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Abstract

This paper proposes a new framework for cooperative games, providing a theo-
retic tool to study the behavior of players during cooperative network formation.
It is based on mathematical relations. Here cooperation is defined as a sup-
portive partnerships represented by a directed network between players (a.k.a.,
hedonic relation). We examine in a specific context, modeled by abstract games
how a change of supports induces a modification of strategic interactions be-
tween players. Two levels of description are considered: the first one describes
the support network formation whereas the second one models the strategic in-
teractions between players. Both are described in a unified formalism, namely
CP game. Stability conditions are stated, emphasizing the connection between
these two levels. We also stress the interaction between updates of supports and
their impact on the evolution of the context.

Key words: Cooperative Game, Network, Stability, Hedonic Relation -
JEL classification codes: C62, C70, C71, C88

1. Introduction

Non cooperative game theory is a broad domain with many applications.
Whereas it is interesting to study fully non-cooperative games, total absence
of cooperation is not complete realistic and one notices that coalitions quickly
emerge in real situations, as this was noticed for long in the two main applica-
tion fields, namely in conflict theory in which people use concepts like coalition
league, alliance, confederacy, blocs, axis etc. or in economy, where one meets
concepts like guild, consortium, syndicate, partnership. In this paper, we revisit,
elaborate and extend mathematical concepts developed to explain and capture
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the notion of cooperation.1. We claim that the notion of cooperation is cen-
tral in setting the basis of game theory for economy as is their creation, their
evolution and the consequences they have on the outcomes of the agents.

In the last two decades, cooperative game theory has been enriched by the
game based network paradigm to model social organizations as a linked struc-
ture in which each link describes a pairwise interaction between players. The
embedding of network theory into game theory refines the view one has of so-
cial organizations through decision making. This emphasizes the relationships
between gain and social network structure. Indeed, cooperation as presented
in networks is in many respects quite different from its usual formulation in
cooperative game theory Von Neumann and Morgenstern (2007). This differ-
ence and the perspective it offers lead to investigate new game theoretic tools
in order to analyze the structural social patterns of cooperation. This leads also
to adapt to networks, game theoretic concepts associated to cooperation like
characteristic functions, preferences and equilibria.

In this article, we propose a relational based framework for games on net-
works which lies on the hypothesis that cooperation is the result of an intri-
cate supportive interaction, a.k.a., hedonic relation formalizing the cooperation
viewed as a collection of supports. The supports are described as a directed net-
work of players in which an arc that links player a to player b means: “player a
supports player b”.

A model of cooperation, of its evolution and of transfer. In what follows, we
investigate the emergence of supports of agents for others. Their aim is to
improve their utility in a certain context which we represent as a game which
evolves with the evolution of supports. Such supports and their consequences are
good models of micro-economic situations or social interactions. The framework
is then designed around two concepts of games: this of context game and this of
relational hedonic game. The former defines the relations between the capacities
and the expectations of players; and the latter, called also HedN game, describes
the evolution of the hedonic relation. This enables us to expose how the relations
of support act on the interactions and conversely how the context affects the
relations of cooperation, in particular their stability.

More precisely, context games interpret formally the support as a transfer
of preferences to supported players leading to adapt their decision to the ex-
pectations of the others. Therefore, the whole context (game) changes because
preferences are updated by player actions, which makes it to evolve due to the
supports of players to others. The strategic interactions of players in the con-
text game are defined abstractly using a network based structure which coalesces
the preference and the feasibility of actions of the players.

At a more abstract level, HedN games model the evolution of the supports
through deviations of hedonic relations represented by a network. A direct arc

1Indeed among the many available terms we have chosen the word cooperation, following
the tradition.
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between two hedonic relations represents a deviation toward a new partnership.
It is worth noticing that both levels of description, namely, context game and

HedN game, use the same network based game formalism (a.k.a., CP games).
HedN game is closed to two game-theoretic fields, namely: this of hedonic

games and this of network formation games. Before setting up the scope of our
work, we review related works on hedonic games and network games, catching
only a glimpse of a fast-growing literature.

Hedonic Games. After pioneer works by Dreze and Greenberg (1980) in the
context of public goods production, hedonic games were formally studied by
Bogomolnaia and Jackson (2002) and Banerjee et al. (2001). A hedonic game
grounds the stability of a set of agents on individual preferences which depend
only on the coalition of agents it contains. In Ballester (2004) the author analy-
ses the complexity of computing hedonic stability and proves it is NP-complete.
Sung and Dimitrov (2007) look at several form of stability concepts through
a taxonomy of their decomposition into primitive concepts, and then focus on
how stability can be derived from those primitive concepts.

Two sorts of deviations are considered: individual and collective. By de-
viation we mean a change of a player partition on a predefined organization
of players called a coalition structure. Informally, the potential deviations to-
ward a preferred coalition are of four sorts: Core deviation: players can freely
assemble whatever the initial coalition structure is; Nash deviation: a player
may individually join another coalition inside the coalition structure provided
she finds this more profitable; Individual deviation: to individually join another
coalition of the coalition structure a player must be welcomed unanimously; and
Contractual Individual deviation: to individually leave a coalition the departure
of the player must be accepted unanimously. The deviation conditions will be
formally defined in the scope of hedonic relations in Section 4.

Network formation games. The network formation games were established by
the seminal works of Myerson (1991); in them, a cooperation is viewed as a
preferential interaction between agents, through preferential links, where agents
can freely choose and change their links. The networks model social ties, trade
exchanges, collusive alliances, and more generally any social interaction based
on a mutual consent. Therefore, some game-theoretic objects, namely charac-
teristic functions, utility functions and allocation rules, have been purposely
redrawn to account for network configurations. Most of the works relies on
undirected networks to figure the underlying symmetry of the mutual consent.
The literature has been recently surveyed in Jackson (2005); van den Nouweland
(2005).

The concept of network stability addresses on the one hand allocation policy
and on the other hand network formation with respect to a connection policy.
In Myerson (1991) agents announce which agent they wish to connect by a link.
A link is formed if both agents agree. Standard game-theoretic equilibria are
used to make predictions. Jackson and Wolinsky (1996) propose the concept of
pairwise stability for social networks. Informally, a pairwise deviation implies
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that both agents in a pair improve their outcome. In Jackson and van den
Nouweland (2005), a stronger condition extends the pairwise stability by en-
abling connected pairwise creations and deletions. Agents carry out a deviation
if the new connection configuration is profitable for the whole group (with re-
spect to the allocation rule). The authors investigate conditions for strongly
stable networks which they apply to convex games. A comparison of the main
concepts of stability can be found in Bloch and Jackson (2007) showing their
relation, and their differences.

HedN game sets a relational algebraic framework that aims at understand-
ing network formation based on supports, leading to coalition formation, as in
network game formation and hedonic game. By contrast, in HedN game, the
evaluation of the modification of the supports/links formation is based on a
context. Stability condition of a hedonic relation will be addressed at two levels
of description: at the level of context game and at the level of HedN game. For
instance, it exhibits an unexpected but sensible cooperative behavior consist-
ing in accumulating potential issues that increase the possibilities of choices for
players. Moreover HedN game introduces different solution concepts to evaluate
the stability of the supports relation. These solutions concepts are inherited to
Hedonic game (Nash, Core, Individual,...). The different concepts of stability
are actually refinements of a generic concept of Nash-like equilibrium, called the
relational abstract Nash equilibrium.

The paper is organized as follows: Section 2 details Conversion Prefer-
ences games (CP games) which is a relation based algebraic framework proposed
by Le Roux et al. (2006). Informally, decision making results in the matching
of feasible actions of the agents and their desire which are both modeled as
mathematical relations between game situations. CP games are used to define
both context games and HedN games. Section 3 defines the principles of hedo-
nic relations. The notion of coalitions, transfer and improvement with respect
to a game context are formally defined. Section 4 investigates the cooperation
design problem based on HedN game. Section 5 determines stability conditions
for HedN games.

