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Global alignment of protein-protein interaction
networks by graph matching methods

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert

Abstract

M otivation:

Aligning protein-protein interaction (PPI) networks offdrent species has drawn a considerable interest recently
This problem is important to investigate evolutionary amed pathways or protein complexes across species, and
to help in the identification of functional orthologs thrduthe detection of conserved interactions. It is however
a difficult combinatorial problem, for which only heuristicethods have been proposed so far.

Results:

We reformulate the PPI alignment as a graph matching pratdechinvestigate how state-of-the-art graph matching
algorithms can be used for that purpose. We differentiateden two alignment problems, depending on whether
strict constraints on protein matches are given, based quesee similarity, or whether the goal is instead to find
an optimal compromise between sequence similarity andaction conservation in the alignment. We propose
new methods for both cases, and assess their performandeaaignment of the yeast and fly PPl networks.
The new methods consistently outperform state-of-thedgdrithms, retrieving in particulaf8% more conserved
interactions than IsoRank for a given level of sequencelaiity.

Availability: http://cbio.ensnp. fr/proj/graphmppi/

Additional data and codes are available upon request.

Contact: j ean- phi | i ppe. vert @ri nes-pari stech.fr

I. INTRODUCTION

PPIs play a central role in most biological processes. Rg@ars have witnessed impressive progresses
towards the elucidation of large-scale PPl networks inoweiorganisms, thanks in particular to the
development of high-throughput experimental techniquesh sas yeast two-hybrid [9] or coimmunopre-
cipitation followed by mass-spectrometry [1]. As the amioofPP1 network data increases, computational
methods to analyze and compare them are also being devedd@ethst pace. In particular, comparative
PPI network analysis across species has already provigeghtful views of similarities and differences
between species at the systemic level [18], [21] and helpettheé identification of functional orthologs
[3].

Comparing PPI networks usually involves some formneftwork alignmenti.e., the identification
of pairs of homologous proteins from two different organssrauch that PPIs are conserved between
matched pairs. The rationale behind this notion is that @#epraand its functional orthologs are likely to
interact with proteins in their respective network that #remselves functional orthologs. Hence, while
direct sequence homology alone is often not sufficient tatilefunctional orthologs within paralogous
families [20], the use of PPI information can help in the dibgguation of functional orthologs within
clusters of homologous sequences, such as those produtiee Inparanoid algorithm [17]. This approach
has been investigated in particular by [3]. Converselywngt alignment can also be a valuable approach
to validate PPI conserved across multiple species andtdetetutionary conserved pathways or protein
complexes [13], [18].
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Several methods have been proposed to perfooal network alignment (LNA) of PPI networks, i.e.,
to identify subsets of matching pairs of proteins with cawed subgraphs of interactions. These methods
include PathBLAST [13], [14] and NetworkBLAST [18], whicldapt the ideas of the BLAST algorithm
to the search for local alignments between graphs, the rmethdl5], inspired by biological models
of deletion and duplication, Graemlin [10], which uses rats of modules to infer the alignment, or
the Bayesian approach of [4]. Less attention has been paidetproblem ofglobal network alignment
(GNA), i.e., the search for a global correspondence betweest or all vertices of two networks which
again matches similar proteins and leads to conserveduatitens. Notable exceptions include the Markov
random field (MRF) based method of [3] and the IsoRank allgorif19] which formulates the problem
as an eigenvalue problem.

While LNA procedures can detect multiple, unrelated madchegions between networks, and can
in particular match a given protein of a network to severaltg@ns of the other network in different
local matchings, GNA seeks the best consistent matchingsa@ll nodes simultaneously. This can be a
desirable property for many applications, such as funati@mtholog identification. On the other hand,
from a computational point of view, GNA is arguably more diffit than LNA since it must find a solution
among all possible global matchings. In fact, as we explaiowg, it is natural to reformulate GNA as
weighted graph matching problem, a problem for which no poigial-time algorithm is known. Solving
the general GNA problem therefore must involve some sortppir@ximate or heuristic method, such as
IsoRank.

Following this line of thought, we propose here to formulatelicitty GNA as a graph matching
problem, and investigate the use of modern state-of-thexarct and approximate methods to solve it.
While no exact solution of the graph matching optimizatisoljpem can be found in general, we show
that in certain cases, if “enough constraints” are put onpibgsible protein associations, and if the PPI
networks are “not too dense” (these notions being rigosodsifined in Sectiory T-B), then an exact
solution can be found efficiently by a new message-passiggriim. Interestingly, this case arises in
particular in the functional ortholog detection problenivieen yeast and fly investigated by [3], where
matching pairs are constrained to belong to clusters ofeprstproduced by the Inparanoid algorithm
and the PPI networks of both species are not too dense. Oae tiata, we are therefore able to find a
matching which conserves more interactions than the swoisitfound by MRF [3] as well as a version
of IsoRank adapted to this situation [19], and we are in fatagn that our solution is optimal in the
sense that it produces the largest possible number of cmtsénteractions. Interestingly, the resulting
alignment retrieved 3% more HomoloGene pairs than the alignments of MRF &¥tdmore than that
of IsoRank, suggesting that maximizing the number of caregkinteractions indeed improves functional
orthology disambiguation. When the GNA is more complex,,aratched pairs are not limited to belong
to the same Inparanoid clusters, or the PPI networks have gdges, then our message-passing algorithm
can not be used and the optimal matching can not be found somehle time anymore. In that case we
propose to use a recent state-of-the-art approximate mwefloo graph matching [26], which tracks a path
of solutions for a family of relaxed problems, as well as a hfaster and more direct gradient-based
method, which bears similarities with the IsoRank methoike iIsoRank, these methods have a free
parameter to balance the trade-off between matching simitaeins, on the one hand, and producing an
alignment with many conserved interactions, on the othedh¥/e test them on the global unconstrained
alignment of the fly and yeast networks, and show that for @&rgikevel of mean sequence similarity
between matched proteins, our new method retri&é6 more conserved interactions than IsoRank.

