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Global alignment of protein-protein interaction
networks by graph matching methods

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert

Abstract

Motivation:
Aligning protein-protein interaction (PPI) networks of different species has drawn a considerable interest recently.
This problem is important to investigate evolutionary conserved pathways or protein complexes across species, and
to help in the identification of functional orthologs through the detection of conserved interactions. It is however
a difficult combinatorial problem, for which only heuristicmethods have been proposed so far.
Results:
We reformulate the PPI alignment as a graph matching problem, and investigate how state-of-the-art graph matching
algorithms can be used for that purpose. We differentiate between two alignment problems, depending on whether
strict constraints on protein matches are given, based on sequence similarity, or whether the goal is instead to find
an optimal compromise between sequence similarity and interaction conservation in the alignment. We propose
new methods for both cases, and assess their performance on the alignment of the yeast and fly PPI networks.
The new methods consistently outperform state-of-the-artalgorithms, retrieving in particular78% more conserved
interactions than IsoRank for a given level of sequence similarity.
Availability: http://cbio.ensmp.fr/proj/graphm ppi/
Additional data and codes are available upon request.
Contact: jean-philippe.vert@mines-paristech.fr

I. INTRODUCTION

PPIs play a central role in most biological processes. Recent years have witnessed impressive progresses
towards the elucidation of large-scale PPI networks in various organisms, thanks in particular to the
development of high-throughput experimental techniques such as yeast two-hybrid [9] or coimmunopre-
cipitation followed by mass-spectrometry [1]. As the amount of PPI network data increases, computational
methods to analyze and compare them are also being developedat a fast pace. In particular, comparative
PPI network analysis across species has already provided insightful views of similarities and differences
between species at the systemic level [18], [21] and helped in the identification of functional orthologs
[3].

Comparing PPI networks usually involves some form ofnetwork alignment, i.e., the identification
of pairs of homologous proteins from two different organisms, such that PPIs are conserved between
matched pairs. The rationale behind this notion is that a protein and its functional orthologs are likely to
interact with proteins in their respective network that arethemselves functional orthologs. Hence, while
direct sequence homology alone is often not sufficient to identify functional orthologs within paralogous
families [20], the use of PPI information can help in the disambiguation of functional orthologs within
clusters of homologous sequences, such as those produced bythe Inparanoid algorithm [17]. This approach
has been investigated in particular by [3]. Conversely, network alignment can also be a valuable approach
to validate PPI conserved across multiple species and detect evolutionary conserved pathways or protein
complexes [13], [18].
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Several methods have been proposed to performlocal network alignment (LNA) of PPI networks, i.e.,
to identify subsets of matching pairs of proteins with conserved subgraphs of interactions. These methods
include PathBLAST [13], [14] and NetworkBLAST [18], which adapt the ideas of the BLAST algorithm
to the search for local alignments between graphs, the method of [15], inspired by biological models
of deletion and duplication, Graemlin [10], which uses networks of modules to infer the alignment, or
the Bayesian approach of [4]. Less attention has been paid tothe problem ofglobal network alignment
(GNA), i.e., the search for a global correspondence betweenmost or all vertices of two networks which
again matches similar proteins and leads to conserved interactions. Notable exceptions include the Markov
random field (MRF) based method of [3] and the IsoRank algorithm [19] which formulates the problem
as an eigenvalue problem.

While LNA procedures can detect multiple, unrelated matched regions between networks, and can
in particular match a given protein of a network to several proteins of the other network in different
local matchings, GNA seeks the best consistent matching across all nodes simultaneously. This can be a
desirable property for many applications, such as functional ortholog identification. On the other hand,
from a computational point of view, GNA is arguably more difficult than LNA since it must find a solution
among all possible global matchings. In fact, as we explain below, it is natural to reformulate GNA as
weighted graph matching problem, a problem for which no polynomial-time algorithm is known. Solving
the general GNA problem therefore must involve some sort of approximate or heuristic method, such as
IsoRank.