Most of the results are based on relational algebra whose most properties
and definitions are presented in Appendix (cf. Table 6).

2. Conversion Preference Game

This section summarizes the essential of CP game theory, a theory which
was proposed by Le Roux et al. (2006) (cf. also Lescanne (2006) for a tutorial)
as an algebraic framework for non-cooperative games. CP games make the no-
tion of relation/interaction central, like in social networks, biological networks,
Internet, etc. For instance, CP games have been successfully applied to biologi-
cal networks to model the dynamic of genetic regulatory networks in Chettaoui
et al. (2006) and metabolic networks in Senachak et al. (2007) to predict molec-
ular signatures of cellular phenotypes that correspond to CP equilibria.

Two kinds of equilibria are defined: the static ones extend strictly traditional
pure Nash equilibria in strategics games, and the dynamic ones are discrete and
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generalize classical Nash equilibria to sets of situations. Informally CP games
address the three basic questions of choice mentioned in the introduction of
Rubinstein (2006) book: 1. What is desirable? 2. What is feasible? 3. How to
choose the most desirable among the feasible? These questions are formally de-
fined by relations on situations, namely conversion for feasibility, preference for
desirability and change of mind for feasible desires. The later is the intersection
of conversion and preference.

2.1. CP Game Definition

Formally a CP game is defined as follows.

Definition 1 (CP Game). A CP game is a 4-uple 〈N , S, (99Ka)a∈N , ( a)a∈N 〉
where:

• N is a set of players or agents;

• S is a set of situations or outcomes;

• for a ∈ N , 99Ka⊆ S × S is the conversion of player a;

• for a ∈ N , a ⊆ S × S is the preference of player a.

When N and S are known we write only 〈(99Ka)a∈N , ( a)a∈N 〉, showing
clearly that for N and S fixed, a game is an element of the set (2S×S ×2S×S)N .

CP games can be illustrated by strategic games, but of course they catch
a wider spectrum of models of game theory. A strategic game can be encoded
into a CP game as follows:

Definition 2 (From Strategic Games to CP Games).
Let G = 〈N , (Ca)a∈N , (ua)a∈N 〉 be a strategic game where N is a set of

agents, Ca is the set of strategies for player a and ua is the utility function for
player a; we define the equivalent CP game Γ = 〈N , S, (99Ka)a∈N , ( a)a∈N 〉
as follows:

• S = ×a∈N Ca, each situation is a n-Cartesian product (where n is the
number of players), namely a strategy profile;

• (sa, s−a) 99Ka (s′a, s−a) ⇔ sa 6= s′a, a player can convert a situation
to another, i.e., a profile to another; the new profile is the same as the
current one except for the strategy of the player.

• s as′ ⇔ ua(s) ≤ ua(s′), the preference is an order on profiles based
on the utility function of each player; a player prefers a situation which
increases her outcome.

Example 1 (Prisoner’s Dilemma). The strategic game for Prisoner’s Dilemma
is defined as follows:

• players are: N = {1, 2};
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Q,Q Q,B

B,Q B,B

Q,Q Q,B

B,Q B,B

conversions preferences

Q,Q Q,B

B,Q B,B

Q,Q Q,B

B,Q B ,B

change of mind global change of mind

Red bold arrows correspond to player 1 conversions and preferences; blue thin
arrows to player 2. Preferences and conversions are distinct relations. The
change-of-mind symbolizes the feasible desires.

Figure 1: Prisoners’ Dilemma CP Game

• strategies are: ({B,Q}, {B,Q}) with B=Betray, Q=Stay Quiet/Silent;

• utility function u is defined as the opposite of the year sentences:

B Q
B −2,−2 0,−10
Q −10, 0 −0.5,−0.5

The CP game of prisoners dilemma is defined as follows:

• N = {1, 2};

• S = {(B,B), (B,Q), (Q,B), (Q,Q)};

• Conversions expresses the ability to change his strategy and preference
tells how an agent compares situations. They are graphically described in
Figure 1. For instance, player 1 reciprocally converts situations (B,Q), (Q,Q)
(i.e., (B,Q) 99K1 (Q,Q), (Q,Q) 99K1 (B,Q)) that corresponds to the
change of her strategy. Moreover, she prefers (B,Q) to (Q,Q) (i.e.,
(B,Q) 1(Q,Q)) but also (Q,Q) to (B,B) (i.e., (Q,Q) 1(B,B)).
However this preference does not coincide with any conversion.

From conversions and preferences, we introduce new relations which define the
enabled preferences when players want to and are able to change a situation to
another. Those relations are called changes of mind.
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Definition 3 (change of mind). The change of mind of player a and the
global change of mind are:

→a , 99Ka ∩ a
Γ−→ ,

⋃

a∈N

→a

Example 2 (Prisoner’s Dilemma change of mind). See the lower part graph
of Figure 1.

2.2. CP Equilibrium

There are two notions of equilibrium, where the first one is an instance of the
second: the first notion corresponds to a stable consensus on a single situation,
namely all the players agree on a game situation and do not want to change
it. This kind of equilibrium is called an abstract Nash equilibrium and extends
strictly the traditional pure Nash equilibrium in strategics games (cf. Le Roux
et al. (2006) for the proof).

The second notion, called CP equilibrium, corresponds to a subset (a cluster)
of situations deemed equivalent by players with regard to change of mind. A
CP equilibrium represents a set of situations which are all “better” than the
other reachable situations. Hence, the players want neither to leave the cluster
nor to select specifically one situation in it, that is to say that players can only
move from one situation to another in the same cluster. Figure 3 describes an
example where both types of equilibrium occur.

A player who has no incentive to leave a situation where she lies is said to be
happy with the situation. Therefore, a situation is an abstract Nash equilibrium
if every player is happy with it. This leads to the formal following definition of
Abstract and CP equilibria:

Definition 4 (Abstract Nash equilibrium).
A situation s in a game Γ = 〈N , S, (99Ka)a∈N , ( a)a∈N 〉 is an abstract

Nash equilibrium, written ANΓ(s), if and only if:

ANΓ(s) , ∀a ∈ N ,∀s′ ∈ S.s 99Ka s′ ∧ s as′ =⇒ s = s′

In other words, ANΓ(s) , ∀s′ ∈ S.s → s′ =⇒ s = s′. Such a situation is
called a sink for → .

Example 3. There is one and only one abstract Nash equilibrium in Prisoner’s
Dilemma (Example 1) namely (B,B) (see also Figure 1).

Definition 5 (CP Equilibrium). Let Γ = 〈N , S, (99Ka)a∈N , ( a)a∈N 〉 be
a game and ⌊s⌋Γ be a cluster of situations defined as follows: ⌊s⌋Γ , {s′ ∈ S |
s →∗ s′ ∧ s′ →∗ s}. ⌊s⌋Γ is a CP equilibrium, written CPΓ(⌊s⌋Γ), if:

CPΓ(⌊s⌋Γ) , AN⌊Γ⌋(⌊s⌋Γ)
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H,H H,T

T,H T,T

H,H H,T

T,H T,T

Conversions Preferences

H,H H,T

T,H T,T

H,H H,T

T,H T,T

change of mind Global change of mind

Figure 2: Matching pennies CP Game

where the reduced game is ⌊Γ⌋ , 〈N , ⌊S⌋Γ, (⌊→a⌋Γ)a∈N , (⌊→a⌋Γ)a∈N 〉; and
⌊→a⌋Γ stands for the quotient relation 2 of the relation →a.