[I. CONSTRAINED AND BALANCED GNA PROBLEMS

In this section we set the notations and formalize two vasiar the GNA problems. We represent a
PPI network describing the interactions amakgproteins of an organism as an undirected simple graph
G = (Vg, Eg), whereVi = (vq,...,vy) is a finite set of N vertices representing th& proteins, and
Eq C Vg x Vg is the set of edges representing the pairs of interactingeim& Each such graph (or



network) can equivalently be represented by a symmeéifriec N adjacency matrixd, where[Aq|;; =
[Ag]; = 1 if protein v; interacts with proteiny; and0 otherwise.

Given two graphgs and H representing the PPI networks of two species, the GNA prolide roughly
speaking, to find a correspondence between the vertic€samid the vertices off which matches similar
proteins and enforces as much as possible the conservdtiateactions between matched pairs in the
two graphs. To formalize this, let us assume thatnd H have the same numbéY of vertices, and
that we are looking for a bijection between the verticeszond the vertices of. Although this may
sound at first sight a strong assumption, given that PPl rm&svosually do not have the same size,
and that we may not want to match all proteins of each netwaooky limitations can be addressed by
adding dummy nodes (with no connection) to each graph inramensure that they finally have the
same size. In a complete matching of such graphs with dumrdgsjanatching a protein to a dummy
node simply means that in the GNA the protein is not matclieénd H being assumed to have the
same number of vertices, a matching of their vertices is rnowly a permutationr of {1,..., N} which
associates the-th vertex of H with the 7(i)-th vertex of G. Equivalently, the permutatiom can be
represented by & x N permutation matrixP, i.e., a binary matrix whosg, j)-th entry is equal ta if
and only if 7(i) = j (that is, when the-th vertex of H is matched to thg-th vertex ofG). We denote
by P = {P € {0,1}¥ : Ply = 1y, PT1xy = 1y} the set of permutation matrices, wherg is the
N-dimensional vectors whose entries are all equal.to

The number of interactions conserved by a permutatiois the number of pairgi, j) which are
connected ind, and such that their corresponding vertiag¢s) and(j) are also connected ifd. Let us
denote byJ(P) the number of such interactions conserved by the permuataticoded in the permutation
matrix P. In order to expresg(P), we can observe that if we apply the permutation encoded lig
the vertices off{, we obtain a new graph isomorphic t which we denote byP(H). It is easy to see
that the adjacency matrix of the permuted gragh,, is simply obtained fromAy by the equality
Apry = PAgPT [22). As a result,J(P) is simply obtained as half the number of entries which are
simultaneously equal tb in both binary matricesl; and PAy; P (each conserved interaction results in
two identical entries, by symmetry of the adjacency mas)icelence we obtain the following expression
for J(P):

al 1
J(P) =5 D _[Acl[PAnP )y = Str(AGPAyPT). @)

i,j=1

—_

Besides the number of conserved interactions, a good GNAIldghoatch proteins with similar se-

guences. We consider here two possible formulations ofdbjsctive.

« Constrained GNAHere we assume that a pre-processing of the protein seggidras produced a
set of candidate matched pairs C Vi x Vg, and we simply wish to disambiguate the matching
using PPI information, if some proteins have several catdignatchings. This is for example the
formulation proposed by [3], where a first clustering of albieins sequences is performed to define
a collection of protein clusters with the Inparanoid altfon, and the pairs matched between the
yeast and fly proteome are constrained to belong to the samteclSuch constraints can be directly
encoded as constraints over the permutation matriby imposing?;; = 0 if the i-th vertex of the
first graph and thg-th vertex of the second graph are not allowed to match. Wehane looking for
a solution in the set of matrice8, = {P € P : V(4,5) € [1, N]*\ A4, P;; = 0}, and it is then natural
to look for the permutation compatible with the constranish the largest number of conserved
interactions, i.e., to solve:

max J(P). 2)

. Balanced GNAA interesting property of constrained GNA is that, by rddgcthe search space to
P4, it can result in a tractable optimization problem (as shdamexample in Sectioff TIT-B). On
the other hand, in some cases one may want to accept matobivwgdn less similar vertices if it
leads to an important increase in the number of conservedaictions. In other words, one would



like to be able to automaticallipalancethe matching of similar vertices with the conservation of
interactions, as advocated by [19] and implemented by IskREhis can be formalized by assuming
that a/V x N matrix of similarities between vertic&s is given (e.g., derived from pairwise sequence
similarity scores), and by trying to maximize the total damty between matched paif:;; denoting
the similarity between the-th vertex of G and thej-th vertex of H, the total similarity between
pairs matched by a permutation matrixis simply

N
S(P) = Z Cr(iyi = tr (PC) . (3)