Following this line of thought, we propose here to formulateexplicitly GNA as a graph matching
problem, and investigate the use of modern state-of-the-art exact and approximate methods to solve it.
While no exact solution of the graph matching optimization problem can be found in general, we show
that in certain cases, if “enough constraints” are put on thepossible protein associations, and if the PPI
networks are “not too dense” (these notions being rigorously defined in Section III-B), then an exact
solution can be found efficiently by a new message-passing algorithm. Interestingly, this case arises in
particular in the functional ortholog detection problem between yeast and fly investigated by [3], where
matching pairs are constrained to belong to clusters of proteins produced by the Inparanoid algorithm
and the PPI networks of both species are not too dense. On these data, we are therefore able to find a
matching which conserves more interactions than the solutions found by MRF [3] as well as a version
of IsoRank adapted to this situation [19], and we are in fact certain that our solution is optimal in the
sense that it produces the largest possible number of conserved interactions. Interestingly, the resulting
alignment retrieves13% more HomoloGene pairs than the alignments of MRF and5% more than that
of IsoRank, suggesting that maximizing the number of conserved interactions indeed improves functional
orthology disambiguation. When the GNA is more complex, e.g., matched pairs are not limited to belong
to the same Inparanoid clusters, or the PPI networks have more edges, then our message-passing algorithm
can not be used and the optimal matching can not be found in reasonable time anymore. In that case we
propose to use a recent state-of-the-art approximate methods for graph matching [26], which tracks a path
of solutions for a family of relaxed problems, as well as a new, faster and more direct gradient-based
method, which bears similarities with the IsoRank method. Like IsoRank, these methods have a free
parameter to balance the trade-off between matching similar proteins, on the one hand, and producing an
alignment with many conserved interactions, on the other hand. We test them on the global unconstrained
alignment of the fly and yeast networks, and show that for a given level of mean sequence similarity
between matched proteins, our new method retrieves78% more conserved interactions than IsoRank.

II. CONSTRAINED AND BALANCED GNA PROBLEMS

In this section we set the notations and formalize two variants of the GNA problems. We represent a
PPI network describing the interactions amongN proteins of an organism as an undirected simple graph
G = (VG, EG), whereVG = (v1, . . . , vN) is a finite set ofN vertices representing theN proteins, and
EG ⊂ VG × VG is the set of edges representing the pairs of interacting proteins. Each such graph (or
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network) can equivalently be represented by a symmetricN × N adjacency matrixAG where [AG]ij =
[AG]ji = 1 if protein vi interacts with proteinvj and0 otherwise.

Given two graphsG andH representing the PPI networks of two species, the GNA problem is, roughly
speaking, to find a correspondence between the vertices ofG and the vertices ofH which matches similar
proteins and enforces as much as possible the conservation of interactions between matched pairs in the
two graphs. To formalize this, let us assume thatG and H have the same numberN of vertices, and
that we are looking for a bijection between the vertices ofG and the vertices ofH. Although this may
sound at first sight a strong assumption, given that PPI networks usually do not have the same size,
and that we may not want to match all proteins of each network,both limitations can be addressed by
adding dummy nodes (with no connection) to each graph in order to ensure that they finally have the
same size. In a complete matching of such graphs with dummy nodes, matching a protein to a dummy
node simply means that in the GNA the protein is not matched.G and H being assumed to have the
same number of vertices, a matching of their vertices is now simply a permutationπ of {1, . . . , N} which
associates thei-th vertex of H with the π(i)-th vertex of G. Equivalently, the permutationπ can be
represented by aN ×N permutation matrixP , i.e., a binary matrix whose(i, j)-th entry is equal to1 if
and only if π(i) = j (that is, when thei-th vertex ofH is matched to thej-th vertex ofG). We denote
by P = {P ∈ {0, 1}N×N : P1N = 1N , P T1N = 1N} the set of permutation matrices, where1N is the
N-dimensional vectors whose entries are all equal to1.

The number of interactions conserved by a permutationπ is the number of pairs(i, j) which are
connected inH, and such that their corresponding verticesπ(i) andπ(j) are also connected inG. Let us
denote byJ(P ) the number of such interactions conserved by the permutation encoded in the permutation
matrix P . In order to expressJ(P ), we can observe that if we apply the permutation encoded byP to
the vertices ofH, we obtain a new graph isomorphic toH which we denote byP (H). It is easy to see
that the adjacency matrix of the permuted graph,AP (H), is simply obtained fromAH by the equality
AP (H) = PAHP T [22]. As a result,J(P ) is simply obtained as half the number of entries which are
simultaneously equal to1 in both binary matricesAG andPAHP T (each conserved interaction results in
two identical entries, by symmetry of the adjacency matrices). Hence we obtain the following expression
for J(P ):

J(P ) =
1

2

N
∑

i,j=1

[AG]ij [PAHP T ]ij =
1

2
tr(AT

GPAHP T ) . (1)

Besides the number of conserved interactions, a good GNA should match proteins with similar se-
quences. We consider here two possible formulations of thisobjective.