Remark 1. A class of situations, ⌊s⌋Γ, corresponds to a strongly connected
component3 of the global change of mind (→) graph. A CP equilibrium is a
sink in the reduced graph of the relation ⌊→⌋Γ corresponding to a terminal
strongly component in the initial (→) graph, (see Figure 3).

Example 4 (Matching Pennies). Figure 2 represents the conversion, pref-
erence and change-of-mind of the matching pennies game. H stands for Head
and T for Tails. If pennies match then player 1 wins else player 2 wins (pennies
mismatch).

Note that abstract Nash equilibria can be seen as specific CP equilibria,
namely singleton CP equilibria as expressed by the following proposition:

Proposition 1. ANΓ(s) ⇔ CPΓ({s})

2Let →⊆ S × S be a relation and let ⌊S⌋ be a partition of S, the quotient relation ⌊→⌋ is

defined as follows: ⌊s⌋⌊→⌋⌊s′⌋ , ⌊s⌋ 6= ⌊s′⌋ ∧ ∃s1 ∈ ⌊s⌋, ∃s2 ∈ ⌊s′⌋.s1 → s2

3In a directed graph, a strongly connected component (SCC) is a maximal set under inclu-
sion of vertices connected to each other by directed paths. An O(|S|2) complexity algorithm
to compute SCC’s is due to Tarjan (1972).
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Example 5. The example describes a bargaining over the price of an item lead-
ing to a CP equilibrium due to the myopic strategy of the seller. The price of
the item is initially fixed to 4. The buyer and the seller freely modify their offer.
The buyer is willing to pay at most the half of the initial price (i.e., 2) and the
seller will not accept less than the half of the price (i.e., 2). When the seller
sees that the buyer refuses to increase his offer after two successive discounts,
she decides to start again the bargaining at the initial price, 4. Moreover, to
incite the buyer to increase his offer, she augments the price when the difference
between the offers is reduced to 1. Situations correspond to seller/buyer offers
(S = [2, 4] × [0, 2]); conversions describe the variations of offers; and prefer-
ences, the admissible evolution of offers that players concede to conclude the
transaction; thus restricting the variation of offers to 1 unit. The CP Game
converges into two equilibria: either an abstract Nash equilibrium figuring the
end of the bargain, (2, 2), or a CP equilibrium {(4, 2), (3, 2)} corresponding to
an endless change of the selling price justified by the strategy of the seller when
the buyer reaches his highest offer, 2. Figure 3 depicts the change of mind and
the quotient change of mind graphs.

(4, 0) (4, 1) (4, 2)

(3, 0) (3, 1) (3, 2)

(2, 0) (2, 1) (2, 2)

(4, 0)
(3, 0)
(2, 0)

(4, 1)
(3, 1)
(2, 1)

(4, 2)
(3, 2)

(2, 2)

change of mind →Γ change of mind of quotient game ⌊→⌋Γ

Vertical change of minds correspond to the seller and horizontal ones to the
buyer.

Figure 3: Change of mind of the bargaining game and the associated quotient graph.
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3. Hedonic Relation

Hedonic coalitions were formally defined by Bogomolnaia and Jackson (2002)
to describe coalitions in hedonic games. We present here an abstract framework
based on CP games for supportive relation which can be considered at the cross-
roads of hedonic games and game network formations.

A hedonic relation or a cooperation is a total4 relation among players, with
the intended meaning that if C is such a relation a C b means “a supports b”.
The set of all hedonic relations is denoted by IHN (i.e., IHN = {C ∈ 2N×N |⋃

a∈N Ca = N} ). The cardinality of IHN is (2n − 1)n where n is the number of
players. The set of players supported by a is the image of a by C, written a C and
the set of supporters of b is the preimage of b by C written C b. Given a hedonic
relation C, a player a is selfish if a C a and she is altruistic if ∃b ∈ N , b 6= a∧a C b.
The cooperation I : {(a, a) | a ∈ N} is the identity relation5 in this framework;
we call it the pure selfish cooperation. The cooperation U = N × N is the
universal cooperation where anybody supports everybody.

I = {(1, 1), (2, 2) } (S , S)
C1 = {(1, 2), (2, 1) } (A , A)
C2 = {(1, 1), (2, 1) } (S , A)
C3 = {(1, 2), (2, 2) } (A , S)
C4 = {(1, 1), (1, 2), (2, 1) } (AS, A)
C5 = {(1, 2), (2, 1), (2, 2) } (A ,AS)
C6 = {(1, 1), (2, 1), (2, 2) } (S ,AS)
C7 = {(1, 1), (1, 2), (2, 2) } (AS, S)
U = {(1, 1), (1, 2), (2, 1), (2, 2)} (AS,AS)

I is the identity relation and U is the universal relation. The behavior of
players (A = Altruism, S = Selfishness) are described on the right hand side
of the list of hedonic relations.

Table 1: Hedonic relations between two players

Example 6 (Cooperation among two players). For two players there are
nine possible cooperations (cf. Table 3). In I, both agents are selfish whereas,
in C1, both are altruistic. C2 models a situation where player 2 is altruistic
whereas player 1 remains selfish.

Recall that C̃ is the symmetric closure of C (i.e., a C̃ b ⇔ a C b ∨ b C a) and C̃∗ is
the symmetric, reflexive and transitive closure of C. Classically, a cooperation is
used to specify coalitions which represent cooperators meeting in leagues. They
are deduced from the hedonic relation as follows:

4A relation is total if and only if ∀a ∈ N , ∃b ∈ N .aCb. Thus, any player supports somebody
possibly herself only.

5The relation is also known as equality.
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Definition 6 (Coalition). Given a hedonic relation C on N , C ⊆ N is a
coalition induced by C, if it is a maximal set of players connected by C, i.e.,

∀a ∈ N ,∀b ∈ N , a ∈ C ⇒ (a C̃∗ b ⇔ b ∈ C).

Remark 2. In other words, a coalition is a weakly connected component6 of
the hedonic relation graph. Definition 6 is actually an adaptation to relations
of Jackson and van den Nouweland’s definition Jackson and van den Nouweland
(2005).

Example 7. The coalitions associated with the cooperations of (Example 6)

are: {{1}, {2}} for the relation I because Ĩ∗ = I and {{1, 2}} for the others

because C̃i

∗
= U = Ũ∗, 1 ≤ i ≤ 7.

ΠC is the coalition structure which is a partition7 and which we call also the
coalition partition. The class of a for ΠC is written ΠC(a). Note that different
cooperations may share the same coalition structure (Example 7).

Definition 7. ΠC(a) = a C̃∗ = C̃∗ a is the coalition which a belongs to. It is
unique.

3.1. Transfer

After having introduced the abstract framework of hedonic relations, let us
instantiate them in CP games. Supporting involves a transfer of preferences
described by a hedonic relation yielding a cooperative game. A transfer is a
function on games produced by a hedonic relation.

Definition 8 (Transfer). Let GN ,S = (2S×S×2S×S)N be the set of CP games
defined on a set N of agents and a set S of situations. Trans is a function
called transfer :

Trans : IHN → GN ,S → GN ,S

where:

TransC 〈(99Ka)a∈N , ( a)a∈N 〉 = 〈(99Ka)a∈N , (
⋃

b∈a C

b)a∈N 〉

A transfer leaves the conversion untouched and changes the preference using C.
Given a CP game Γ, the games TransC (Γ) when C traverses the set of hedonic
relations are called cooperative games.