In order to find a balance between matching similar pairg@af( P)) and having many conserved
interactions (large/(P)), we propose to consider the following optimization probie

max \J(P) + (1= A)S(P), (4)

where\ € [0, 1] controls the trade-off between both objectives= 1 corresponds to the maximization

of J(P) only, i.e., to find a good topological matching of the grapidependently of the similarity

between matched pairs, while= 0 amounts to focus only on the similarity between proteins and

finding a matching which maximized the mean sequence sityijlavithout using PPI information.
When\ > 0, the balanced GNA problerf (4) is equivalent to a generallgraptching problem, discussed
in Section[TM-A, which is known to be computationally inttable in general. The constrained GNA (2)
can be seen as a particular case of the balanced GNA, by tdiergimilarity function equal t0 between
two vertices allowed to match andoo for two vertices not allowed to match. Indeed, in that cdde (4
is equivalent to minimizing/(P) over the set of matrice® for which S(P) is finite, that is exactly the
setP4 of (@B). While indeed general graph matching methods to syean be applied to solv§] (2), we
show in the next Section that in some cases there exists despofynomial-time algorithm to solvg](2)
directly even for large non-sparse graphs.

[Il. M ETHODS

In this section we present methods to solve both the constlaGNA problem[(2) and the balanced
GNA problem [#). Since any algorithm to solve the balancedAGixbblem can also solve the constrained
GNA, as explained in the previous section, we start by desgimethods to solve the balanced GNA
problem.

A. Algorithms for the balanced GNA problem

The balanced GNA problen](4) is a general graph matchingl@nmobwhich is known to be a difficult
combinatorial problem. While some methods based on inceramnumeration may be applied to search
for an exact optimal solution in the case of small or sparaplug, only approximate algorithms that usually
find non-optimal solutions but are more scalable can be usethfge non-sparse graph matching. Many
such approximate algorithms have been proposed, seelegetiew of [7]. They include in particular
spectral methods [6], [19], [22], or methods based on a atiam of the optimization problenf](4) [2],
[11]. They differ mainly on their scalability, and on the acacy of the solution found. For example, a
comparison of several such methods was carried out recg@@]y [27].

Based on these observation, we propose here to use sttite-aft graph matching methods to balanced
GNA for PPI networks. In particular we focus on the PATH algon [26], which was shown to
provide state-of-the-art performance in various graphchiagg benchmark. We also propose a new and
simpler gradient ascent method, similar in spirit to the doeted Assignment (GA) algorithm [11]. As
a benchmark, we consider the IsoRank method, which can hmglthof as a particular spectral method
for graph alignment, and which is currently the method ofichdor balanced GNA of PPl networks.
We now briefly describe these methods.



« PATH methodThe PATH algorithm is based on two relaxations [@f (4), onecewa and one convex,
over the set of doubly stochastic matrices [26]. The methadssby solving the convex relaxation,
and then iteratively solves a linear combination of the esxn&nd concave relaxations by gradually
increasing the weight of the concave relaxation and folguihe path of solutions thus created. It
finishes when the a solution reaches a corner of the set oflylstdchastic matrices, i.e., when the
solution is a permutation matrix i?. On several benchmarks, the PATH method was shown to be
state-of-the-art in accuracy, and can easily process grapin a few thousands vertices in a few
hours on a modern desktop computer.

. GA methodWe propose a new, simple gradient method based on a relax@iti}) over the set of
doubly stochastic matrices. Although the function to be imazed is not concave (because of the
term J(P)), we simply start from an initial solution and iterativelljanse a new permutation matrix
in the direction of the gradient of the objective functiorhi§ approach may be relevant if we can
start from a “good” initial solution, i.e., if we solve a cdarained GNA [R) where the constraints are
strong enough. The gradient 61 P) in @) is equal toS, the gradient of/(P) in () at a matrix
P, is equal toALP,A;. Hence we propose to iteratively update the permutationixnfatilowing
the rule P, < argmaxpep tr ((NALP, Ay + (1 — A\)C]P), which can be found efficiently by the
Hungarian algorithm [16].

« IsoRank methodrlhe idea of the IsoRank algorithm is to use the following reiwe formula [19]

Z Z ||N( )|R(U,U), iEVG, jEVH, (5)

veEN (i) ueN (j)

where N (i) denotes the set of neighbors ©fl; denotes the set of vertices of graghand element
R(i, j) represents the similarity between verterf graphG and vertex; of graph /. In the case

of PPl networks it represents the “likelihood” that proteinand j are functional orthologs. The
recursive formula says that the moieand j have similar neighbors, the greater is the similarity
measure betweenand ;. To estimateR, [19] propose to use the power method to iteratively update
R according to:

R «— AR/||AR|[, (6)
where A is the N? x N? matrix defined as:
.. 1
Al ) = I

To take into account the information on protein sequencdlaiities encoded by matrixC, the
following modification of [b) is used

R= MR+ (1-\C, )

where \ has the same interpretation as fh (4).

B. Algorithms for the constrained GNA problem

As explained in Sectiof]ll, all methods for solving the baka GNA problem[{4) can also be used to
solve the constrained GNA problefd (2), by using a particsilianilarity function to enforce the constraints.
Hence a first series of methods to solyg (2) are the constramesion of IsoRank, GA and PATH,
described in the previous section. In addition to theseethmethods, we consider two additional approaches
specifically dedicated to the constrained GNA problem: trerkdv random field (MRF) method of [3],
and a new method based on message passing (MP) which we ertupiad the global optimum of](2)
when the graphs are not too dense.

