if and only if u ∈ W s′,r′

(Ω) and dist (x, ∂Ω)−s′ ∈ Lr′

(Ω).

Since the function ς is bounded, the function uς belongs to W s′,r′

0 (Ω) for u ∈
W s′,r′

0 (Ω). Moreover, since by virtue of (2.14) s′ 6= r′ + integer , we have

‖uς‖
W s′,r′

0
(Ω)

≤ c‖u‖
W s′,r′

0
(Ω)

‖ς‖W s,r(Ω) .

Finally notice that condition (2.14) yields the relation −s′ 6= 1/r+ integer. Hence
the identity 〈u, ς∇ϕ〉 = 〈uς,∇ϕ〉 determines a continuous linear functional on

W−s′,r(Ω) and the lemma follows. �

Transport equation. The following lemma is a particular case of the general
results on solvability of transport equations in fractional Sobolev spaces, see [20]
and [21]. It concerns with the existence and uniqueness of solutions to the following
boundary value problems for the first order differential equations

Lϕ := u∇ϕ+ σϕ = f in Ω, ϕ = 0 on Σin,(2.21)

L
∗ϕ∗ := − div(ϕ∗u) + σϕ∗ = f in Ω, ϕ∗ = 0 on Σout.(2.22)

Lemma 2.3. Let a vector field u ∈ C1(Ω) satisfies the boundary condition

(2.23) u = U on Σ, u = 0 on S,
where U is a given constant vector field. Furthermore, assume that the exponents

s, r satisfy the inequalities . Then there are positive constants σ∗ and δ∗, depending

only on Σ, U, s, r and ‖u‖C1(Ω), with the following property. If ‖ divu‖W s,r(Ω) +
‖ divu‖L∞(Ω) ≤ δ∗, σ > σ∗ , then for any f ∈ W s,r(Ω) each of problems (2.21)
and (2.22) has a unique solution ϕ,ϕ∗ ∈W s,r(Ω), which admits the estimates

‖ϕ‖W s,r(Ω ≤ C‖f‖W s,r(Ω), ‖ϕ∗‖W s,r(Ω) ≤ C‖f‖W s,r(Ω).(2.24)

The constant C depends only on ‖u‖C1(Ω), r, s σ, U and Ω.

Solvability of adjoint state equations. Let us consider the boundary value
problem

∆h −∇g −R̺∇uh +R̺u∇ h + ς∇ϕ+ ζ∇υ = F,(2.25a)

div h− Π(b12ς + b22g + κb32l) = G,(2.25b)

− div(uς) + σς −R(u∇u) · h − b21g − b11ς − κb31l = P,(2.25c)

u∇υ + συ − κb34l = Q,(2.25d)

l −
∫

Ω

b13ς dx = n(2.25e)

h = 0 on ∂B, h = a on S, ς = 0 on Σout, υ = 0 on Σin, g = Πg.(2.25f)

The following proposition is the main result of this section

Proposition 2.4. Assume that domain Ω satisfies Condition 1.1, and the expo-

nents s, r satisfy conditions (2.3) and inequalities s 6= 1/r + integer. Furthermore,

assume that a solution (v, ϕ, ς) to problem (1.13) with ε = 0 meets all requirements

of Proposition 1.2. Then there exist µ > 0, c0 depending only on U, Ω and s, r,
such that for all

(2.26) R+ λ−1 ≤ µ,
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and F ∈ Hs−1,r(Ω), G ∈ ΠW s,r(Ω) , P,Q ∈ W s,r(Ω), n ∈ R, a ∈ R
d problem

(2.25) has the only solution which admits the estimate

‖h‖W 1+s,r(Ω) + ‖g‖W s,r(Ω) + ‖ς‖W s,r(Ω + ‖υ‖W s,r(Ω + |l| ≤
c0(‖F‖W s−1,r(Ω) + ‖G‖W s,r(Ω) + ‖P‖W s,r(Ω + ‖Q‖W s,r(Ω + |n| + |a|).(2.27)

.

