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An index theorem for manifolds with boundary

by Paulo Carrillo Rouse and Bertrand Monthubert

Abstract

In [2] II.5, Connes gives a proof of the Atiyah-Singer index theorem for closed
manifolds by using deformation groupoids and appropiate actions of these on R

N .
Following these ideas, we prove an index theorem for manifolds with boundary.

Résumé

Dans [2] II.5, Connes donne une preuve du théorème de l’indice d’Atiyah-Singer
pour des variétés fermées en utilisant des groupöıdes de déformation et des actions
appropriées de ceux-ci dans R

N . Nous suivons ces idées pour montrer un théorème
d’indice pour des variétés à bord.

Version française abrégée

Dans [2], II.5, Alain Connes donna une preuve du théorème d’Atiyah-Singer
pour une variété fermée entièrement fondée sur l’utilisation de groupöıdes, grâce
à une action du groupöıde tangent de la variété sur R

N . L’idée centrale est de
remplacer des groupöıdes qui ne sont pas (Morita) équivalents à des espaces, par
des groupöıdes obtenus par produit croisé et qui possèdent cette propriété, ce qui
permet ensuite de donner une formule.

Si X est une variété à bord ∂X , nous construisons le groupöıde TbX := (adG∂X ×
R)

⋃

∂ TX en recollant adG∂X ×R avec TX le long de leur bord commun T∂X ×R

(ici adG∂X = T∂X∪∂X×∂X×(0, 1) est le groupöıde adiabatique). Nous le recollons

alors avec le groupöıde tangent de l’intérieur de X , TG ◦

X
= T

◦

X ∪
◦

X ×
◦

X × (0, 1] :
TGX := TbX

⋃

0
TG ◦

X
.

Il existe un homomorphisme TGX
h

−→ R
N induit par un plongement de X dans

R
N−1 × R+, tel que ∂X se plonge dans R

N−1 × R+ × {0} et
◦

X se plonge dans
R

N−1 × R
∗
+. Le produit croisé de TGX par h (noté T(GX)h) est un groupöıde

propre dont les groupes d’isotropie sont triviaux, il est donc Morita-équivalent à
son espace d’orbites.

Soit V (
◦

X) le fibré normal de
◦

X dans R
N , et V (∂X) le fibré normal de ∂X dans

R
N−1 ; soit enfin V (X) = V (

◦

X)
⋃

V (∂X). En notant D∂ = V (∂X)×{0}
⊔

R
N−1×

(0, 1) et D◦ = V (
◦

X)×{0}
⊔

R
N×(0, 1] les déformations au cône normal, on construit

les espaces B∂ := V (X)
⋃

∂ D∂ et B := B∂

⋃

◦
D◦.

Proposition 0.1. Le groupöıde (TGX)h est Morita équivalent à l’espace B.

Soit

indX
f = (e1)∗ ◦ (e0)

−1
∗ : K0(TbX) −→ K0(

◦

X ×
◦

X) ≈ Z.

Définition 0.1 (Indice topologique pour une variété à bord). Soit X une variété à
bord. L’indice topologique de X est le morphisme

indX
t : K0(TbX) −→ Z

défini comme la composition des trois morphismes suivants
1
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(1) L’isomorphisme de Connes-Thom CT0 suivi de l’équivalence de Morita
M0 :

K0(TbX)
CT0−→ K0((TbX)h0

)
M0−→ K0(B∂),

où (TbX)h0
est le produit croisé de TbX par h0 (l’homomorphisme h en

t = 0).

(2) Le morphisme indice de l’espace de déformation B : K0(B∂) K0(B)
(e0)∗

≈

oo
(e1)∗

// K0(RN )

(3) Le morphisme de périodicité de Bott : K0(RN )
Bott
−→ Z.

Theorem 0.2. Pour toute variété à bord, on a l’égalité

indX
f = indX

t .