« MRF methodTo solve ambiguous assignments in Inparanoid clustersmiatte than two proteins, [3]

propose to use the information on protein interactions, iosing the assignments which maximize



the number of conserved interactions between two spec@sthit purpose they use the following
probabilistic model. They associate a binary variah)eo each possible protein ortholog paft, v;)
(here f; andy; denote Fly and Yeast proteins from the same Inparanoidesystherez;; = 1 means
that f; andy; are functional orthologs. Two variables andz;, are connected if at least one pair of
proteins(f;, fx) or (y;,y:) is connected in its PPI network, and the other one has a conmeighbor
(or is also connected).L€Y (ij) denote the set of indices connected:fp Then the probability law
of z;; is modeled by:

1
lterp{-a—p D hten(ij) 2ht}

The interpretation of this formula is that; has more chances to be equal to one when the number
of neighbors equal to one is large. When there are only twéeprs in clusterf; and y; then by
definition z;; = 1. If f; andy; are from different clusters then also by definitiep = 0. The
parametersy and 3 are estimated on the basis of training data, then a GibbsIsamgp performed

to define the value of unknown variables z on the test set. W& te [3] for more details on this
method.

« MP method for exact optimizatiorlthough intractable in general, we now show that consé&din
GNA problem [R) can be solved exactly and efficiently in sorases, and propose a new, efficient
algorithm based on message passing for that purpose. Mesely, we consider the situation
where the set of proteins have been clustered into a finitefsetgroupscy, ..., c., which form a
partition of Vi; UVy, and where only proteins within the same group can be mdichidds situation,
illustrated in Figure]1, represents for example the probievestigated by [3], where proteins of
two organisms are first clustered by the Inparanoid algarjtand functional orthologs are searched
within clusters. Let us now consider theclusters as vertices of a graph, and connect two clusters

(8)

P(zijlznj))

Cluster 1 Cluster 2

Cluster 3

PPl network 1

PPl network 2

Fig. 1. Inparanoid cluster network. Two clusters are cotetkedf there exist at least one pair of proteins in one clysted one pair of
proteins in the other cluster, which may produce a conseinvdaction.

(f1,y1) ~ (f5,y3)

¢; andc; if they contain proteins of both organisms that interacthieirt respective PPI network. For
example, in Figur¢]1s; andc, are connected becausgecontainsf; from the first organism ang,
from the second organism, which interact wjthandy; respectively, both ir,. The reason why we
introduce this graph of clusters is that it allows to decosgthe choice of a global matchidginto
local matchings within each cluster, the dependency betwiee local choices being described by
the edges of the graph. For example, if a cluster is isoldbesh the choice of the matching within
this cluster has no influence over the total number of comsemteractions apart from interactions
within this cluster. In other words, the local matching wittan isolated cluster can be optimized
independently from the others. On the other hand, if a dusteonnected to other clusters, then
changing the matching within this cluster can affect thaltotmber of interactions between proteins
of different clusters, and the matchings between connedigsters must be chosen synchronously
to optimize the total number of conserved interactions.

Technically, we add dummy nodes in each cluster to obtairséimee number of proteins of each species in each cluster.



More formally, if we denote byP,, ..., P, the permutationP restricted to thel clusters, then an
important property is that the total number of interacticoaserved byP decomposes as:

TPy =D J(P)+ 3 H(PFy)., 9

i~vj

where J; (P;) denotes the number of conserved interactions withi,(F;, P;) denotes the number
of conserved interactions betweenandc;, and: ~ j means that; is connected ta;.

While maximizing [P) remains a challenging optimizatiorlpiem in general, it may be optimized
efficiently if the graph of clusters has a particular struefie.g., if many nodes are isolated or if it
contains no loop. For example, Figyde 2(a) shows the graptiusters for the problem of fly/yeast
protein alignment investigated by [3]. Interestingly,stigraph has no loop. In this case, we can
maximize [P) by a particular Message Passing (MP) algorigh®). The idea of the MP algorithm
is similar to the Viterbi algorithm [23] widely used to optire functions over linear graphs, such
as finding the most likely set of hidden states in a hidden arkodel [8]. Here we describe how
to apply MP on a graph without loop to optimizg (9). First, watenthat each of the permutations
involving proteins within a connected component of the grapn be optimized independently from
each other, so we just consider a single connected compuigaut loop, i.e., a tred of clusters.
We choose a vertex of that we call root, which allows to define the directions upvads the root)
or down (away from the root) when moving on edges of the gr&ath cluster; except the root
has a unique parent cluster, namely, the connected clustieidirection of the root. The clusters
connected to a cluster which are not its parent are called its children and are dehoi(c). To
each node: of 7, we associate a vectat, € R”-, whereP, is the set of possible local matchings
within ¢, i.e., the set of possibl&,’s. The MP algorithm to solve[|9) is then a recursive alganith
which starts from the leaves up to the root in a first phase ‘fivavard” step) to find the optimal
value of the functional, and then downwards from the rootet@vés (the “backward” step) to find
the solution which achieves the optimal value. The forwdep @t node: solves, for anyP,. € P,:

uc(P.) = Jy(P.) + max [uy(Pw) + Jo(P., P)] . (10)

At the end of the forward step, the maximum value of the vectaat the root is equal to the
maximal value of/(P), and the local permutation which achieves this maximumesaptimal local
permutation. In the backward step, the optimal local maiglof the children of a cluster are obtained
by recovering the local permutatiori3. which achieved the optimal value ifi {10) for the optimal
permutation of the parent cluster.