Example 8 (Equilibria of cooperative game for Prisoner’s dilemmas).
Figure 4 shows how the change of mind is modified to yield the transfer deduced
from cooperations given in Example 6 for Prisoners’ dilemmas. The CP equi-
libria of the cooperative games are described in Table 2.
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I {(B,B) }
C1 {(Q,Q) }
C2 {(B,Q) }
C3 {(Q,B) }
C4 {(B,Q), (Q,Q) }
C5 {(Q,B), (Q,Q) }
C6 {(B,Q), (B,B) }
C7 {(Q,B), (B,B) }
U {(B,B), (B,Q), (Q,Q), (Q,B)}

Table 2: equilibria of cooperative prisoners’ dilemmas games for two players cooperation.

An important property of a hedonic relation is its effectiveness. Effective-
ness checks whether the cooperation produces an effect on the cooperative game.
For instance, assume the conversion of a supporter nowhere fits with the player
preference with whom she cooperates. In other words, the supporter is unable
to agree with the player preferences on any situation, even though the support
is asserted; we say tha the support is ineffective. In contrast, an effective coop-
eration presumes that the conversion of the supporter fits somewhere with the
preference of the supported player; the transfer is therefore effective.

Definition 9 (Effective Hedonic Relation). Let Γ be a game, let C be a
cooperation, C is effective if and only if:

EffectiveΓ(C) , ∀a ∈ N ,∀b ∈ N . a C b =⇒ 99Ka ∩ b 6= ∅

In the above examples of CP games (prisoner’s dilemma and matching pen-
nies), we have: 99K1 ∩ 1 6= ∅,99K2 ∩ 2 6= ∅,99K1 ∩ 2 6= ∅, and
99K2 ∩ 1 6= ∅. Hence one can build only effective hedonic relations. In
Example 5, a cooperation C with 1C2 or 2C1 cannot be effective.

3.2. Improvement

A rational cooperative commitment requires to evaluate and compare sev-
eral potential cooperations to choose an optimal one. For instance the case of
prisoners’ dilemma, C2, where player 2 is altruistic and player 1 is selfish, leads
to a situation which appears to be the worst for player 2 (cf. Example 6 and
Figure 4). The cooperation improvement is a partial order among cooperations
based on comparisons between game equilibria.

A weak notion of the improvement is expressed in Definition 10. It captures
the expectation of a better profit for the cooperating players which appears to

6A weakly connected component of a directed graph is a maximal set of vertices that are
mutually reachable no matter the direction the edges.

7A partition Π of a set N is a set of non empty pairwise disjoint subsets of N whose union
is N , in other words: ∀P ∈ Π, ∀P ′ ∈ Π.(P ∩ P ′ 6= ∅ ⇔ P = P ′) ∧ N =

⋃
P∈Π

P.
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I C1 C2

B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

C3 C4 C5

B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

C6 C7 U
B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

B,B B,Q

Q,B Q,Q

Figure 4: Changes of mind of the cooperative games for Prisoners’ Dilemma

s1 s2

s3 s4

s1 s2

s3 s4

Conversions Preferences

Figure 5: A CP game with a non effective hedonic relation

be the usual motivation for cooperating decision makers. For instance, with
no surprise, players prefer (Q,Q) to (B,B) even in an equilibrium which con-
tains another situation, like (Q,B) or (B,Q) (cf. Figure 6 and Table 2). The
improvement is first defined on players and then extended to sets of players.

Definition 10 (Cooperation Improvement). The cooperation improvement
is defined as an order between cooperations:

C1 �Γ
a C2 , ∀s ∈ S,CPΓ1

(⌊s⌋Γ1
) ⇒ (∃s′ ∈ S.CPΓ2

(⌊s′⌋Γ2
) =⇒ s ∗

as′)

where Γ1 stands for TransC1
(Γ) and Γ2 stands for TransC2

(Γ). The improve-
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ment extends to a set of players A ⊆ N as follows8:

�Γ
A ,

⋂

a∈A

�Γ
a ≺Γ

A , �Γ
A ∩ 6=

U

C4 C5

C6 C1 C7

C2 I C3

Figure 6: The collective improvement lattice for prisoners’ dilemma (�Γ

{1,2}
).

Notice that the comparison between hedonic relations is established with
respect to the preferences of the initial context game, whereas the equilibria
are considered in new games with the new transferred preferences. Indeed, the
idea behind this is that players expect to find the best improvement of an ini-
tial context game by comparing several potential hedonic relations. Therefore,
comparisons address the rational incentives to cooperate. Thereby, the initial
context game is a common referential for comparison.

A special attention is paid to the evolution of cooperations which preserve
the equilibria because they are always improvements. Intuitively, improvements
offer new situations where everyone is happy while preserving those where ev-
eryone was already happy.

Example 9. In prisoners’ dilemma, cooperation I, C6, C7,U preserve equilibria
whereas cooperations C1, C2, C3, C4, C5 do not preserve them.

Proposition 2. Let Γ be a game, let C1, C2 be two hedonic relations, let Γ1 be
TransC1

(Γ) and Γ2 be TransC2
(Γ), if CPΓ1

(⌊s1⌋Γ1
) and CPΓ2

(⌊s2⌋Γ2
) imply

⌊s1⌋Γ1
⊆ ⌊s2⌋Γ2

then C1 �Γ C2.

Remark 3. Cooperations which preserve equilibria, are denoted by PreservΓ(C),

4. Hedonic Relation Game

When designing a cooperation, one aims at finding a hedonic relation yielding
a transfer of preferences on a game which improves the happiness of players.

8In the rest of the paper Γ will be omitted in no ambiguity occurs.
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Usually, this turns out to be hard. To figure out its computational hardness, we
first focus on a hedonic relation which leads to the grand coalition9. In general,
finding a cooperation which makes everybody happier is intractable (Theorem 1).

Therefore, the practical search for universal happiness, i.e., for a cooperation
which makes all the agents happier has to rely on heuristics. This may be
the reason why in the real world, optimizing cooperation is governed by fair
practices. In order to provide some insights on social practices in cooperation
we propose a framework, called HedN game, where several concepts can be
declined, especially stability.

Cooperation evolves toward stability. By definition, stability of a coopera-
tion comes from a comparison with “neighbors” (i.e., its immediately reachable
cooperations) which depends on the intentions of players. Hence to address
stability we have to address neighborhood and improvement.

Definition 11 (Quest for the Grand Coalition).
Instance: a game Γ.
Question: Does there exist an effective cooperation C whose partition structure
is that of the grand coalition for N and which improves I? Formally:

∃ C ∈ IHN . I �Γ
N C ∧ ΠC = {N} ∧ EffectiveΓ(C).

The Quest for the Grand Coalition is abbreviated as QGC

Theorem 1. QGC is NP-Complete.

Proof. By reduction to the Hamiltonian path problem. (cf. Appendix)

4.1. Definition of Hedonic Relation Games

In a hedonic relation game, deviation proceeds into two ways: acknowledging
the current supports and initiating new supports; in other words there are two
possible actions: either the player quits her coalition to join another or the player
reconsiders the support she gives to her cooperators. Only the first action is
addressed in traditional coalitional and hedonic game theory (cf. Examples 7
and 8).

We distinguish the ability to complete a deviation from the incentive to per-
form it. Traditionally the term deviation refers only to the completion whereas
the improvement which compares the change of mind of the HedN game seems
to be important as well. This identifies which groups of players can update the
cooperation. Hence, the characterization of a deviation neighborhood lies on
the characterization of the set of players whose cooperative interactions may
change. Two cooperations are neighbors with respect to a group of players if
removing this group makes them the same. The deviation which allows defining
neighbors is an equivalence relation, i.e., symmetric transitive and reflexive.