1. Actions of R
N

All the groupoids considered here will be continuous family groupoids [5, 10].
Hence we can consider their convolution and C∗-algebras without any problem.
If G is such a groupoid, we will denote by K0(G) the K-theory group of its C∗-
algebra (unless explicetely written otherwise). This is consistent with the usual
notation when G is a space (a groupoid made only of units). In the sequel, given
a smooth manifold N , we will denote by adGN : TN × {0}

⊔

N × N × R
∗

⇉

N × R, the deformation to normal cone of N in N × N(for complete details about
this deformation functor see [1]). At each time, we will need to restrict it to
some interval, e.g. [0, 1] gives the tangent groupoid, and [0, 1) gives the adiabatic
groupoid.

Let G ⇉ M be a groupoid and h : G → R
N a (smooth or continuous) homo-

morphism of groupoids, (RN as an additive group). Connes defined the semi-direct
product groupoid Gh = G×R

N
⇉ M×R

N ([2], II.5) with structure maps t(γ, X) =
(t(γ), X), s(γ, X) = (s(γ), X +h(γ)) and product (γ, X)◦ (η, X +h(γ)) = (γ ◦η, X)
for composable arrows.

At the level of C∗-algebras, C∗(Gh) can be seen as the crossed product alge-
bra C∗(G) ⋊ R

N where R
N acts on C∗(G) by automorphisms by the formula:

αX(f)(γ) = ei·(X·h(γ))f(γ), ∀f ∈ Cc(G), (see [2], propostion II.5.7 for details). In
particular, in the case N is even, we have a Connes-Thom isomorphism in K-theory

K0(G)
≈
→ K0(Gh) ([2], II.C).

Using this groupoid, Connes gives a conceptual, simple proof of the Atiyah-
Singer Index theorem for closed smooth manifolds. Let M be a smooth manifold,
GM = M × M its groupoid, and consider the tangent groupoid TGM . It is well
known that the index morphism provided by this deformation groupoid is precisely
the analytic index of Atiyah-Singer, [2, 8]. In other words, the analytic index of M
is the morphism

(1) K0(TM)
(e0)

−1

∗ // K0(TGM )
(e1)∗

// K0(M × M) = K0(K (L2(M))) ≈ Z,

where et are the obvious evaluation algebra morphisms at t. As discussed by
Connes, if the groupoids appearing in this interpretation of the index were equiv-
alent to spaces then we would immediately have a geometric interpretation of the
index. Now, M × M is equivalent to a point (hence to a space), but the other
fundamental groupoid playing a role is not, that is, TM is a groupoid whose fibers
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are the groups TxM , which are not equivalent (as groupoids) to a space. The idea
of Connes is to use an appropriate action of the tangent groupoid in some R

N in
order to translate the index (via a Thom isomorphism) in an index associated to a
deformation groupoid which will be equivalent to some space.

2. Groupoids and Manifolds with boundary

Let X be a manifold with boundary ∂X . We denote, as usual,
◦

X the interior
which is a smooth manifold. Let X∂ be the smooth manifold obtained by glueing X
with ∂X×[0, 1) along their common boundary, ∂X ∼ ∂X×{0}. Set TX := TX∂|X ,
and consider the smooth manifold TbX := (adG∂X ×R)

⋃

∂ TX obtained by glueing
adG∂X × R and TX along their common boundary T∂X × R (adG∂X = T∂X ∪
∂X × ∂X × (0, 1) is the adiabatic groupoid). Now, we have a continuous family
groupoid over X∂ : TbX ⇉ X∂ . As a groupoid it is the union of the groupoids
TG∂X × R ⇉ ∂X × [0, 1) and TX ⇉ X . For the topology, it is very easy to see
that all the groupoid structures are compatible with the glueings we considered.

We are going to consider a deformation groupoid TGX ([9]). This will be a
natural generalisation of the Connes tangent groupoid of a smooth manifold, to
the case with boundary. The space of arrows TGX := TbX

⋃

◦

TG ◦

X
is obtained by

glueing at T
◦

X (T
◦

X ×{0} ⊂ TG ◦

X
is closed). The space of units Xg0

:= X∂

⋃

◦

◦

X ×

[0, 1] is obtained by glueing
◦

X ∼
◦

X×{0} (
◦

X×{0} ⊂
◦

X× [0, 1] is closed). Using the

groupoid structures of TbX ⇉ X∂ and of TG ◦

X
⇉

◦

X × [0, 1], we have a continuous

family groupoid TGX ⇉ Xg0
. Again, all the groupoid structures are compatible

with the considered glueings.