Proof. It suffices to prove the proposition for a = 0. We begin with the
observation that by virtue of inequalities (2.3), the spaces W s,r(Ω) and W 1+s,r(Ω)
are the Banach algebras and the embeddings Xs,r →֒ W s,r(Ω), Y s,r →֒ W s,r(Ω)
are continuous. It follows from this, inequalities (1.16), (2.27) and formulae (1.19)
that coefficients bij admit the estimates

(2.28) ‖b13‖W s,r(Ω) + ‖b21‖W s,r(Ω) + ‖b23‖W s,r(Ω) ≤ c(s, r, σ,Ω)

and

‖b11‖W s,r(Ω) + ‖b12‖W s,r(Ω) + ‖b10‖W s,r(Ω)+

‖b22‖W s,r(Ω) + ‖b20‖W s,r(Ω) + ‖b3i‖W s,r(Ω) ≤ c(s, r, σ,Ω)µ
(2.29)

Let us consider the truncated problem

∆h −∇g + ζ∇υ = F, div h = G,(2.30a)

− div(uς) + σς − b21g = P,(2.30b)

u∇υ + συ = Q,(2.30c)

l −
∫

Ω

b13ς dx = n(2.30d)

h = 0 on ∂Ω, ς = 0 on Σout, υ = 0 on Σin, g = Πg.(2.30e)

This system is of triangle nature. Using Lemma 2.3 we conclude that in the as-
sumptions of Proposition 1.2 we can choose σ∗, depending only on Ω,s, r and U,
so that for every fixed σ ≥ σ∗ equation (2.30c) has the only solution satisfying
boundary condition (2.30e) and the inequality

(2.31) ‖υ‖W s,r(Ω) ≤ c‖Q‖W s,r(Ω)

Next, using estimate (1.16) and Lemma 2.2 we conclude that

‖ζ∇υ‖W s−1,r(Ω) ≤ c‖υ‖W s,r(Ω) ≤ c‖Q‖W s,r(Ω).

Combining this result with Lemma 2.1 we obtain that equations (2.30a) have a
unique solution (h, g) ∈ W s+1,r(Ω) × ΠW s,r(Ω) satisfying boundary condition
(2.30e) and the inequality

(2.32) ‖h‖W s+1,r(Ω) + ‖g‖W s,r(Ω) ≤ c(‖Q‖W s,r(Ω) + ‖G‖W s,r(Ω) + ‖F‖W s−1,r(Ω)).

Applying Lemma 2.3 and using estimates (2.28) we obtain that equations (2.30b)
and (2.30d) have solutions satisfying the inequalities
(2.33)
‖ς‖W s,r(Ω) + |l| ≤ c(‖P‖W s,r(Ω) + ‖Q‖W s,r(Ω) + ‖G‖W s,r(Ω) + ‖F‖W s−1,r(Ω) + |n|).

It follows from this that the mapping (F, G, P,Q, n) → (h, g, ς, υ, l) determined by
equations (2.30) determines the continuous operator A : (W s−1,r(Ω)×ΠW s,r(Ω)×
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W s,r(Ω)2 × R 7→ W s+1,r(Ω) × ΠW s,r(Ω) × W s,r(Ω)2 × R. Let us consider the
operator B = (B1,B2,B3,B4) defined by the equalities

B1(h, g, ς, υ, l) = −R̺∇uh +R̺u∇ h + ς∇ϕ,
B2(h, g, ς, υ, l) = −Π(b12ς + b22g + κb32l),

B3(h, g, ς, υ, l) = −R(u∇u) · h − b11ς − κb31l, B4(h, g, ς, υ, l) = 0

It follows from estimate (1.16) and Lemma 2.2 that

‖ς∇ϕ‖W s−1,r(Ω) ≤ c‖ς‖W s,r(Ω)‖ϕ‖W s,r(Ω) ≤ cµ‖ς‖W s,r(Ω).

Combining this result with estimates (1.16), (2.29) we obtain that the norm of the
operator B : (W s−1,r(Ω)×ΠW s,r(Ω)×W s,r(Ω)2 ×R 7→W s+1,r(Ω)×ΠW s,r(Ω)×
W s,r(Ω)2 × R does not exceed cµ. Since equations (2.25) are equivalent to the
operator equation

(I + A−1B)(h, g, ς, υ, l) = A−1(F, G, P,Q, n),

the assertion of the lemma results from the contraction mapping principle. �.