9The grand coalition is the only coalition that meets all the players.
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Definition 12 (Deviation). Given N and A ⊆ A, a deviation ≍A is a subset
of N 2 ×N 2 such that

C ≍A C′ iff C ∩ (Ā × Ā) = C′ ∩ (Ā × Ā)

where Ā is the complement of A in N ;

The deviation neighborhood of C is the equivalence class of C for ≍A.

Definition 13 (Deviation Neighborhood). A deviation neighborhood with
respect to A of a relation C, with respect to a set A ⊆ N , is the set of relations
immediately reachable from C by ≍A, in other words:

{C′ ∈ IHN | C ≍A C′}

Example 10. For two players 1 and 2, the individual deviation is given in
Figure 7. For instance, the deviation neighborhood of C1 is {C1, C2, C4} with
respect to the group {1} and {C1, C3, C4} with respect to the group {2}. By
deviating from C1 to C2 (resp. C1 to C3) player 1 (resp. player 2) remains selfish.

- Individual evolving relation for players 1 and 2 -

I 0 1 2 3 4 5 6 7 8

0 • • • • • •

1 • • •

2 • • •

3 • • • • • •

4 • • •

5 • • • • • •

6 • • • • • •

7 • • • • • •

8 • • • • • •

II 0 1 2 3 4 5 6 7 8

0 • • • • • •

1 • • •

2 • • • • • •

3 • • •

4 • • • • • •

5 • • •

6 • • • • • •

7 • • • • • •

8 • • • • • •

- Transitive reduction -

C4 C1 C5

C6 U C7

C2 I C32 1

1, 2

1, 2 1, 21, 2 1, 2

1 2

The above diagrams describe the individual deviations for groups made of
the first player and the group made of the second player. (Notice that the
deviation is symmetric.) The graph draws the transitive reduction of the
individual relations. Reflexive edges are omitted.

Figure 7: Individual deviation relation for two players.

Stability says that no cooperation in the neighborhood can be an improve-
ment. A principle of stability for hedonic relations can be stated as follows:
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Definition 14 (Stability of Hedonic Relation). Let N be a set of players,
let C ∈ IHN be a cooperation, let α : N → 2N be a function such that a ∈ α(a),
C is stable if and only if:

∀a ∈ N ,∀ C′ ∈ IHN . C ≍α(a) C
′ ∧ C

H

a C′ =⇒ C = C′

where
H

a is a preference relation (see Table 3).

A stable hedonic relation is an abstract Nash equilibrium in a CP game
whose situations are cooperations and conversions are deviations.

Definition 15 (Hedonic Relation Games).
Let N be a set of players, a HedN game is a CP game

〈N , IHN , (≍α(a))a∈N , (
H

a)a∈N 〉

A HeDN game depends on two parameters α and (
H

a)a∈N . Table 3 gives how
those parameters can be instantiated yielding several kinds of HedN games. The
concepts of stability afore mentioned in the introduction (namely: Strong, Core,
Nash, Individual and Contractual individual) correspond to specific classes of
HeDN games. Table 3 gives the deviation and the preference for each of these
classes. In Core and Strong HedN games α is the constant function a 7→ N
whereas for other HedN games, based on an individual deviation, α is the sin-
gleton function a 7→ {a}. The classes of HedN games have stability concepts
that fit with those on relations of Bogomolnaia and Jackson (2002); Banerjee
et al. (2001). The framework is general enough to foresee other possible com-
binations10 which may differ for those described in Table 3. The improving

deviation, that is the change of mind of the HedN game, will be denoted by
H
→.

Name ≍α(a)
H

a

Strong ≍N �N

Core ≍N {C �ΠC′ (a) C′}(C,C′)∈IHN×IHN

Nash ≍a �a

Individual ≍a {C �ΠC′ (a) C′}(C,C′)∈IHN×IHN

Contractual individual ≍a {C �ΠC(a)∪ΠC′ (a) C′}(C,C′)∈IHN×IHN

Table 3: Deviation Relations and Preferences for Classes of HedN game

10As a possibility, let us mention the combination ≍aC∪Ca and �
aC∪Ca

where C is the
current cooperation (i.e., the cooperation in the left hand side).
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Remark 4. An equilibrium found for a specific sort of HedN game can also
be considered as an equilibrium for an other sort of Hedn game. Indeed, using
the same set of players and so the same set of hedonic relations, it is easy to
check that an abstract Nash equilibrium of the Nash HedN game is an abstract
Nash equilibrium of the Individual HedN game. In turn, this equilibrium is an
abstract Nash equilibrium of the Contractual Individual HedN game. We actu-
ally extend to HeDN games a well-known property defined for hedonic games
(cf. Bogomolnaia and Jackson (2002)). The inclusion property of equilibria of a
given type to another can be extended to collective deviation: an abstract Nash
equilibrium of a Core HedN game is also a Strong abstract Nash equilibrium.
Thus, we have the following implications:

ANNash(C) =⇒ ANIndividual(C) =⇒ ANContractual Individual(C) (1)

ANCore(C) =⇒ ANStrong(C) (2)

C4 C1 C5

C6 U C7

C2 I C3

C4 C1 C5

C6 U C7

C2 I C3

Core Strong
C4 C1 C5

C6 U C7

C2 I C3

C4 C1 C5

C6 U C7

C2 I C3

Nash Individual

In the graph the reflexive pairs have been intentionally omitted.

Figure 8: Global change of mind for Core, Strong, Nash and Individual HedN games.
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4.2. A tour of HedN-games: the prisoner’s dilemma

We examine on prisoners’ dilemmas basic properties of the Core, Strong,
Nash and Individual11 classes. This will essentially clarify aspects of HedN
games by deepening specific features of each class and their relations with each
other.

Figure 8 shows the changes-of-mind of the HedN games on prisoner’s dilemma.
In HedN game with collective deviation, that are Core and Strong HedN games,
the change-of-mind is the preference since situations, namely hedonic relations,
are neighbors, with respect to N Indeed, for any cooperation C, C′, we have:
C ≍N C′ (because by definition C ∩ ∅ × ∅ = C′ ∩ ∅ × ∅). Thus, the intersection
of conversions and preferences, namely changes-of-mind, matches preferences.
Therefore, the structure of the HedN game is only governed by the structure of
the improvement. Although the deviation involves potentially all players, this
does not require necessary to update all the elementary relations (namely the
pairs) because the modification can be partial (e.g., C4 ≍N C7). For prison-
ers’ dilemmas, the Core and Strong HedN game improvements refer to a global
consent preventing an unidirectional deviation. For instance, player 1 cannot
deviate from U to C6 by removing her support to player 2 because players 2 finds
this unprofitable. This leads to a single abstract Nash equilibrium U which in
turn induces a CP equilibrium in the context game, thus catching all situations
(cf. Table 2). Hence, the actual choices of the players do not converge to a sta-
ble equilibrium and stay inside a stable coalition structure yielding an internal
conflict.

Nash HedN game characterizes non-cooperative behaviors (cf. Bogomolnaia
and Jackson (2002)). Indeed, players behave selfishly while expecting to be
supported by others. For prisoners’ dilemmas, this fits with the intuition in
favor of a reduced cooperation: a single CP equilibrium emerges precluding the
altruistic cooperation C1 which acts as a repeller.

Individual HedN games produce the same result as Strong or Core HedN
games despite due to a more restrictive deviation neighborhood they remove
some change-of-mind edges. The symmetrical behavior of players in the con-
text game, namely prisoner’s dilemma, induces also a symmetry in the Individ-
ual HedN game. Still, U is an equilibrium and the individual deviation repels
the altruistic cooperation C1.