We note that it is also possible to use the MP algorithm onlggdpat are not trees, but which have
a small tree-width value [12]. Roughly speaking it meang tha graph of clusters is not a tree, we
may transform it into a tree by grouping together clustershé size of these cluster groups is not
very large, then the exact optimization may still be feasibl

V. DATA

In order to compare the performance of the different grapkchiiag methods, we performed several
experiments aiming at aligning the PPI networks of the y8astrevisiaand of the flyD. melanogaster
as already investigated by [3] and [19]. We downloaded aleseary data from the supplementary materials
of [3]f. The yeast PPl network contains 4,389 proteins and 14,3lk@ipa interactions, while the fly
network contains 7,038 proteins and 20,720 interactionaddition we also retrieved the set of Inparanoid
clusters used by [3], consisting in 2,244 cluster coverif@82 yeast proteins and 3,881 fly proteins. The
majority of these clusters (1,552) contains only two prdefone from fly, one from yeast), while the

2htt p: // www. cel | ci rcui ts. or g/ Bandyopadhyay2006http://www.cellcircuits.org/Bandyopadhyay2006



remaining 692 cluster contain at least two proteins fromsidi@e species and one from the other species.
Those 692 clusters are called ambiguous in [3], since theyati@llow to associate a single protein from
the fly to a single protein from the yeast as functional oxgel

V. RESULTS

We wish to investigate two different questions: (i) comptre ability of the different methods to find
alignment with many conserved interactions, and (ii) assdsether conserving more interactions really
helps in retrieving more functional orthologs. While thestfiquestion can be answered without ambiguity
by counting the number of conserved interactions found leydifferent methods in different settings, the
second one, as we will see, remains difficult to answer dubdddack of large-scale and curated ground
truth.

We performed three sets of experiments, in order to comparelifferent methods in different settings
and to test different formulations of the GNA problem. In firet set of experiments, we reproduce the
problem studied by [3], where the goal is to disambiguatetional orthologs within Inparanoid clusters
using PPI information. This is a particular instance of tbastrained GNA problem which turns out to
be amenable to exact optimization by the MP method. In therskset of experiments, we generalize
the benchmark problem of [3] by adding second-order intemas between proteins in order to account
for possible noise in the interaction data or protein d@gtians. In that case we are again confronted
with a constrained GNA problem, but the increased numbentefractions makes its exact minimization
intractable and only approximate methods for constrainBidh Gan be applied. Finally, in a third set of
experiments, we discard the knowledge of Inparanoid disisted directly search a global alignment which
balances the similarity between aligned proteins and thebewu of conserved interactions. This is then
an instance of the balanced GNA problem. In all cases, wesaghe number of conserved interactions
captured by the different methods, as an indicator of how tely solve the GNA problem. Furthermore,
since the final objective of PPI network alignment is to mdtahctional orthologs, we assess for each
method how many matched pairs are present in the HomoloGatadakse, a set of curated functional
orthologous pairs based on the comparison of the proteireisas/the DNA sequence which we consider
here as a "gold standard” for disambiguation purpose.

A. Disambiguation of functional orthologs within Inparadalusters

The goal of this experiment is to use PPl GNA to select fumeticorthologs between the yeast and
the fly for proteins with several homologs. More preciselypaoteins sequences are first clustered into
groups by the Inparanoid algorithm [5], and only proteinsirthe same cluster can be considered as
protein functional orthologs. Then each GNA algorithmdrte find an association of protein functional
orthologs which maximizes the total number of conserveeratdtions. In other words, we try to solve the
constrained GNA[{2), where the constraints are providedhieylhparanoid clusters. A priori, the most
natural definition of “conserved interaction” for the aligant(f; — y;) and (f, — y») (where f; and f;
are fly’s proteins, ang; andy, are yeast’s proteins) is the following:

1) f; interacts withf,, andy; interacts withy, in their respective PPI networks.

However, this strict notion of conserved interaction letala very small number of potentially conserved
interactions. To have more potential interactions, [3]egahized this definition by adding the following two
cases, which additionally allow to account for possibleldagion or fusion events in the two proteomes:

2) fi interacts withf; in the fly PPI network, ang; has a common neighbor wity in the yeast PPI
networks;
3) f1 has a common neighbor witfy in the fly PPl network, ang; interacts withy, in the yeast PPI
networks.
To be able to compare the results of different algorithms, use this exact definition of conserved
interactions (cases 1-3). FigUile 2(a) presents the netafdikparanoid clusters (as explained in Fig{ire 1)



TABLE |
PERFORMANCE OF THE DIFFERENT METHODS FOR CONSTRAINEBNA ON THE BENCHMARK OF[3]. EACH ALGORITHM IS EVALUATED
BY THE NUMBER OF CONSERVED INTERACTIONSNUMBER OF RECOVEREDHOMOLOGENE PAIRS AND THE RUNNING TIME THE
NUMBER OF RECOVEREDHOMOLOGENE PAIRS IS COUNTED ONLY IN121 AMBIGUOUS INPARANOID CLUSTERS WHEREP PIDATA MAY