3. Normal coordinates

For any point ω ∈ S denote by n the unique outward normal vector to S at
point ω. Since S is a smooth manifold, there exist a neighborhood O of S and a
number a > 0 so that the mapping (ω, t3) → ω + t3n(ω) takes diffeomorphically
the set S × [−a, a] → O.

Let us calculate the derivatives and Jacobian of this mapping. To this end we
fix an arbitrary point ω0 ∈ S. In some neighborhood O0 of this point, the surface
S admits the parametric representation

(3.1) S ∩ O0 : ω = r(t1, t2), |ti| ≤ a, r(0, 0) = ω0,

where the vector-valued function r(t1, t2) belong to the class C∞ in the rectangular

Q = {(t1, t2) : |ti| ≤ a, i = 1, 2 },
for an appropriate choice of a independent of ω0. We will write

t = (t1, t2, t3), t = (t1, t2) so that t = (t, t3).

and introduce the moving frame

ei(t) = ∂ti
r(t), i = 1, 2, e3(t) = n(r(t)) =

1

|e1 × e2|
e1 × e2.

Thus the mapping

X : t 7→ r(t) + t3e3(t) ≡ ω + t3n(ω)

takes diffeomorphically

Q× [−a, a] 7→ O0 and Q× [−a, 0] 7→ O0 ∩ Ω.

Recall the denotations

gij = ei(t) · ej(t), bij = e3(t) · ∂2
ti tj

r(t)

for the coefficients of the first and second fundamental form of the surface S and
set

g = det (gij), (gαβ) = (gαβ)−1.



SHAPE DERIVATIVE OF DRAG FUNCTIONAL 17

In this notation, the mean and Gauss curvatures of S are determined by the equal-
ities

H =
1

2
(b11 + b22), K = b11b

2
2 − b12b

2
1, where bij = giαbαj

Using the Weigharten equations

∂tj
e3 = −bij ei with i, j = 1, 2,

we obtain the expression for the columns of the Jacobi matrix X ′(t)

∂tj
X = ej − t3(b

1
je1 + b2je2), j = 1, 2, ∂t3X = e3.(3.2)

In order to derive the expression to the inverse of X ′(t) we use the identity

(X ′−1)∗ ≡
[

∇xt1(X(t)),∇xt2(X(t)),∇xt3(X(t))
]

=

(det X ′)−1
[

∂t2X × ∂t3X, ∂t3X × ∂t1X, ∂t1X × ∂t2X,
]

.
(3.3)

Next note that for j = 1, 2,

ej×e3 = g−1/2ej×(e1×e2) = g−1/2
(

(ej ·e2)e1−(ej ·e1)e2)
)

= g−1/2(gj2e1−gj1e2)

and e1 × e2 = g1/2e3. From this and (3.2), (3.3) we obtain

∂tj
X × ∂t3X = g−1/2(gj2e1 − gj1e2) − t3g

−1/2(bj2e1 − bj1e2).

and

∂t1X × ∂t2X = g1/2(1 + 2Ht3 +Kt23)

In particular we have the following expression for the Jacobian

(3.4) det X ′ ≡ (∂t1X × ∂t2X) · ∂t3X = g1/2(1 + 2Ht3 +Kt23).

We also get the following expression to the lines of the matrix (X ′)−1 ( the columns
of the matrix (X ′−1)∗)

(∇xt1)(X(t)) = g−1(1 + 2Ht3 +Kt23)
−1

{

g22e1 − g21e2 − t3(b22e1 − b21e2)
}

,

(∇xt2)(X(t)) = −g−1(1 + 2Ht3 +Kt23)
−1

{

(g12e1 − g11e2) − t3(b12e1 − b11e2)
}

,

(∇xt3)(X(t)) = e3.

(3.5)

Conformal coordinates The formulae can be essentially simplified if the parametriza-
tion x = r(t) is conformal. This means that

g12 = 0, g11 = g22 = g1/2

In this case the expression for the lines of the inverse Jacobi becomes

(∇xt1)(X(t)) = g−1(1 + 2Ht3 +Kt23)
−1

{

g1/2e1 − t3(b22e1 − b21e2)
}

,

(∇xt2)(X(t)) = g−1(1 + 2Ht3 +Kt23)
−1

{

g1/2e2 − t3(b11e2 − b12e1)
}

,

(∇xt3)(X(t)) = e3.