• Constrained GNA. Here we assume that a pre-processing of the protein sequences has produced a
set of candidate matched pairsA ⊂ VH × VG, and we simply wish to disambiguate the matching
using PPI information, if some proteins have several candidate matchings. This is for example the
formulation proposed by [3], where a first clustering of all proteins sequences is performed to define
a collection of protein clusters with the Inparanoid algorithm, and the pairs matched between the
yeast and fly proteome are constrained to belong to the same cluster. Such constraints can be directly
encoded as constraints over the permutation matrixP , by imposingPij = 0 if the i-th vertex of the
first graph and thej-th vertex of the second graph are not allowed to match. We arethen looking for
a solution in the set of matricesPA = {P ∈ P : ∀(i, j) ∈ [1, N ]2\A, Pij = 0}, and it is then natural
to look for the permutation compatible with the constraintswith the largest number of conserved
interactions, i.e., to solve:

max
P∈PA

J(P ) . (2)

• Balanced GNA. A interesting property of constrained GNA is that, by reducing the search space to
PA, it can result in a tractable optimization problem (as shownfor example in Section III-B). On
the other hand, in some cases one may want to accept matching between less similar vertices if it
leads to an important increase in the number of conserved interactions. In other words, one would
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like to be able to automaticallybalancethe matching of similar vertices with the conservation of
interactions, as advocated by [19] and implemented by IsoRank. This can be formalized by assuming
that aN×N matrix of similarities between verticesC is given (e.g., derived from pairwise sequence
similarity scores), and by trying to maximize the total similarity between matched pair.Cij denoting
the similarity between thei-th vertex ofG and thej-th vertex ofH, the total similarity between
pairs matched by a permutation matrixπ is simply

S(P ) =

N
∑

i=1

Cπ(i),i = tr (PC) . (3)

In order to find a balance between matching similar pairs (large S(P )) and having many conserved
interactions (largeJ(P )), we propose to consider the following optimization problem:

max
P∈P

λJ(P ) + (1− λ)S(P ) , (4)

whereλ ∈ [0, 1] controls the trade-off between both objectives.λ = 1 corresponds to the maximization
of J(P ) only, i.e., to find a good topological matching of the graphs independently of the similarity
between matched pairs, whileλ = 0 amounts to focus only on the similarity between proteins and
finding a matching which maximized the mean sequence similarity, without using PPI information.

Whenλ > 0, the balanced GNA problem (4) is equivalent to a general graph matching problem, discussed
in Section III-A, which is known to be computationally intractable in general. The constrained GNA (2)
can be seen as a particular case of the balanced GNA, by takingthe similarity function equal to0 between
two vertices allowed to match and−∞ for two vertices not allowed to match. Indeed, in that case (4)
is equivalent to minimizingJ(P ) over the set of matricesP for which S(P ) is finite, that is exactly the
setPA of (2). While indeed general graph matching methods to solve(4) can be applied to solve (2), we
show in the next Section that in some cases there exists a simple polynomial-time algorithm to solve (2)
directly even for large non-sparse graphs.

III. M ETHODS

In this section we present methods to solve both the constrained GNA problem (2) and the balanced
GNA problem (4). Since any algorithm to solve the balanced GNA problem can also solve the constrained
GNA, as explained in the previous section, we start by describing methods to solve the balanced GNA
problem.

A. Algorithms for the balanced GNA problem

The balanced GNA problem (4) is a general graph matching problem, which is known to be a difficult
combinatorial problem. While some methods based on incomplete enumeration may be applied to search
for an exact optimal solution in the case of small or sparse graphs, only approximate algorithms that usually
find non-optimal solutions but are more scalable can be used for large non-sparse graph matching. Many
such approximate algorithms have been proposed, see e.g., the review of [7]. They include in particular
spectral methods [6], [19], [22], or methods based on a relaxation of the optimization problem (4) [2],
[11]. They differ mainly on their scalability, and on the accuracy of the solution found. For example, a
comparison of several such methods was carried out recently[26], [27].

Based on these observation, we propose here to use state-of-the-art graph matching methods to balanced
GNA for PPI networks. In particular we focus on the PATH algorithm [26], which was shown to
provide state-of-the-art performance in various graph matching benchmark. We also propose a new and
simpler gradient ascent method, similar in spirit to the Graduated Assignment (GA) algorithm [11]. As
a benchmark, we consider the IsoRank method, which can be thought of as a particular spectral method
for graph alignment, and which is currently the method of choice for balanced GNA of PPI networks.
We now briefly describe these methods.
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• PATH method.The PATH algorithm is based on two relaxations of (4), one concave and one convex,
over the set of doubly stochastic matrices [26]. The method starts by solving the convex relaxation,
and then iteratively solves a linear combination of the convex and concave relaxations by gradually
increasing the weight of the concave relaxation and following the path of solutions thus created. It
finishes when the a solution reaches a corner of the set of doubly stochastic matrices, i.e., when the
solution is a permutation matrix inP. On several benchmarks, the PATH method was shown to be
state-of-the-art in accuracy, and can easily process graphs with a few thousands vertices in a few
hours on a modern desktop computer.