BE USED.
Algorithm MP | MRF | IsoRank| GA | PATH
Number of conserved interactions | 238 | 233 228 238 238
Number of HomoloGene pairs (121 cl}) 41 36 39 41 41
Timing(sec) 1-2 10 1-2 1-2 | 80-100

used in [3], where only non-isolated ambiguous clusterssamvn. As can be easily seen, this network
which contains 121 ambiguous clusters has no loop, whicHi@mphat we can use the MP method to
find the optimal alignment with the largest number of conedrinteractions. Although we know how to

(b)

Fig. 2. Inparanoid cluster networks. (a) The case of the limack data used in [3]. (b) The case of generalized intenast(1-4), see text.

solve the problem exactly in this case with the MP methods instructive to compare also the results
of the different approximate algorithms for constrainedAzNNamely, MRF and the constrained versions
of IsoRank, GA and PATH. To construct the alignment made leyNiRF method [3], we downloaded

the result fil§ with probabilities for all possible protein associatiomdawe extracted the one-to-one
alignment by taking the most probable pairs. The resultiefRATH, GA and IsoRank algorithms were
obtained with the GraphM package [25].

Table[] presents the results of all algorithms on this beraokmin terms of conserved interactions,
number of HomoloGene pairs, and running time. We know thatMi® algorithm produces the maximal
possible value (238 in this case), and an interesting observis that the GA and the PATH algorithms
reach this maximum, while the MRF (233) and the IsoRank (2#8prithms do not. All methods are
comparable in terms of CPU time, except for MRF which is onéeorof magnitude slower on this
dataset. Although the differences in number are slighthwitly 2% more conserved interactions for
MP/GA/PATH than for MRF, andi% more than for IsoRank, this nevertheless confirms that ewvethie
relatively easy optimization problem neither MRF nor IsaRdinds the optimal solution, which can be
found by other methods at no additional computational cost.

Shttp://www.cellcircuits.org/Bandyopadhyay2006/dBeridyopadhyayesults.xls
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Cluster: 77 Cluster: 1476 ;:'II:_Ste” ];::‘ 28b
MP: eflb/tef2 MP: tsr/cofli~-~, MRE: :::2%;:5:2%
Cluster: 16 MRF: eflb/tef2 MRF: 1sr/cof1 \‘ ;
MP: Ef2b/Eft2 o ,

\o
v

MRF: Ef2b/Eft2
: Cluster: 1459

Cluster: 604 \ .
Cluster: 765 MP: ena/lasl7

N MP: CG5061/srv2 MRF: ena/lasl17

MP: vha36/vmag MRF: CG5061/srv2
MRF: vha36/vma8

Cluster: 126
MP: vhal00-2/vphl
MRF: vhal00-2/vphl

1
Cluster: 713
MP: ago/cdc4
MRF: ago/cdc4

Cluster: 1450
MP: rplp2/rpp2b
MREF: rplp2/rpp2b

(@) (b)

Fig. 3. lllustration of difference between MRF and MP aligsmh Each box represents an Inparanoid cluster, white edifilbxes represent
clusters where MP and MRF assignments are the same. RediseBdrepresent interactions conserved by MP alignmentrandy MRF,
black dotted lines represent interactions conserved by MR&Fnot by MP.

TABLE I
HOMOLOGENE ORTHOLOGS FOUND BY THEMP METHOD AND NOT BY MRF AND VICE VERSA.

MP MRF

(Pros35, PREDS)

(TTIA-S, TOA2) | (RPL23, RPL23A)

(CG13890, ECI1)
(TflIS, DST1)
(Efigamma, TEF4)
(Glutl, YBR241C)

(Gapdhl, TDH1)
(Rpt4, Rpt4)
(actbe, actl)
(Sir2, hstl)

(Rab11, Ypt31)
(Rps26, Rps26A)
(CG6523, YDR098C)
(CG8690, YBR299W)

Figures[B(a) and] 3(b) show some examples where the MRF assignand the assignment made
by the MP, PATH and GA algorithms are different, and illustréaow these differences influence the
total number of conserved interactions. For instance, énltiparanoid cluster 1113, the MRF algorithm
associate the fly protein skpA to the yeast protein skpl,enthie MP algorithm prefers the assignment
skpF to skpl. In the later case we lose one conserved intamagith pair ago-cdc4, but we gain two new
conserved interactions with (vha36,vm28) and (ef2b,eft2pnother example, shown in Figure 3(b), the
MP algorithm proposes a different association for the ypastein actl in the 94-th Inparanoid cluster.
This assignment results in two lost and three gained coadenteractions. From a biological point of
view, the assignment of the fly protein act87e to actl progpdsethe MRF algorithm seems to be worse
that the assignment (act5c,actl) proposed by the MP dhgorindeed, although proteins act5c and act87e
are very similar (being both from the actine family), it isdwn that actl and act5c participate together
to the INO8O0 protein complex (which exhibits chromatin refaling activity and 3’ to 5’ DNA helicase
activity), while act87e does not.