(3.6)

In particular, we have the following expression for the Jacobi matrix and its inverse
at the sheet S ∩O0

X ′(t) =
[

e1, e2, e3

]

, (X ′−1)∗(t) =
[

g−1/2e1, g
−1/2e2, e3

]

.(3.7)
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3.1. Surface perturbation. Choose an arbitrary function f ∈ C∞(S). Without
loss of generality we can assume that f is extended over R

3 and the extension
belongs to the class C∞(R3) Let us consider the immersion

(3.8) Sτ : x = ω + τf(ω)n(ω), ω ∈ S,
where τ ∈ [0, a] is a small parameter. For all small τ this immersion is the embed-
ding and we obtain the family of smooth surfaces Sτ which can be regarded as a
normal perturbation of S generated by the normal shift fn. Now our task is to
extend the mapping (3.8) over R

3. To this end fix a function χ ∈ C∞
0 (R) satisfying

the relations

χ(s) = 1 for |s| ≤ 1/2, χ(t) = 0 for |s| ≥ 1.

Introduce a vector field Tτ (x) defined in the neighborhood O of the surface ∂S by
the relations
(3.9)

Tτ (x) = Tτ (ω + t3n(ω)) = f(ω)χ(t3/τ)n(ω), where t3 = t3(x) ≡ dist (x,S).

Since the vector field Tτ vanishes for t3 ≥ a, it, being extended by 0 over R
3,

belongs to the class C∞(R3). Hence for all small ε, the mapping x → x + εTτ (x)
determines the diffeomoprhism of R

3. Moreover this diffeomorphism is equal to the
identical mapping outside of τ - neighborhood of S.

Now we consider in more details the structure of the derivative of T ′
τ and the

related matrix Dτ . In order to formulate the corresponding result it is convenient
introduce the notation M(t) for the Jacobi matrix X ′().

Lemma 3.1. Under the above assumptions,

T′
τ (x) =

1

τ
χ′(t3/τ)f(ω)n(ω) ⊗ n(ω)+

χ(t3/τ)n(ω) ⊗∇tanf(ω) + χ(t3/τ)S,
(3.10)

where t3 = t3(x),

∇tanf(ω) =
(

I − n(ω) ⊗ n(ω)
)

∇f(x)|t3=0

is the orthogonal projection of the gradient f onto the tangential plane to S, and

elements Sij of the matrix S in the local coordinates t are defined by the equalities

Sij = χ(t3/τ)f(ω)
∑

α=1,2

Wα
j (ω)eiα, Wα

j (t) = −bαβ(M−1)βj ,

in which eiα is the ith component of the vector eα. Moreover, we have

Tr T′
τ =

1

τ
χ′(t3/τ)f(ω) − 2χf(t3/τ)H(ω),(3.11)

where H(ω) is the mean curvature of S. The matrix D admits the representation

Dτ = (
1

τ
χ′(t3/τ)f(ω) − 2χf(t3/τ)H(ω)

)

I−
1

τ
χ′(t3/τ)f(ω) n(ω) ⊗ n(ω) + χ(t3/τ) n(ω) ⊗∇tanf(ω) + χ(t3/τ)S.

(3.12)

The matrixes T′
τ and Dτ satisfy the boundary conditions

T′
τ = n(ω) ⊗∇tanf(ω) + S, Dτ = −2fHI− n(ω) ⊗∇tanf(ω) − S on S.