• GA method.We propose a new, simple gradient method based on a relaxation of (4) over the set of
doubly stochastic matrices. Although the function to be maximized is not concave (because of the
termJ(P )), we simply start from an initial solution and iteratively choose a new permutation matrix
in the direction of the gradient of the objective function. This approach may be relevant if we can
start from a “good” initial solution, i.e., if we solve a constrained GNA (2) where the constraints are
strong enough. The gradient ofS(P ) in (3) is equal toS, the gradient ofJ(P ) in (1) at a matrix
Pn is equal toAT

GPnAH . Hence we propose to iteratively update the permutation matrix following
the rulePn+1 ← arg maxP∈P tr

(

[λAT
GPnAH + (1− λ)C]P

)

, which can be found efficiently by the
Hungarian algorithm [16].

• IsoRank method.The idea of the IsoRank algorithm is to use the following recursive formula [19]

R(i, j) =
∑

v∈N(i)

∑

u∈N(j)

1

|N(u)||N(v)|
R(u, v), i ∈ VG, j ∈ VH , (5)

whereN(i) denotes the set of neighbors ofi, VG denotes the set of vertices of graphG and element
R(i, j) represents the similarity between vertexi of graphG and vertexj of graphH. In the case
of PPI networks it represents the “likelihood” that proteins i and j are functional orthologs. The
recursive formula says that the morei and j have similar neighbors, the greater is the similarity
measure betweeni andj. To estimateR, [19] propose to use the power method to iteratively update
R according to:

R← AR/||AR|| , (6)

whereA is theN2 ×N2 matrix defined as:

A(i, j)(u, v) =
1

|N(u)||N(v)|
.

To take into account the information on protein sequence similarities encoded by matrixC, the
following modification of (5) is used

R = λAR + (1− λ)C, (7)

whereλ has the same interpretation as in (4).

B. Algorithms for the constrained GNA problem

As explained in Section II, all methods for solving the balanced GNA problem (4) can also be used to
solve the constrained GNA problem (2), by using a particularsimilarity function to enforce the constraints.
Hence a first series of methods to solve (2) are the constrained version of IsoRank, GA and PATH,
described in the previous section. In addition to these three methods, we consider two additional approaches
specifically dedicated to the constrained GNA problem: the Markov random field (MRF) method of [3],
and a new method based on message passing (MP) which we propose to find the global optimum of (2)
when the graphs are not too dense.

• MRF method.To solve ambiguous assignments in Inparanoid clusters withmore than two proteins, [3]
propose to use the information on protein interactions, by choosing the assignments which maximize
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the number of conserved interactions between two species. For that purpose they use the following
probabilistic model. They associate a binary variablezij to each possible protein ortholog pair(fi, yj)
(herefi andyj denote Fly and Yeast proteins from the same Inparanoid cluster), wherezij = 1 means
thatfi andyj are functional orthologs. Two variableszij andzkt are connected if at least one pair of
proteins(fi, fk) or (yj, yt) is connected in its PPI network, and the other one has a commonneighbor
(or is also connected).LetN(ij) denote the set of indices connected tozij. Then the probability law
of zij is modeled by:

P (zij|zN(ij)) =
1

1 + exp{−α − β
∑

kt∈N(ij) zkt}
. (8)

The interpretation of this formula is thatzij has more chances to be equal to one when the number
of neighbors equal to one is large. When there are only two proteins in clusterfi and yj then by
definition zij = 1. If fi and yj are from different clusters then also by definitionzij = 0. The
parametersα andβ are estimated on the basis of training data, then a Gibbs sampling is performed
to define the value of unknown variables z on the test set. We refer to [3] for more details on this
method.

• MP method for exact optimization.Although intractable in general, we now show that constrained
GNA problem (2) can be solved exactly and efficiently in some cases, and propose a new, efficient
algorithm based on message passing for that purpose. More precisely, we consider the situation
where the set of proteins have been clustered into a finite setof L groupsc1, . . . , cL, which form a
partition ofVG∪VH , and where only proteins within the same group can be matched1. This situation,
illustrated in Figure 1, represents for example the probleminvestigated by [3], where proteins of
two organisms are first clustered by the Inparanoid algorithm, and functional orthologs are searched
within clusters. Let us now consider theL clusters as vertices of a graph, and connect two clusters

Fig. 1. Inparanoid cluster network. Two clusters are connected if there exist at least one pair of proteins in one cluster, and one pair of
proteins in the other cluster, which may produce a conservedinteraction.

ci andcj if they contain proteins of both organisms that interact in their respective PPI network. For
example, in Figure 1,c1 andc2 are connected becausec1 containsf1 from the first organism andy1

from the second organism, which interact withf5 andy3 respectively, both inc2. The reason why we
introduce this graph of clusters is that it allows to decompose the choice of a global matchingP into
local matchings within each cluster, the dependency between the local choices being described by
the edges of the graph. For example, if a cluster is isolated,then the choice of the matching within
this cluster has no influence over the total number of conserved interactions apart from interactions
within this cluster. In other words, the local matching within an isolated cluster can be optimized
independently from the others. On the other hand, if a cluster is connected to other clusters, then
changing the matching within this cluster can affect the total number of interactions between proteins
of different clusters, and the matchings between connectedclusters must be chosen synchronously
to optimize the total number of conserved interactions.