5. Hedonic Relation Stability Condition

Obviously, checking whether a stable hedonic relation exists is equivalent to
prove the existence of an abstract Nash equilibrium because a stable hedonic
relation is an abstract Nash equilibrium in a HedN game. Conversely, the ex-
istence of non-singleton CP equilibria is a consequence of the absence of Nash

11We will consider Contractual Individual HedN games as a refinement of Individual
HedN games.
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equilibria in HedN games. In literature, what we call a non-singleton CP equi-
librium is a family of cycles in the graph that represents the decision making
process. Jackson and Watts (2002) introduce the notion of closed improving
cycles as the cause of the non-existence of a stable network in network for-
mation games12. An improving path of networks (here, assimilated to hedonic
relations) emerges when individuals update a network because the resulting net-
work improves the current network. An improving cycle implies the presence of
an improving path between any network in the cycle. It is closed if no improving
path escapes from the cycle. In hedonic games, various examples have a cycle
and therefore show that there do not exist stable coalition structures13.

Indeed, the concept of non-singleton CP equilibrium generalizes this of closed
improving cycle in CP games as sink strongly connected components, which can
be seen as a union of collectively closed cycles. Thereby, sufficient conditions of
stability can either be deduced from the existence of an abstract Nash equilib-
rium or from the absence of a non-singleton CP equilibrium.

Stability condition emphasizes properties which explain a social organiza-
tion. The proposed approach is focused on the analysis of the decision making
process where players attempt to make a hedonic relation to evolve for the
better. Here, the stability condition sets a relation between cooperation and
strategic interactions with the context, namely a context game. Therefore, the
approach shifts the standpoint from a comparison of hedonic relations computed
independently toward an evolution of the context game due to the alteration
of the current hedonic relation. The approach contrasts somewhat with the
definitions of the deviation and the improvement, which are both based on a
comparison between two independent relations. We expect to capture some
principles that govern the decision makers when they assess the possibility of
the evolution of supports according to a context of strategic interactions.

5.1. Stability Condition

The transformations of the hedonic relation can be decomposed in two ele-
mentary operations: addition and removal of supports. We examine the trans-
formations of the context game by these elementary operations.

Given an improving deviation between two hedonic relations C
H
→a C′, the

set of added supports is C′ \C whereas the set of removed supports is C \ C′. We
focus on the transformations of a hedonic relation C on the quotient transferred
context game ⌊TransC (Γ)⌋. In fact, the quotient transferred game is deter-
mined by the quotient transferred change of mind. The transformations of the
hedonic relation modify the transferred change of mind. From Definition 8 we
get the change of mind of the game TransC (Γ):

Transferred changes of mind: Let C be a hedonic relation, the changes of

12See Example p. 379 in Jackson (2008)
13See the introductory Example - p. 2 and Game 1 - p. 5 in Banerjee et al. (2001) and

Example 4, p. 209 in Bogomolnaia and Jackson (2002)
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mind after transfer are the changes of mind of the game TransC (Γ), namely

→C
a=99Ka ∩

⋃

b∈aC

b, a ∈ N .

A support added to a hedonic relation may add a pair to the transferred
change of mind, whereas a support removal may induce the removal of a pair
from the transferred change of mind. Figure 9 gives the transformations from
the quotient transferred change of mind. Two cases must be considered: either
the transformation involves non terminal strongly connected components or it
involves only terminal strongly connected components.

Additions to the quotient transferred change of mind. The addition in the change
of mind modifies the structure of the quotient transferred change of mind only
if a new link connects two SCC’s. Indeed a link added inside a SCC does not
modify the quotient change of mind structure. There are two cases: either the
link is a merging link (Figure 9 a,b) or it is a unidirectional link (Figure 9 e,f ).
Whatever the status of the merged SCC’s, this process is always an improvement
(Proposition 2). Therefore, the only condition which prevents occasionally an
improvement is the unidirectional link between two terminal SCC’s. In this case
some equilibria can be lost without any compensation; the preserved equilibria
are not preferred to the lost ones.

Removals to the quotient transferred change of mind. The removal of supports
brings also two structural modifications on the quotient context game: either a
split (Figure 9 c,d) or an unidirectional link (Figure 9 e,f ). The former is an
improvement because it does not change the status of equilibria. They are only
separated. The latter partly splits a SCC into several SCC’s while maintaining
a link between them. Again, the removed equilibria may not be compensated
by the preserved ones.

Context based stability condition. In summary, the alteration of the quotient
transferred change of mind combines three fundamental transformations : merg-
ing, splitting and unidirectional linking. Among these transformations only the
last one may not improve the current equilibria, leading to a stable hedonic rela-
tion. This results either in the addition or the removal of supports. Theorem 2
expresses this conclusion. Informally, it states that the stability of a hedonic
relation C implies that any deviation removes at least one equilibrium which
cannot be compensated by either a novel or a preserved equilibrium.
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- Initial Quotient Transferred change of mind ⌊→C⌋Γ -

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ

⌊s4⌋Γ ⌊s5⌋Γ

- Transformations on the Quotient Transferred change of mind ⌊→C′

⌋Γ -

Non Terminal SCC Terminal SCC

Merging

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ a)

⌊s4⌋Γ ⌊s5⌋Γ

C′

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ b)

⌊s4⌋Γ ⌊s5⌋ΓC′

Splitting

⌊s1

1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ c)

⌊s2

1⌋Γ ⌊s4⌋Γ ⌊s5⌋Γ

C

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ d)

⌊s1

4⌋Γ ⌊s2

4⌋Γ ⌊s5⌋Γ
C

Linking

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ e)

⌊s4⌋Γ ⌊s5⌋Γ

C′

⌊s1⌋Γ ⌊s2⌋Γ ⌊s3⌋Γ f)

⌊s4⌋Γ ⌊s5⌋Γ
C′

Figure 9: Basic Transferred change of mind Transformation
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Theorem 2 (Stability Condition). Let Γ = 〈N , S, (99Ka)a∈N , ( a)a∈N 〉
be a context game, let 〈N , IHN , (≍α(a))a∈N , (�Γ

β(a))a∈N 〉, be a HedN game where

β : N → IHN → IHN → 2
N stands for a function selecting players such that

C
H

a C′ = C �Γ
β(a,C,C′) C

′; a hedonic relation C is stable if:

∀a ∈ N ,∀C′ ∈ IHN ,∃⌊sC⌋ ⊆ S. C ≍α(a) C
′ ∧ CPTransC (Γ)(⌊sC⌋) =⇒

∀⌊sC′⌋ ⊆ S,∃a′ ∈ β(a, C, C′). CPTransC′ (Γ)(⌊sC′⌋) =⇒
¬sC a′sC′ ∧ sC /∈ ⌊sC′⌋.

5.2. Discussion

In this section we discuss specific features of HedN games compared to other
models.

Like Network formation games, HedN games provide a theoretical tool for
studying the structure of social patterns framing the cooperation. Here, the
network is directed and a link represents a support, not a mutual consent,i.e., it
goes in one direction. Instead of defining a utility function that depends on the
network structure, we evaluate the hedonic relation by its application to a con-
text game. This scheme offers a complementary insight in the decision-making
process of cooperation, it is based on the relationship between the cooperation
actions and their concrete expression on a context.