To define a homomorphism TGX
h

−→ R
N we will need as in the nonboundary case

an appropiate embedding. It is possible to find an embedding i : X →֒ R
N−1 ×

R+ such that its restrictions to the interior and to the boundary are (smooth

embeddings) of the following form i◦ :
◦

X →֒ R
N−1×R

∗
+ and i∂ : ∂X →֒ R

N−1×{0}.

We define the homomorphism h : TGX → R
N as follows.

(2)

h :















h(x, X, 0) = dxi◦(X) and h(x, y, ǫ) = i◦(x)−i◦(y)
ǫ

on TG ◦

X

h(x, ξ, 0, λ) = (dxi∂(ξ), λ) and h(x, y, ǫ, λ) = ( i∂ (x)−i∂(y)
ǫ

, λ) on TG∂X × R

h(x, X) = dxi◦(X) on T
◦

X

Since all these morphisms are compatible with the glueings, one has:

Proposition 2.1. With the formulas defined above, h : TGX → R
N defines a

homomorphism of continuous family groupoids.

The action of TGX on R
N defined by h is free because i is an immersion. It is

not necessarily proper (in the case of Connes [2] II.5 it is since M was supposed
closed), however we can prove the following:

Proposition 2.2. The groupoid (TGX)h is a proper groupoid with trivial isotropy
groups.

Notice that the groupoid Gh is not the action groupoid (if not, the properness
of the action would be equivalent to the properness of the groupoid). It is very
important that the units of the groupoid Gh be the units of G times R

N .
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As an immediate consequence of the propositions above, the groupoid (TGX)h

is Morita equivalent to its space of orbits. Let us specify this space.

Let V (
◦

X) be the total space of the normal bundle of
◦

X in R
N . Similarly, let

V (∂X) be the total space of the normal bundle of ∂X in R
N−1. Observe that they

have the same fiber vector dimension. In fact, their union V (X) = V (
◦

X)
⋃

V (∂X),
is a vector bundle over X , the normal bundle of X in R

N .
Take D∂ = V (∂X)×{0}

⊔

R
N−1× (0, 1) the deformation to the normal cone as-

sociated to the embedding ∂X
i∂

→֒ R
N−1. We consider the space B∂ := V (X)

⋃

∂ D∂

glued over their common boundary V (∂X) ∼ V (∂X) × {0}. On the other hand,

take D◦ = V (
◦

X)×{0}
⊔

R
N × (0, 1] the deformation to the normal cone associated

to the embedding
◦

X
i◦
→֒ R

N . We consider the space B := B∂

⋃

◦
D◦ glued over

V (
◦

X) by the identity map.

Proposition 2.3. The space of orbits of the groupoid (TGX)h is B.

We can give the explicit homeomorphism. The orbit space of (TGX)h is a quo-
tient of Xg0

×R
N . To define a map Ψ : Xg0

×R
N → B it is enough to define it for

each component of Xg0
. Let

(3)

Ψ :

{

∂X × (0, 1) × R
N−1 × R → R

N−1 × (0, 1)

Ψ(a, t, ξ, λ) := ( i∂ (a)
t

+ ξ, t)

{

∂X × {0} × R
N−1 × R → V (∂X)

Ψ(a, 0, ξ, λ) := (i∂(a), ξ)

{

◦

X × (0, 1] × R
N → R

N × (0, 1]

Ψ(x, t, X) := ( i◦(x)
t

+ X, t)

{

◦

X × {0} × R
N → V (

◦

X)

Ψ(x, 0, X) := (i◦(x), X)

where ξ denotes the class in Va(∂X) := R
N−1/Ti∂(a)∂X (resp. X denotes the class

in Vx(
◦

X) := R
N/Ti◦(x)

◦

X). This gives a continuous map Ψ : Xg0
× R

N → B that

passes to the quotient into a homeomorphism Ψ : (Xg0
× R

N )/ ∼→ B, where
(Xg0

× R
N )/ ∼ is the orbit space of the groupoid (TGX)h.