1Technically, we add dummy nodes in each cluster to obtain thesame number of proteins of each species in each cluster.
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More formally, if we denote byP1, . . . , PL the permutationP restricted to theL clusters, then an
important property is that the total number of interactionsconserved byP decomposes as:

J(P ) =

L
∑

i=1

J1(Pi) +
∑

i∼j

J2(Pi, Pj) , (9)

whereJ1(Pi) denotes the number of conserved interactions withinci, J2(Pi, Pj) denotes the number
of conserved interactions betweenci and cj , and i ∼ j means thatci is connected tocj .
While maximizing (9) remains a challenging optimization problem in general, it may be optimized
efficiently if the graph of clusters has a particular structure, e.g., if many nodes are isolated or if it
contains no loop. For example, Figure 2(a) shows the graph ofclusters for the problem of fly/yeast
protein alignment investigated by [3]. Interestingly, this graph has no loop. In this case, we can
maximize (9) by a particular Message Passing (MP) algorithm[12]. The idea of the MP algorithm
is similar to the Viterbi algorithm [23] widely used to optimize functions over linear graphs, such
as finding the most likely set of hidden states in a hidden Markov model [8]. Here we describe how
to apply MP on a graph without loop to optimize (9). First, we note that each of the permutations
involving proteins within a connected component of the graph can be optimized independently from
each other, so we just consider a single connected componentwithout loop, i.e., a treeT of clusters.
We choose a vertex ofT that we call root, which allows to define the directions up (towards the root)
or down (away from the root) when moving on edges of the graph.Each clusterci except the root
has a unique parent cluster, namely, the connected cluster in the direction of the root. The clusters
connected to a clusterc which are not its parent are called its children and are denoted ch(c). To
each nodec of T , we associate a vectoruc ∈ R

Pc , wherePc is the set of possible local matchings
within c, i.e., the set of possiblePc’s. The MP algorithm to solve (9) is then a recursive algorithm,
which starts from the leaves up to the root in a first phase (the“forward” step) to find the optimal
value of the functional, and then downwards from the root to leaves (the “backward” step) to find
the solution which achieves the optimal value. The forward step at nodec solves, for anyPc ∈ Pc:

uc(Pc) = J1(Pc) +
∑

c′∈ch(c)

max
P

c
′∈P

c
′

[uc′(Pc′) + J2(Pc, Pc′)] . (10)

At the end of the forward step, the maximum value of the vectoru at the root is equal to the
maximal value ofJ(P ), and the local permutation which achieves this maximum is the optimal local
permutation. In the backward step, the optimal local matching of the children of a cluster are obtained
by recovering the local permutationsPc′ which achieved the optimal value in (10) for the optimal
permutation of the parent cluster.
We note that it is also possible to use the MP algorithm on graphs that are not trees, but which have
a small tree-width value [12]. Roughly speaking it means that the graph of clusters is not a tree, we
may transform it into a tree by grouping together clusters. If the size of these cluster groups is not
very large, then the exact optimization may still be feasible.

IV. DATA

In order to compare the performance of the different graph matching methods, we performed several
experiments aiming at aligning the PPI networks of the yeastS. cerevisiaeand of the flyD. melanogaster,
as already investigated by [3] and [19]. We downloaded all necessary data from the supplementary materials
of [3]2. The yeast PPI network contains 4,389 proteins and 14,319 pairwise interactions, while the fly
network contains 7,038 proteins and 20,720 interactions. In addition we also retrieved the set of Inparanoid
clusters used by [3], consisting in 2,244 cluster covering 2,834 yeast proteins and 3,881 fly proteins. The
majority of these clusters (1,552) contains only two proteins (one from fly, one from yeast), while the

2http://www.cellcircuits.org/Bandyopadhyay2006http://www.cellcircuits.org/Bandyopadhyay2006
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remaining 692 cluster contain at least two proteins from thesame species and one from the other species.
Those 692 clusters are called ambiguous in [3], since they donot allow to associate a single protein from
the fly to a single protein from the yeast as functional orthologs.

V. RESULTS

We wish to investigate two different questions: (i) comparethe ability of the different methods to find
alignment with many conserved interactions, and (ii) assess whether conserving more interactions really
helps in retrieving more functional orthologs. While the first question can be answered without ambiguity
by counting the number of conserved interactions found by the different methods in different settings, the
second one, as we will see, remains difficult to answer due to the lack of large-scale and curated ground
truth.