The cooperation viewed as a collection of supports leads apparently to an un-
usual result for prisoners’ dilemmas. Indeed, U is the only stable relation which
can be reached from I as a result of successive merging steps. Whenever players
can increase the set of equilibria they cooperate. If we interpret the increase
as an increase of the players possibilities this is common sense. It is however
worth noticing that this precludes mutual altruism, namely equilibrium C1; rais-
ing the question: why this preclusion? A way of answering this question is to
consider some necessary conditions enforcing C1 to become an equilibrium. Two
kinds of constraints are then brought to the fore: the necessity of exchange or
resource limitation. Even partly, when players cooperate the exchange is em-
bodied by a renouncement to the owned gains. For instance, if we impose that
two hedonic relations are compared only if their sets of equilibria are necessarily
partly disjoint then it is easy to check that C1 is stable for Core and Individual
HedN games. Indeed, the hedonic relations in the deviation neighborhood of
C1 lead to sets of equilibria which include (Q,Q). U also remains stable but
it cannot be reached from the selfish relation I, because there is no improving

deviation path (i.e.,
H
→ ∗) under this condition, which seems implicitly accepted

in other models of cooperation like in repeated games Axelrod and Dion (1988).
An alternative is to limit the support ability for each player. Assuming that

each player can only support one player, the only stable hedonic relation reached
from the selfish relation I, is C1 because only I, C1, C2, C3 fulfill this restriction.

Both conditions exemplified by prisoners’ dilemmas opens to refinement of
the study of support based cooperation.
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6. Conclusion

HedN games are a formal algebraic framework for network based games.
They are based on two concepts: first a network of supportive relations between
players; second a context for supports that realize the desire of players. Both
concepts are based on a common formalism, namely CP games.

HedN games aim at providing a framework to study the structural social
pattern formation. Stability condition analyses characteristic modifications and
support alterations. In particular, it exhibits relations between cooperative
schemes and their consequences to the context of cooperation. The perspectives
of this work is for one hand to refine equilibrium concepts and for the other
hand to determine the structural properties of stable hedonic relation according
to a classification of context games.
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Appendix

Relational Operations

Let R be a relation defined on a set S (i.e., R ⊆ S × S), the operations are
defined in Table 6.

Notation Description Definition
R` the converse R` = {(b, a) | (a, b) ∈ R})
aR the image of a aR = {b | (a, b) ∈ R})
R a the preimage of a R a = aR` = {a | (a, b) ∈ R}
R1 ◦ R2 the composition R1 ◦ R2 = {(a, b) | aR1 ∩ R2b 6= ∅}
R∗ the reflexive transitive

closure
R∗ =

⋃
i≥0 Ri

R̃ the symmetric closure R̃ = R ∪ R`

R|A the restriction to a set A R|A = R ∩ (A × A)

Table 4: Relational Operations

2R stands for the set of sub-relations of R,that is {R′|R′ ⊆ R}.

Proof of the NP-Completeness of QGC problem (Theorem 1)

notation: Let G = 〈V,G〉 be a directed graph, we denote by:

• δ+(a), the set of output neighbors of a, δ+(a) = {x|(a, x) ∈ E}

• δ−(a), the set of input neighbors of a, δ−(a) = {x|(x, a) ∈ E}

The proof proceeds by the reduction of the Hamiltonian path for a graph
G. Without loss of generality, we assume that G has no self loop14 (or reflexive
loop).

Hamiltonian path.(HP). Garey and Johnson (1990)
Instance: A directed graph G = 〈V,E〉 where V is a set of vertices and
E ⊆ V × V a set of edges.
Question: Does it exist a path that visits each vertex exactly once?

Guideline of the proof.

Informally, the vertices of V will be considered as players of game Γ resulting
of the transformation. The proof is based on the following arguments: since I
is not effective for players of V , finding an effective cooperation leads to find
supporters for each player. If a cooperation C improving I exists then the
structure of game Γ enforces each player of V to cooperate with at most one
of its input or output neighbor. Moreover, as the cooperation must form the
grand coalition, it implicitly enforces that any player either cooperates with

14Self loops never belong to the path by definition of an Hamiltonian path. Hence they can
be first removed.
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or has for supporter another one player of V at least. Thus, the cooperation
forms a path that connects all player of V . At least, the transform also imposes
that the cooperation is included to the edges, E. Hence, the Hamiltonian path
P is obtained by intersecting the cooperation with E; (i.e., P = C ∩ E). In
the following, we consider that a path means a path visiting exactly once each
vertex.

QGC Design is in NP.

Given a cooperation C, checking whether C improves I can be performed
in polynomial time by computing the transitive closure of preferences for each
agent and by insuring that each equilibria of game Γ are connected to at least
one equilibrium of TransC (Γ) for each player. The complexity is in O(|S|3).
Determining whether the grand coalition is induced by the cooperation is also in
polynomial time ( O(|N |2)). Hence, QGC is in NP since it exists a polynomial
time algorithm to check whether a cooperation improves I while forming the
grand coalition.

Transform of HP to QGC

From a directed graph G = 〈V,E〉, we define a game Γ = 〈N , S, {99Ka}a∈N , { a}a∈N 〉,
such that:

players of Γ are vertices of G augmented by one additional player ω: N =
V ∪ {ω};

situations corresponds to S = E × {n, e} ∪ {sout, sin}. We denote a situation
of E × {e, n} respectively by se

a,b, s
n
a,b where (a, b) is an edge of E.

conversions are defined as follows:

• for each edge (a, b), we define a conversion of player a from situation
se

a,b to situation sn
a,b;

∀(a, b) ∈ E.se
a,b 99Ka sn

a,b; (3)

• for each edge (a, b), we define a conversion of player ω from sn
a,b to

situation se
a,b,

• for each edge (a, b), we define a conversion of player a from sn
a,b to

situation sout, formally:

∀(a, b) ∈ E.sn
a,b 99Kω se

a,b ∧ sn
a,b 99Ka sout; (4)

• for each edge (a, d), we define a conversion of player a from situation
sn

x,d to situation sin except if x = a, formally:

∀(a, d) ∈ E,∀x ∈ δ−(d) \ a.sn
x,d 99Ka sin; (5)
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• each time it exists a preference ω, a conversion of an unique player
of V is added, formally:

∀s ∈ S,∀s′ ∈ S,∃!x ∈ V.s ωs′ =⇒ s 99Kx s′ (6)

• also define a conversion of ω from sin to sout: sin 99Kω sout;

preferences are defined quite similarly to conversions as follows:

• for each edge (a, b), we define a preference of player b from situation
se

a,b to situation sn
a,b, formally

∀(a, b) ∈ E.se
a,b b sn

a,b; (7)

• for each edge (a, b), we define a preferences of players c which are
output neighbors of a except b from sn

a,b to situation sout, formally:

∀(a, b) ∈ E,∀c ∈ δ+(a) \ b.sn
a,b csout; (8)

• for each vertex d such that |δ−(d)| > 1, we define a preference from
sn

x,d to sin, formally:

∀d ∈ V,∀x ∈ δ−(d).|δ−(d)| > 1 =⇒ sn
x,d dsin; (9)

• a preference of ω between sin and sout is added: sin ωsout

According to this transform, the equilibria of the cooperative game includes
those of the initial game (Proposition 4). Thus, the cooperation preserves equi-
libria. Therefore, by Proposition 2, the cooperation improves I.

Proposition 3. For any cooperation C, sout is an abstract Nash equilibrium.

Proof. No preference and no conversion has sout as a source.

Proposition 4. If an effective cooperation C improves I while forming the
grand coalition then C preserves equilibria.

• First, from rule of the transform, the situations being in equilibria for the
initial game Γ belong to the following set:

E = {se
a,b|(a, b) ∈ E} ∪ {sout}

Indeed, the only change of mind under the assumption that G has no self
loop are only generated by conversions and preferences of ω. They all
converge to situations of E.

• An effective relation forming the grand coalition implies that the player
whose conversions match with preferences of ω (Rule 6) ,x, cooperates with
ω, since it is the only player whose conversion matches with preferences
of ω. If it not the case, player ω is isolated.
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The figure represents the basic steps of the transform according to the left
hand side graph by the right hand side game. For the clarity of the repre-
sentation, preferences and conversion of ω having the same antecedent and
image (i.e., source and sink of edges) are represented by a change of mind.