In order to assess more systematically and quantitativetier differences in the number of conserved
interactions lead to significant differences in number afr@ctly assigned functional orthologous pairs,
we counted how many pairs in each alignment is reported adgifumal orthologous in the HomoloGene
database, considered here as a "gold standard”. As showabie[J, the number of HomoloGene pairs in
each alignment also differs between the different methoatsging from 36 for MRF to 39 for IsoRank
and 41 for MP/GA/PATH. Interestingly, we observe that thethmd MP, GA and PATH, which retrieve
the largest number of conserved interaction, also resuthénlargest number HomoloGene pairs (41),
which represents a relative increasel8%, compared to MRF (36), and &f% compared to IsoRank. To
illustrate the differences between the methods, Taplests the HomoloGene pairs found by MRF and
not MP/GA/PATH, and vice versa. Interestingly, a new methmrdPPI network alignment was published
recently [24], which detects 37 HomoloGene orthologs onsidn@e set of proteins. This puts its between
MRF and IsoRank according to this criterion.
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TABLE 11l
PERFORMANCE OF THE DIFFERENT METHODS FOR CONSTRAINEBGNA ON THE BENCHMARK OF[3] WITH SECOND-ORDER
INTERACTIONS ADDED. THE NUMBER OF RECOVEREDHOMOLOGENE PAIRS IS COUNTING ON THEL21 INPARANOID CLUSTERS FROM
THE PREVIOUS SECTION AS WELL AS ON THE NEVWG02 AMBIGUOUS INPARANOID CLUSTERS HAVE SECONBORDER INTERACTION WITH
OTHERINPARANOID CLUSTERS

Algorithm MRF | IsoRank| GA | PATH

Number of conserved interactions | 1,112 1,101 1,140 | 1,143
Number of HomoloGene pairs (121 cl}) 39 38 41 40
Number of HomoloGene pairs (602 cl}) 172 167 172 166

Timing(sec) 623 31 372 | 1,542

The validity of taking HomoloGene as a "gold standard” fosessing the number of correctly assigned
homologous pairs remains, however, subject to discussimieed, although HomoloGene clusters are
defined using a variety of evidences, they are mainly driverséquence similarity. To illustrate this,
we assessed the performance of a simple alignment methathwhatches pairs within an ambiguous
cluster by maximizing the total sequence similarity overtehad pairs. This method does not use any
PPI information for the matching. The resulting alignmeastonly 184 conserved interaction, which
is not surprisingly much worse than all methods which také iR® account. However, the resulting
matched pairs contain 43 HomoloGene pairs, which is more #llamethods taking into account PPI.
This shows that the number of HomoloGene pairs as an indisaitmuld be taken with caution, since it
favors methods which focus on matching proteins based ouneseg similarity only.

B. Disambiguation of Inparanoid clusters with second-orofeeractions

The idea of [3] to expand the natural notion of conservedrattiton (case 1) to cases 2 and 3, aims
to take into account second-order interactions, that isnMwo proteins do not interact directly to each
other have a common neighbor. Another natural generadizaif the notion of conserved interaction is
then the following case:

4) f; has a common neighbor witfy, andy; has a common neighbor with, in their respective PPI

networks.
Adding interactions according to this rule makes the prnobmmputationally more difficult, since am-
biguous clusters become more connected. Indeed, while we aie to solve the original problem exactly
with the MP algorithm, the network of Inparanoid clustersemicases 1-4 are included takes the form
presented in Figurf] 2(b). Contrary to the previous netwodsgs 1-3 in Figurf] 2(a)), the new network
has loops and is not amenable to exact optimization with tRepkbcedure. Only approximate algorithms
can be applied in this case.

In order to compare all methods (except MP) in this new sgttive re-implemented the MRF algorithm
with the new data. The estimated values of the model parasmétee details in [3]) arex = 0.51, 3 =
—6.87). We used the same training and test data as those used usgdtingstimate them. Then we
estimated the probabilities of being protein orthologs gotential pairs of proteins by Gibbs sampling,
and obtained a one-to-one alignment based on the most peohs&ociations.

Table [Tl shows the results obtained by the different gragtaming algorithms. Although we do not
know the maximum number of interactions that can be condgenvethis case, we observe again that
PATH and GA find solutions witt3 — 4% more interactions conserved than MRF and IsoRank. There is
no clear difference in the number of HomoloGene pairs batvike different methods, and the addition
of second-order interactions has no obvious effects onitldisator neither: it leads to a gain of 3 pairs
for MRF, but to a loss of one pair for IsoRank and PATH, and tachange for GA.
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C. Global PPI network alignment by balancing sequence amneraction conservation

In this last series of experiments, we consider the probleopgsed by [19], for which IsoRank
reflects the state-of-the-art: find a global PPI alignmenbalancing the sequence similarity in matched
pairs with the total number of conserved interactions,valg in particular matches between proteins
in different Inparanoid clusters if they allow an increasagmber of conserved interactions. For this
application we can only compare the three methods for bath@NA, namely, IsoRank, GA and PATH.
The trade-off between matching proteins with similar seges and matching with a lot of conserved
interactions is controlled by the parametein (@) and [J). The greatex, the more attention we pay to
the sequence similarity and the less to the number of coedenteractions. For each method, by varying
A, we therefore obtain a family of alignments with differemtngpromise found between the number of
conserved interaction$(P) @) and the summary sequence similarity sc6(&) @).