(3.13)
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Proof. By virtue of the partition of unit approach, it suffices to prove the lemma
in the neighborhood of O0 of an arbitrary point. ω0 ∈ S. Let t ∈ Q × [−a, a] be
a local coordinate system in this neighborhood, such that t is a local conformal
coordinates on the manofold S ∩ O0. In this coordinates we have

∂xi
Tτ =

1

τ
χ′f ∂xi

t3 n + χ∂xp
f ∂tq

(r)p ∂xi
tq n + n + χf ∂xi

tp ∂tp
n(3.14)

where (r)p is the pth component of the vector-valued function r(t). Noting that
∇xt3 = e3(t) = n(x(t)) we arrive at the first basic identity

1

τ
χ′f ∂xi

t3 n =
1

τ
χ′fni n.(3.15)

Next we have

∂xp
f ∂tq

(r)p ∂xi
tq ≡

∑

q=1,2

∂xp
f ∂tq

(r)p ∂xi
tq

≡
∑

q=1,2

∂xp
f MpqNqi = ∂xi

f −Mp3N3i∂xp
f = ∂xi

f − npni ∂xp
f

which leads to the second identity

χ∂xp
f ∂tq

(r)p ∂xi
tq n = (∇tanf)i n,(3.16)

where (∇tanf)i is the ith component of the vector ∇tanf . Using the Weigharten
equation we also get the third identity

χf ∂xi
tp ∂tp

n = −χf
∑

i=1,2

bαβ(M−1)βieα =: χf
∑

i=1,2

Wα
i eα.(3.17)

Combining (3.1)-(3.17) we finally obtain (3.10). Since ei,α = Miα, we have

Tr S = χf
∑

i=1,2

∑

α=1,2

Wα
i eiα = −χf

∑

α=1,2

bαβ(M−1)βiMiα = −χfbαα = −2χf H,

which along with (3.10) and the identity ∇tanf · n = 0 leads to the representation
(3.11). Formula (3.12) is an obvious consequence of (3.10) and (3.11). It remains
to note that since χ′ = 0 and χ = 1 on S boundary conditions (3.13) follows from
(3.11) and (3.12). �

4. Limiting relations

In this section we establish some auxiliary facts on the singular limits of integrals,
with the integrands depending on the derivatives of Tτ

Lemma 4.1. For any ψ ∈ C(Ω),

lim
τց0

∫

Ω

ψ(x)T′
τ (x) dx =

∫

S

ψ(ω)f(ω)n ⊗ n dω,

lim
τց0

∫

Ω

ψ(x)Tr T′
τ (x) dx =

∫

S

ψ(ω)f(ω) ds

(4.1)
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Proof. Using the partition of unit we can assume that spt ψ concentrated in
the neighborhood of point ω0 ∈ S and hence

∫

Ω

ψ(x)T′
τ (x) dx =

∫

Q

0
∫

−τ

ψ̃(t)T ′
τ (X(t)) detX ′(t) dt

where ψ̃(t) = ψ(X(t)) and Q = [−a, a]2. Using the identity (3.10) and formula
(3.4) we obtain

T′
τ (X(t)) detX ′(t) =

1

τ
χ′(t3/τ)f(ω(t)) e3(t) ⊗ e3(t) g

1/2(t) + R(t),

where

R(t) =
t3
τ
χ′(t3/τ)f(ω(t)) e3(t) ⊗ e3(t) (2H + t3K)+

(

χ(t3/τ) e3(t) ⊗∇tanf(ω(t)) + χ(t3/τ)S(t)
)

g1/2(1 + t3H + t23K)

Since the functions f , ∇f and elements of the matrix S are uniformly bounded in
Q× [−τ, 0] we have

∫

Q

0
∫

−τ

|̃ψ(t)R(t)| dt ≤ cτ → 0 as τ → 0

Thus we get

lim
τց0

∫

Ω

ψ(x)T′
τ (x) dx = lim

τց0

1

τ

∫

Q

0
∫

−τ

ψ̃(t)χ′(t3/τ)f(ω(t))e3(t) ⊗ e3(t)g
1/2(t) dt

Noting that

lim
τց0

1

τ

∫

Q

0
∫

−τ

[ψ̃(t) − ψ̃(t, 0)]χ′(t3/τ)f(ω(t))e3(t) ⊗ e3(t)g
1/2(t)dt = 0

and using the relations e3(t) = n(ω(t)) and g1/2dt1dt2 = ds we obtain

lim
τց0

∫

Ω

ψ(x)T′
τ (x) dx = lim

τց0

1

τ

∫

Q

0
∫

−τ

ψ̃(t, 0)χ′(t3/τ)f(ω(t)) e3(t) ⊗ e3(t) g
1/2(t) dt

=
(

lim
τց0

1

τ

0
∫

−τ

χ′(t3/τ)dt3

)

∫

Q

ψ̃(t, 0)f(ω(t)) e3(t) ⊗ e3(t) g
1/2(t) dt1dt2 =

∫

Q

ψ̃(t, 0)f(ω(t))e3(t) ⊗ e3(t) g
1/2(t) dt1dt2 =

∫

S

ψ(ω)f(ω)n(ω) ⊗ n(ω) ds,

which yields the first equality in (4.1). The second obviously follows from the first.
�.