We performed three sets of experiments, in order to compare the different methods in different settings
and to test different formulations of the GNA problem. In thefirst set of experiments, we reproduce the
problem studied by [3], where the goal is to disambiguate functional orthologs within Inparanoid clusters
using PPI information. This is a particular instance of the constrained GNA problem which turns out to
be amenable to exact optimization by the MP method. In the second set of experiments, we generalize
the benchmark problem of [3] by adding second-order interactions between proteins in order to account
for possible noise in the interaction data or protein duplications. In that case we are again confronted
with a constrained GNA problem, but the increased number of interactions makes its exact minimization
intractable and only approximate methods for constrained GNA can be applied. Finally, in a third set of
experiments, we discard the knowledge of Inparanoid clusters and directly search a global alignment which
balances the similarity between aligned proteins and the number of conserved interactions. This is then
an instance of the balanced GNA problem. In all cases, we assess the number of conserved interactions
captured by the different methods, as an indicator of how well they solve the GNA problem. Furthermore,
since the final objective of PPI network alignment is to matchfunctional orthologs, we assess for each
method how many matched pairs are present in the HomoloGene database, a set of curated functional
orthologous pairs based on the comparison of the protein as well as the DNA sequence which we consider
here as a ”gold standard” for disambiguation purpose.

A. Disambiguation of functional orthologs within Inparanoid clusters

The goal of this experiment is to use PPI GNA to select functional orthologs between the yeast and
the fly for proteins with several homologs. More precisely, all proteins sequences are first clustered into
groups by the Inparanoid algorithm [5], and only proteins from the same cluster can be considered as
protein functional orthologs. Then each GNA algorithm tries to find an association of protein functional
orthologs which maximizes the total number of conserved interactions. In other words, we try to solve the
constrained GNA (2), where the constraints are provided by the Inparanoid clusters. A priori, the most
natural definition of “conserved interaction” for the alignment (f1 − y1) and (f2 − y2) (wheref1 andf2

are fly’s proteins, andy1 andy2 are yeast’s proteins) is the following:
1) f1 interacts withf2, andy1 interacts withy2 in their respective PPI networks.

However, this strict notion of conserved interaction leadsto a very small number of potentially conserved
interactions. To have more potential interactions, [3] generalized this definition by adding the following two
cases, which additionally allow to account for possible duplication or fusion events in the two proteomes:

2) f1 interacts withf2 in the fly PPI network, andy1 has a common neighbor withy2 in the yeast PPI
networks;

3) f1 has a common neighbor withf2 in the fly PPI network, andy1 interacts withy2 in the yeast PPI
networks.

To be able to compare the results of different algorithms, weuse this exact definition of conserved
interactions (cases 1-3). Figure 2(a) presents the networkof Inparanoid clusters (as explained in Figure 1)
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TABLE I

PERFORMANCE OF THE DIFFERENT METHODS FOR CONSTRAINEDGNA ON THE BENCHMARK OF [3]. EACH ALGORITHM IS EVALUATED

BY THE NUMBER OF CONSERVED INTERACTIONS, NUMBER OF RECOVEREDHOMOLOGENE PAIRS AND THE RUNNING TIME. THE

NUMBER OF RECOVEREDHOMOLOGENE PAIRS IS COUNTED ONLY IN121 AMBIGUOUS INPARANOID CLUSTERS WHEREPPIDATA MAY

BE USED.

Algorithm MP MRF IsoRank GA PATH
Number of conserved interactions 238 233 228 238 238

Number of HomoloGene pairs (121 cl.) 41 36 39 41 41
Timing(sec) 1-2 10 1-2 1-2 80-100

used in [3], where only non-isolated ambiguous clusters areshown. As can be easily seen, this network
which contains 121 ambiguous clusters has no loop, which implies that we can use the MP method to
find the optimal alignment with the largest number of conserved interactions. Although we know how to

(a) (b)

Fig. 2. Inparanoid cluster networks. (a) The case of the benchmark data used in [3]. (b) The case of generalized interactions (1-4), see text.

solve the problem exactly in this case with the MP method, it is instructive to compare also the results
of the different approximate algorithms for constrained GNA, namely, MRF and the constrained versions
of IsoRank, GA and PATH. To construct the alignment made by the MRF method [3], we downloaded
the result file3 with probabilities for all possible protein association, and we extracted the one-to-one
alignment by taking the most probable pairs. The results of the PATH, GA and IsoRank algorithms were
obtained with the GraphM package [25].

Table I presents the results of all algorithms on this benchmark, in terms of conserved interactions,
number of HomoloGene pairs, and running time. We know that the MP algorithm produces the maximal
possible value (238 in this case), and an interesting observation is that the GA and the PATH algorithms
reach this maximum, while the MRF (233) and the IsoRank (228)algorithms do not. All methods are
comparable in terms of CPU time, except for MRF which is one order of magnitude slower on this
dataset. Although the differences in number are slight, with only 2% more conserved interactions for
MP/GA/PATH than for MRF, and4% more than for IsoRank, this nevertheless confirms that even on this
relatively easy optimization problem neither MRF nor IsoRank finds the optimal solution, which can be
found by other methods at no additional computational cost.