3. The index theorem for manifolds with boundary

Deformation groupoids induce index morphisms. The groupoid TGX is naturally
parametrized by the closed interval [0, 1]. Its algebra comes equipped with evalua-

tions to the algebra of TbM (at t=0) and to the algebra of
◦

X ×
◦

X (for t 6= 0). We
have a short exact sequence of C∗-algebras

(4) 0 //
C∗(

◦

X ×
◦

X × (0, 1])
// C∗(TGX)

e0 // C∗(TbM) // 0

where the algebra C∗(
◦

X ×
◦

X × (0, 1]) is contractible. Hence applying the K-theory
functor to this sequence we obtain an index morphism

indX
f = (e1)∗ ◦ (e0)

−1
∗ : K0(TbX) −→ K0(

◦

X ×
◦

X) ≈ Z.

The morphism h : TGX → R
N is by definition also parametrized by [0, 1], i.e., we

have morphisms h0 : TbM → R
N and ht :

◦

X×
◦

X → R
N , for t 6= 0. We can consider

the associated groupoids, which satisfy the same properties as in proposition 2.2
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(in fact, for proving such proposition it is better to do it for each t, and to check
all the compatibilities).

Définition 3.1. [Topological index morphism for a manifold with boundary] Let X
be a manifold with boundary. The topological index morphism of X is the morphism

indX
t : K0(TbX) −→ Z

defined (using an embedding as above) as the composition of the following three
morphisms

(1) The Connes-Thom isomorphism CT0 followed by the Morita equivalence
M0:

K0(TbX)
CT0−→ K0((TbX)h0

)
M0−→ K0(B∂)

(2) The index morphism of the deformation space B: K0(B∂) K0(B)
(e0)∗

≈

oo
(e1)∗

// K0(RN )

(3) The usual Bott periodicity morphism: K0(RN )
Bott
−→ Z.

Remark 1. The topological index defined above is a natural generalisation of the
topological index theorem defined by Atiyah-Singer. Indeed, in the boundaryless
case, they coincide. The index of the deformation space B is quite easy to under-
stand because we are dealing now with spaces (as groupoids the product is trivial),
then the group K0(B) is the K-theory of the algebra of continuous functions vanish-
ing at infinity C0(B) and the evaluation maps are completely explicit. In particular,
if we identify B∂ with an open subset of R

N (in the natural way), then the mor-
phism (ii) above correspond to the canonical extension of functions of C0(B∂) to
C0(R

N ).

The following diagram, in which the morphisms CT and M are the Connes-
Thom and Morita isomorphisms respectively, is trivially commutative:

(5) K0(TbX)

≈CT

��

K0(TGX)

≈CT

��

e0

≈

oo
e1 //

K0(
◦

X ×
◦

X)

≈CT

��

K0((TbX)h0
)

≈M

��

K0((TGX)h)

≈M

��

e0

≈

oo
e1 //

K0((
◦

X ×
◦

X))h1
)

≈M

��

K0(B∂) K0(B)
e0

≈

oo
e1 // K0(RN ),

The left vertical line gives the first part of the topological index map. The bottom
line is the morphism induced by the deformation space B. And the right vertical

line is precisely the inverse of the Bott isomorphism Z = K0({pt}) ≈ K0(
◦

X×
◦

X) →
K0(RN ). Since the top line gives indX

f , we obtain the following result:

Theorem 3.1. For any manifold with boundary X, we have the equality of mor-
phisms

indX
f = indX

t .
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4. Perspectives

As discussed in [3, 4, 5], the index map indX
f computes the Fredholm index of a

fully elliptic operator in the b-calculus of Melrose. We shall use the result proven
here to give a formula in relation to that of Atiyah-Patodi-Singer ([6]).
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