Next lemma establishes the limiting relation for the integral involved the deriva-
tives of the mapping Dτ
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Lemma 4.2. Let the vector fields h,u : Ω 7→ R
3 belongs to the class C1(Ω)3 and

vanishes on S. Then

lim
τց0

∫

Ω

∂xi
h(x) · (∂xi

D)u dx = −
∫

S

f(ω)∂nh(ω) · (I − n ⊗ n)∂nu(ω) ds,(4.2)

Proof. Using the partition of unit we can assume that spt h is concentrated in
the neighborhood of point ω0 ∈ S , which gives

∫

Ω

∂xi
h(x) · (∂xi

D)u dx =

∫

Q

0
∫

−τ

∂xi
h(X(t)) ·

[

∂xi
D(X(t))

]

u(X(t)) detX ′(t) dt.

Notice that

∂xi
h(X(t)) ·

[

∂xi
D(X(t))

]

u(X(t)) = Gpq∂tp
h̃(t) ·

[

∂tq
D(X(t))

]

ũ(t)

where

h̃(t) = h(X(t)), ũ(t) = u(X(t)), Gpq = (∇X tp)(X(t)) · (∇Xtq)(X(t)).

Thus we get

∫

Ω

∂xi
h(x) · (∂xi

D)u dx =

∫

Q

0
∫

−τ

Gpq∂tp
h̃(t) ·

[

∂tq
D(X(t))

]

ũ(t) detX ′(t) dt.

Since u vanishes at S, the Taylor formula gives

ũ(t) ≡ u(ω(t) + t3n(ω(t)) = ∂nu(ω(t))t3 + r(ω, t3)

where
1

t3
r(ω, t3) → 0 as t3 → 0 uniformly with respect to ω ∈ S

Since the first derivatives of h̃ and functions Gpq are uniformly bounded and
|∂tq

D| ≤ cτ−2 we have

∫

Q

0
∫

−τ

∣

∣Gpq∂tp
h̃(t) · ∂tq

D(X(t)) r(t)| detX ′(t) dt ≤ cτ−2

∫

Q

0
∫

−τ

|r(t)| dt → 0

as τ → 0. Thus we get

lim
τց0

∫

Ω

∂xi
h(x) · ∂xi

Du dx =

lim
τց0

∫

Q

0
∫

−τ

t3G
pq ∂tp

h̃(t) · ∂tq
D(X(t)) ∂nu(ω(t)) detX ′(t) dt1dt2dt3

Next it follows from the representation (3.12) that

|∂tq
Dτ | ≤ cτ−1 for q = 1, 2

and

∂t3Dτ =
1

τ2
χ′′(t3/τ)f(ω(t))(I − n⊗ n) +R1 with |R1(t)| ≤ cτ−1.
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It follows from this that

t3G
pq∂tp

h̃(t) ·
[

∂tq
D(X(t))

]

∂nu(ω(t)) detX ′(t) =

t3
τ2
χ′′(t3/τ)f(ω(t))Gp3∂tp

h̃(t) · (I − n⊗ n)∂nu(ω(t)) detX ′(t) +R2,

where

|R2| ≤ c|t3|/τ ≤ c

Using formula (3.4) for the Jacobian we obtain

t3G
pq∂tp

h̃(t) ·
[

∂tq
D(X(t))

]