1200

10007

8007

6007

sl

400 | —4—GA
—k—PATH

200 IsoRank

Number of conserved interactions

O L L L L
14 14.5 15 15.5 16 16.5
Sequence similarity

Fig. 4. Algorithm performance comparison. Number of comsérinteraction/(P) versus sequence similarity(P).

Figure[# shows the different trade-offs which are found by dlifferent methods. For a given level
of average sequence similarity, we wish to have the largessiple number of conserved pairs. We
observe that over all the range of average sequence sityillre GA algorithms clearly outperforms
PATH, which itself outperforms IsoRank. For example, foe tinade-off parameter choice advocated by
[19] for IsoRank & = 0.6), IsoRank finds an alignment with 566 conserved interasti@orresponding
to an average sequence similarity score in the matched p&irs.26. At this level of average sequence
similarity, PATH and GA find alignments with respectively8 and 1, 006 interactions, which corresponds
to relative improvements of respectivel9% and78%.

Again, there is still only limited objective evidence thattionizing the number of conserved interactions
leads to better matching in terms of functional orthologtedgon. As an attempt to test this fact, we first
counted, for each alignment, the number of HomoloGene paitse alignment. However, we observed
that, for each method, this number increases monotonicatign more weight is given to sequence
similarity as opposed to interaction conservation. Thiaimdiighlights the limitation of this criterion,
which is optimized by construction when sequences are @flifjnrmatched in terms of similarity. We
then attempted to compare the different alignments in tesfmeean similarity between gene ontology
(GO) annotations of matched pairs. In order to compare GMtations of two proteins we tested the
method presented by [19] to compute the functional cohereria pair. However, we were not able to
observe any clear difference between the methods, or betieedifferent parameter choice for each
individual method. The maximum mean functional coherenggr the choice of the trade-off parameter
is respectively0.519, 0.509 and0.522 for IsoRank, GA and PATH. However the fluctuations of thisreco
when the parameters change are so large that these maxiniues e not significantly different. This
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is due to the fact that the number of annotated proteins resviamnited, and that they are rarely annotated
with such precision that it is possible to clearly diffeiate true functional orthologs from spurious ones
[3]. For example, when we estimate the functional score oivargalignment, there is rarely more than
15 — 20% of pairs with GO annotations.

VI. DISCUSSION

We presented two general formulations for the GNA problerhe Tonstrained GNA formulation
corresponds to a situation where we have a strangiori about which pairs can be matched. In the
balanced GNA problem, we replace the binary constraints biclwpairs are allowed by a more global
objective function which balances the matching of similestpins with the conservation of interactions,
with a parameter to smoothly control the trade-off betwdssé¢ two contradictory goals. While MRF
and IsoRank are popular methods for these two formulatissesproposed in this paper new methods
which lead to significantly better alignments, when we assle quality of an alignment in terms how
many conserved interactions are retrieved. In partictiteer, MP method, when it is applicable, finds the
optimal solution of a constrained GNA problem, and the GAhodtprovides consistently good results
in both cases. The question of which formulation is the bestfgiven application and dataset, between
the constrained and balanced GNA, remains largely open amwthwvurther systematic investigations.
Regarding the relative performance of the different methiaderms of how many conserved interactions
they find, we observed that the MP/GA/PATH methods outperfMRF and IsoRank in both situations.
This is not so surprising given that, once the problem isieitlyl stated as a graph matching problems,
it makes sense to use methods borrowing ideas and technitprasstate-of-the-art graph matching
approaches. The impressive performance of GA compared Td¢1RA the balanced GNA experiment
(Figure[4$) is more surprising, given the good performanc®&fH on a number of other benchmarks
[27]. We believe this weakness of PATH is due to the largeedifice in the number of nodes between
the two networks. Indeed, the resulting large number of dynmodes that must be added generate
singularities in the convex relaxation in the PATH algamith

The GNA problems we studied have several extensions. Rinsgy be interesting to consider alignment
of weighted PPI networks with weights representing, fotanse, experimental evidence of interaction
existence. Interestingly, the PATH, GA and IsoRank al¢ponitcan be applied directly to a weighted
network, by just replacing the binary graph adjacency mdiyi a real-valued matrix. Another relevant
extension is the alignment of multiple PPI networks, cqrogsling to more than two species, via pairwise
comparisons as it was presented by [19]. Finally, it may bevast in some cases to match one protein
of one species with several proteins of the other specieactount for possible duplications or fusion
events. An interesting property of the PATH algorithm is thet that estimate a permutation matrix by
first solving a relaxed problem. The solution of the relaxeabpem is a doubly stochastic matrix whose
entries can be interpreted as probabilities for proteinsetdunctional orthologs [27] . Therefore, in order
to allow many-to-many assignments of proteins, we couldthsesolution of the convex relaxation.

Finally, although progresses in graph alignment algorgtoan be monitored by objective quantitative
measures such as the number of conserved interactions,bibbégical relevance remains difficult to
assess. In particular, for the detection of functional @dgs, it is apparent that current GO annotations
or curated databases of functional orthologs are eithesebidby construction (e.g., HomoloGene), or
not precise enough and too scarce for systematic evaluégign GO annotations). We believe we are
reaching a point where more experimental validations aed®@@. On the other hand, there are many
other possible applications for efficient graph matchimgpathms scaling to large biological networks,
such as phylogenetic comparison of sets of networks, deteof new conserved pathways, or curation
of PPl data. We expect the methods proposed in this papenvt ddirect impact in these applications.
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