3http://www.cellcircuits.org/Bandyopadhyay2006/data/Bandyopadhyayresults.xls
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(a) (b)

Fig. 3. Illustration of difference between MRF and MP alignment. Each box represents an Inparanoid cluster, white unfilled boxes represent
clusters where MP and MRF assignments are the same. Red solidlines represent interactions conserved by MP alignment andnot by MRF,
black dotted lines represent interactions conserved by MRFand not by MP.

TABLE II

HOMOLOGENE ORTHOLOGS FOUND BY THEMP METHOD AND NOT BY MRF AND VICE VERSA.

MP MRF
(TfIIA-S, TOA2) (RPL23, RPL23A) (Pros35, PRE5)
(CG13890, ECI1) (Gapdh1, TDH1) (Rab11, Ypt31)

(TfIIS, DST1) (Rpt4, Rpt4) (Rps26, Rps26A)
(Ef1gamma, TEF4) (act5c, act1) (CG6523, YDR098C)
(Glut1, YBR241C) (Sir2, hst1) (CG8690, YBR299W)

Figures 3(a) and 3(b) show some examples where the MRF assignment and the assignment made
by the MP, PATH and GA algorithms are different, and illustrate how these differences influence the
total number of conserved interactions. For instance, in the Inparanoid cluster 1113, the MRF algorithm
associate the fly protein skpA to the yeast protein skp1, while the MP algorithm prefers the assignment
skpF to skp1. In the later case we lose one conserved interaction with pair ago-cdc4, but we gain two new
conserved interactions with (vha36,vm28) and (ef2b,eft2). In another example, shown in Figure 3(b), the
MP algorithm proposes a different association for the yeastprotein act1 in the 94-th Inparanoid cluster.
This assignment results in two lost and three gained conserved interactions. From a biological point of
view, the assignment of the fly protein act87e to act1 proposed by the MRF algorithm seems to be worse
that the assignment (act5c,act1) proposed by the MP algorithm. Indeed, although proteins act5c and act87e
are very similar (being both from the actine family), it is known that act1 and act5c participate together
to the INO80 protein complex (which exhibits chromatin remodeling activity and 3’ to 5’ DNA helicase
activity), while act87e does not.

In order to assess more systematically and quantitatively whether differences in the number of conserved
interactions lead to significant differences in number of correctly assigned functional orthologous pairs,
we counted how many pairs in each alignment is reported as functional orthologous in the HomoloGene
database, considered here as a ”gold standard”. As shown in Table I, the number of HomoloGene pairs in
each alignment also differs between the different methods,ranging from 36 for MRF to 39 for IsoRank
and 41 for MP/GA/PATH. Interestingly, we observe that the method MP, GA and PATH, which retrieve
the largest number of conserved interaction, also result inthe largest number HomoloGene pairs (41),
which represents a relative increase of13% compared to MRF (36), and of5% compared to IsoRank. To
illustrate the differences between the methods, Table II lists the HomoloGene pairs found by MRF and
not MP/GA/PATH, and vice versa. Interestingly, a new methodfor PPI network alignment was published
recently [24], which detects 37 HomoloGene orthologs on thesame set of proteins. This puts its between
MRF and IsoRank according to this criterion.
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TABLE III

PERFORMANCE OF THE DIFFERENT METHODS FOR CONSTRAINEDGNA ON THE BENCHMARK OF [3] WITH SECOND-ORDER

INTERACTIONS ADDED. THE NUMBER OF RECOVEREDHOMOLOGENE PAIRS IS COUNTING ON THE121 INPARANOID CLUSTERS FROM

THE PREVIOUS SECTION AS WELL AS ON THE NEW602 AMBIGUOUS INPARANOID CLUSTERS HAVE SECOND-ORDER INTERACTION WITH

OTHER INPARANOID CLUSTERS

Algorithm MRF IsoRank GA PATH
Number of conserved interactions 1,112 1,101 1,140 1,143

Number of HomoloGene pairs (121 cl.) 39 38 41 40
Number of HomoloGene pairs (602 cl.) 172 167 172 166

Timing(sec) 623 31 372 1,542

The validity of taking HomoloGene as a ”gold standard” for assessing the number of correctly assigned
homologous pairs remains, however, subject to discussion.Indeed, although HomoloGene clusters are
defined using a variety of evidences, they are mainly driven by sequence similarity. To illustrate this,
we assessed the performance of a simple alignment method which matches pairs within an ambiguous
cluster by maximizing the total sequence similarity over matched pairs. This method does not use any
PPI information for the matching. The resulting alignment has only 184 conserved interaction, which
is not surprisingly much worse than all methods which take PPI into account. However, the resulting
matched pairs contain 43 HomoloGene pairs, which is more than all methods taking into account PPI.
This shows that the number of HomoloGene pairs as an indicator should be taken with caution, since it
favors methods which focus on matching proteins based on sequence similarity only.