∂nu(ω(t)) detX ′(t) =

t3
τ2
χ′′(t3/τ)f(ω(t))Gp3∂tp

h̃(t) · (I − n⊗ n)∂nu(ω(t))g1/2 +R3,

where |R3| ≤ c. From this we conclude that

lim
τց0

∫

Ω

∂xi
h(x) · (∂xi

D)u dx =

lim
τց0

1

τ2

∫

Q

0
∫

−τ

t3χ
′′(t3/τ)f(ω(t))Gp3 ∂tp

h̃(t) · (I − n⊗ n)∂nu(ω(t))g1/2 dt

Since the vector field h̃ vanishes at t3 = 0 we have for α = 1, 2

∂tα
h̃ = rα(t), ∂t3 h̃(t) − ∂t3 h̃(t, 0) = r3(t),

where ri(t) → 0 as t3 → 0 uniformly in t ∈ Q. In particular we have

1

τ2

∣

∣

∣

∫

Q

0
∫

−τ

t3χ
′′(t3/τ)f(ω(t))Gp3rp(t) · (I − n ⊗ n)∂nu(ω(t))g1/2 dt

∣

∣

∣
≤

c

τ2

∫

Q

0
∫

−τ

|t3|(|r1| + |r2| + |r3|) dt → 0 as τ → 0.

Combining obtained results we arrive at the equality

lim
τց0

∫

Ω

∂xi
h(x) · ∂xi

Du dx =

lim
τց0

1

τ2

∫

Q

0
∫

−τ

t3χ
′′(t3/τ)f(ω(t))G33 ∂t3h̃(t, 0) · (I − n ⊗ n)∂nu(ω(t))g1/2 dt

Recalling that

∂t3 h̃(t, 0) = ∂nh(ω(t)) and G33 = e3 · e3 = 1

and using the identity

1

τ2

0
∫

−τ

t3χ
′′(t3/τ) dt3 = −1
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we finally obtain

lim
τց0

∫

Ω

∂xi
h(x) · (∂xi

D)u dx =

lim
τց0

1

τ2

∫

Q

0
∫

−τ

t3χ
′′(t3/τ)f(ω(t))∂nh(ω(t)) · (I− n ⊗ n)∂nu(ω(t))g1/2 dt =

(

lim
τց0

1

τ2

0
∫

−τ

t3χ
′′(t3/τ) dt

)

∫

Q

f(ω(t))∂nh(ω(t)) · (I − n ⊗ n)∂nu(ω(t))g1/2 dt1dt2 =

−
∫

Q

f(ω(t))∂nh(ω(t)) · (I − n ⊗ n)∂nu(ω(t))g1/2 dt1dt2 =

−
∫

S

f(ω)∂nh(ω) · (I − n ⊗ n)∂nu(ω) ds

which yields (4.2) and the lemma follows. �

5. Proof of Theorem 1.3

Fix an arbitrary function η ∈ C∞(Ω) satisfying the boundary conditions η = 0
on Σ so that η = 1 in a neighborhood of S. Next choose the perturbation Tτ in the
form (3.9). Notice that the derivatives of the function η vanish in a neighborhood of
S and the vector field u belongs to C1(Ω). Substituting Tτ into (1.21) integration
by parts and applying Lemma 4.1 we obtain

(5.1) lim
τց0

Le(Tτ ) = 0.

Since the function η is infinitely differentiable the right hand sides (A,B,C) of
adjoint state equations (1.25) belongs toW 1+s,r(Ω)×ΠW s,r(Ω)×W s,r(Ω), it follows
from Proposition 2.4 that (h∗, g∗, ς∗, υ∗, l∗) ∈ W 1+s,r(Ω) ×ΠW s,r(Ω)×W s,r(Ω)×
R. Applying Proposition 2.4 to problem (1.29) we conclude that (h, g, ς, υ, l) ∈
W 1+s,r(Ω) × ΠW s,r(Ω) ×W s,r(Ω) × R.

It follows from this that the functions g∗, ς∗, and υ∗ are continuous. From this
and Lemma 4.1 we obtain
(5.2)

lim
τց0

∫

Ω

Tr T′
τ

(

b10ς
∗+b20g

∗+συ∗+l∗b30
)

dx =

∫

S

f(ω)
(

b10ς
∗+b20g

∗+συ∗+l∗b30
)

ds.

Next we have
∫

Ω

D(Tτ ) · h∗ dx =

∫

Ω

div[(Tr T′
τ I − Dτ − D∗

τ )∇u] · h∗ dx+

∫

Ω

(D∗
τ∆u + ∆(Dτu)) · h∗ dx−

R

∫

Ω

̺
[

D∗
τ (u∇u) + u∇(Dτu)

]

· h∗ dx = I1(τ) + I2(τ) + I3(τ).