Figure 10: Basic Steps of the Transform

• Hence, it exists a change of mind sn
a,b →x se

a,b for any edge (a, b) of E.

• As sout is an abstract Nash equilibrium (Proposition 3), sin is not an
equilibrium since we have sin →x sout

• For all pairs of players (a, b) if a does not cooperate with b then se
a,b is an

equilibrium.

• If a cooperates with b then we have: se
a,b →a sn

a,b.

– if sn
a,b is an equilibrium, then also se

a,b, since sn
a,b →x se

a,b.

– if sn
a,b is not an equilibrium then we have sn

a,b →
∗ sout, hence se

a,b →
∗

sout. However, by rules defining preferences, we have:

se
a,b bs

n
a,b c sout =⇒ b 6= c ∨ se

a,b
∗
bsin ωsout.

Thus sout is not preferred to se
a,b which contradicts the hypothesis.

Any situation se
a,b is an equilibrium of the cooperative game, sout is an equilib-

rium whatever the cooperation. Thus E is included to the set of equilibria of the
cooperative game TransC (Γ). Hence, C preserves equilibria.

Since the relation necessarily preserves equilibria, hence improving I, we
now put the focus on conditions to form the grand coalition (Proposition 5).

Proposition 5. Let C be a relation preserving equilibria, we have

ΠC = {N} =⇒ ∀b ∈ V,∃a ∈ V.a C b ∨ b C a
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Proof. by definition of the coalition (Definition 6) players must indirectly co-
operate with another one. Assume that it exists a player x of V such that:

∀a ∈ V.x 6 Ca ∧ a 6 Cx

it can only cooperate with the player ω to form the grand coalition, that in turns
cooperate with a player of V (or has for other supporter). However, except one
specific player x, any other cooperation with ω and a player of V leads to a false
relation.

The following proposition provides the detail of the structure of the expected
cooperation.

Proposition 6. An effective relation preserving equilibria C forms the grand
coalition if and only if it is a relation forming a path between players of V and
it exists a player x of V such that x cooperates with ω.

=⇒ part:

1. each player of V at most cooperates with one another player of V :

PreservΓ(C) =⇒ ∀a ∈ V,∀b ∈ V,∀c ∈ V.aCb =⇒ a 6 Cc

Assume that C improves I and it exists a, b, c such that aCb ∧ aCc. From
rules 3, 4 for conversions and rules 7, 8 for preferences we have:

se
a,b →a sn

a,b →a sout

Since sout is an abstract Nash equilibrium whatever the cooperation (Propo-
sition 3), se

a,b cannot be not an equilibrium which is false since C preserves
equilibria by hypothesis.

2. Each player has at most one player of V as a supporter:

PreservΓ(C) =⇒ ∀x ∈ V,∀a ∈ V,∀d ∈ V.aCd =⇒ x 6 Cd

Assume that C preserves equilibria and it exists x, a, d such that aCx∧dCx.
From rule 5 for conversions and 9 we have

se
a,d →a sn

a,d →a sin →x sout

Since sout is an abstract Nash equilibrium whatever the cooperation (Propo-
sition 3), se

a,b cannot be an equilibrium which is false since C preserves
equilibria by hypothesis.

3. to form the grand coalition, the player x of V fulfilling Rule 6 cooperates
with ω.

From the previous statements, it exists at most one supporter for any player
and at most one input player. Moreover by hypothesis all player must have at
least one player either as a supporter or to cooperate with (Proposition 5), we
deduce that the cooperation forms a path between all players of V and a player
x cooperates with ω.

⇐= part:
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1. Assume that the effective relation forms a path and x cooperates with ω,
by definition of the coalitions (Definition 6), the relation forms the grand
coalition.

2. As the relation forms a path between pairs of V , we cannot have: se
a,b →∗

sout. Hence, we have:

∀s ∈ S.se
a,b → s =⇒ s → se

a,b

since the only situation reached by a change of mind from se
a,b is sn

a,b which
in turns reaches se

a,b (sn
a,b →x sn

a,b) since x cooperates with ω. As sout

is an equilibrium for any relation, we conclude that the equilibria of the
initial game belong to the set of equilibria of the cooperative game. Thus,
the cooperation preserves equilibria.

A relation having a path between players of V and x cooperates with ω implies
that it forms the grand coalition and belong preserves equilibria.

As the previous proposition proves the existence of a path between all players
it can be used to define the Hamiltonian path unlike this path does not belong
to the set of edges. The following proposition demonstrates that this path is
indeed included to the set of edges.

Proposition 7. Let C be an effective relation we have:

∀a ∈ V,∀b ∈ V.(a, b) ∈ C =⇒ (a, b) ∈ E

• By definition of the transform any edge (a, b) is transformed into a con-
version for a and a preference for b between the same situation. Thus we
have:

∀(a, b) ∈ E ⇔ ∃s ∈ S,∃s′ ∈ S.s 99Ka s′ ∧ s bs
′

the following pairs: (se
a,b, s

n
a,b), (s

n
a,b, sout), (s

n
x,b, sin) with x 6= a instantiate

(s, s′).

• Assume that it exists a pair (a, b) ∈ C such that a and b belong to V which
is not an edge of E. According to the previous statement, the conversions
of a and the preferences of b are never connected to the same situations.
Thus, the relation is false that contradicts the assumption concerning the
relation.

Lemma 1 (QGC ⇔ HP ).

Proof.

QGC =⇒ HP .
Let C be an effective improving relation while forming the grand coalition for
a game Γ. By Proposition 4, C preserves equilibria. A relation that preserves
equilibria while forming the grand coalition implies that it exists a path between
all players of V (Proposition 6) that is included in E (Proposition 7). The
Hamiltonian path P of graph G is given by:

P = E ∩ C
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QGC ⇐= HP .
Conversely, assume that it exists an Hamiltonian path P of graph G. let

C = P ∪ {(x, ω)}

where x is the player of V fulfilling Rule 6, be a cooperation applied on game Γ.

• As P is an Hamiltonian path between all players of V and x cooperates
with ω, thus C forms the grand coalition.

• The relation corresponds to an effective relation since the existence of an
edge (a, b) ∈ E implies se

a,b 99Ka sn
a,b ∧ se

a,b bs
n
a,b (Proposition 7, first

item).

• From Proposition 6, an effective relation having a path between players of
V and x cooperating with ω implies that this relation preserves equilibria.
Thus it improves I (Proposition 2), and forms the grand coalition.

Proof of Theorem 1. Since QGC is in NP and HP is reduced to QGC (Lemma 1)
we conclude that QGC is NP complete.

Proof of Proposition 2.

Without loss of generality, we consider that C = I. By definition of the
transitive closure and the preservation property, we have:

∀a ∈ N ,∀s ∈ S.CPΓ(s) =⇒ s ∗
as ∧ CPTransC (Γ)(s)

Thus, I is improved by C by definition.

Proof of Theorem 2

Let us remark first that the stability condition is obviously achieved if no
deviation is possible. Therefore, proof of Theorem 2 will be done by considering
that a deviation exists, that is C ≍α(a) C

′. Two cases are considered:
First, Assume that forall players a′ ∈ β(a, C, C′), it exists an equilibrium,

⌊sC′⌋, such that sC a′sC′ . Then C′ is preferred to hedonic relation C by
Definition 14 and Definition 10. Therefore C is not stable. The other case
concerns the situation where sC ∈ ⌊s′C⌋. In this case ⌊sC⌋ = ⌊s′C⌋ by definition
of quotient class. Hence, sC belongs to a CP equilibrium. Thus, C′ is preferred
to hedonic relation C by Proposition 2. Therefore C is not stable. In both cases,
the stability hypothesis is contradicted.
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