(5.3)
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Recall that by virtue of definition of the spaces Y s,r, we have u ∈ Y s,r ⊂W 2,2(Ω)
and ̺ ∈ Xs,r ⊂ W 1,2(Ω) On the other hand, the vector field h∗ has continuous
derivatives in Ω. Hence we can integrate by parts to obtain the identity

I3(τ) = R

∫

Ω

[

̺D∗
τ (u∇u) · h∗ − ̺(u∇h∗) · (Dτu)

]

dx(5.4)

Here we use the equality div(̺u) = 0. Since ̺, ∇u, ∇h∗ are continuous and u, h∗

vanishes at S, we can apply Lemma 4.1 to obtain lim
τց0

I3(τ) = 0. Next introduce

the matrix

V = Tr T′
τ I− Dτ − D∗

τ .

Note that

(V∇u)ij = Vik∂xk
uj, [div(V∇u)]j = ∂xi

(

Vik∂xk
uj

)

.

Thus we get

I1(τ) ≡
∫

Ω

div(V∇u) · h∗ = −
∫

Ω

Vik∂xk
uj ∂xi

h∗j dx

It follows from Lemma 4.1 and the equality D = Tr TI−T′ that for any ψ ∈ C(Ω),

lim
τց0

∫

Ω

Vikψ dx =

∫

S

f(ω)(−δik + 2ni nk)ψ(ω) ds.

Since ∇u and ∇h∗ are continuous, we conclude from this that

lim
τց0

I1(τ) =

∫

S

f(ω)∂xi
uj ∂xi

h∗j ds− 2

∫

S

f(ω)nk∂xk
uj ni∂xi

h∗j ds

Recalling that u and h∗ vanish on ∂f we obtain

∂xi
uj ∂xi

h∗j = ∂nu · ∂nh∗, nk∂xk
uj ni∂xih

∗
j = ∂nu · ∂nh∗,

which gives

lim
τց0

I1(τ) = −
∫

S

f(ω) ∂nu · ∂nh∗ ds

Next integrating by parts we obtain

I2(τ) = −
∫

Ω

[

(Dτ + D∗
τ )∂xi

u · ∂xi
h∗ + ∂xi

u · (∂xi
Dτ )h∗ + ∂xi

h∗ · (∂xi
Dτ )u

]

dx

Applying Lemma 4.1 and 4.2 we arrive at the equality

lim
τց0

I2(τ) = −2

∫

S

f(ω)
[

∂xi
u · ∂xi

h∗ −
(

n · ∂xi
u
)(

n · ∂xi
h∗

)

]

ds+

2

∫

S

f(ω)
[

∂nu · ∂nh∗ −
(

n · ∂nu
)(

n · ∂nh∗
)

]

ds.

Since u and h∗ vanish on S, we have ∂xi
u = ni∂nu and ∂xi

h∗ = ni∂nh∗ which
gives

∂xi
u · ∂xi

h∗ −
(

n · ∂xi
u
)(

n · ∂xi
h∗

)

= ∂nu · ∂nh∗ −
(

n · ∂nu
)(

n · ∂nh∗
)

.
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Thus we get lim
τց0

I2(τ) = 0. Combining (1.20) and (1.26) we arrive at the following

expression for the shape derivative of the drag functional

d

dε
JD(Sε)

∣

∣

∣

ε=0
= Le(Tτ )+

∫

Ω

Tr T′
τ

(

b10ς
∗+b20g

∗+συ∗+l∗b30
)

dx+I1(τ)+I2(τ)+I3(τ).

Letting τ ց 0 we finally obtain

d

dε
JD(Sε)

∣

∣

∣

ε=0
=

∫

S

f(ω)
(

b10ς
∗ + b20g

∗ + συ∗ + l∗b30 − ∂nu · ∂nh∗
)

ds.

It remains to note that by virtue of identity (1.30),

(g∗, ς∗, υ∗, l∗) = (g, ς, υ, l), ∂nh∗ = ∂nh on S,
and the theorem follows. �
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