B. Disambiguation of Inparanoid clusters with second-order interactions

The idea of [3] to expand the natural notion of conserved interaction (case 1) to cases 2 and 3, aims
to take into account second-order interactions, that is, when two proteins do not interact directly to each
other have a common neighbor. Another natural generalization of the notion of conserved interaction is
then the following case:

4) f1 has a common neighbor withf2, andy1 has a common neighbor withy2, in their respective PPI
networks.

Adding interactions according to this rule makes the problem computationally more difficult, since am-
biguous clusters become more connected. Indeed, while we were able to solve the original problem exactly
with the MP algorithm, the network of Inparanoid clusters when cases 1-4 are included takes the form
presented in Figure 2(b). Contrary to the previous network (cases 1-3 in Figure 2(a)), the new network
has loops and is not amenable to exact optimization with the MP procedure. Only approximate algorithms
can be applied in this case.

In order to compare all methods (except MP) in this new setting, we re-implemented the MRF algorithm
with the new data. The estimated values of the model parameters (see details in [3]) are(α = 0.51, β =
−6.87). We used the same training and test data as those used used in [3] to estimate them. Then we
estimated the probabilities of being protein orthologs forpotential pairs of proteins by Gibbs sampling,
and obtained a one-to-one alignment based on the most probable associations.

Table III shows the results obtained by the different graph matching algorithms. Although we do not
know the maximum number of interactions that can be conserved in this case, we observe again that
PATH and GA find solutions with3− 4% more interactions conserved than MRF and IsoRank. There is
no clear difference in the number of HomoloGene pairs between the different methods, and the addition
of second-order interactions has no obvious effects on thisindicator neither: it leads to a gain of 3 pairs
for MRF, but to a loss of one pair for IsoRank and PATH, and to nochange for GA.
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C. Global PPI network alignment by balancing sequence and interaction conservation

In this last series of experiments, we consider the problem proposed by [19], for which IsoRank
reflects the state-of-the-art: find a global PPI alignment bybalancing the sequence similarity in matched
pairs with the total number of conserved interactions, allowing in particular matches between proteins
in different Inparanoid clusters if they allow an increasednumber of conserved interactions. For this
application we can only compare the three methods for balanced GNA, namely, IsoRank, GA and PATH.
The trade-off between matching proteins with similar sequences and matching with a lot of conserved
interactions is controlled by the parameterλ in (4) and (7). The greaterλ, the more attention we pay to
the sequence similarity and the less to the number of conserved interactions. For each method, by varying
λ, we therefore obtain a family of alignments with different compromise found between the number of
conserved interactionsJ(P ) (4) and the summary sequence similarity scoreS(P ) (4).
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Fig. 4. Algorithm performance comparison. Number of conserved interactionJ(P ) versus sequence similarityS(P ).

Figure 4 shows the different trade-offs which are found by the different methods. For a given level
of average sequence similarity, we wish to have the largest possible number of conserved pairs. We
observe that over all the range of average sequence similarity, the GA algorithms clearly outperforms
PATH, which itself outperforms IsoRank. For example, for the trade-off parameter choice advocated by
[19] for IsoRank (λ = 0.6), IsoRank finds an alignment with 566 conserved interactions, corresponding
to an average sequence similarity score in the matched pairsof 15.26. At this level of average sequence
similarity, PATH and GA find alignments with respectively678 and1, 006 interactions, which corresponds
to relative improvements of respectively20% and78%.

Again, there is still only limited objective evidence that optimizing the number of conserved interactions
leads to better matching in terms of functional orthology detection. As an attempt to test this fact, we first
counted, for each alignment, the number of HomoloGene pairsin the alignment. However, we observed
that, for each method, this number increases monotonicallywhen more weight is given to sequence
similarity as opposed to interaction conservation. This again highlights the limitation of this criterion,
which is optimized by construction when sequences are optimally matched in terms of similarity. We
then attempted to compare the different alignments in termsof mean similarity between gene ontology
(GO) annotations of matched pairs. In order to compare GO annotations of two proteins we tested the
method presented by [19] to compute the functional coherence of a pair. However, we were not able to
observe any clear difference between the methods, or between the different parameter choice for each
individual method. The maximum mean functional coherence over the choice of the trade-off parameter
is respectively0.519, 0.509 and0.522 for IsoRank, GA and PATH. However the fluctuations of this score
when the parameters change are so large that these maximum values are not significantly different. This
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is due to the fact that the number of annotated proteins remains limited, and that they are rarely annotated
with such precision that it is possible to clearly differentiate true functional orthologs from spurious ones
[3]. For example, when we estimate the functional score of a given alignment, there is rarely more than
15− 20% of pairs with GO annotations.

VI. D ISCUSSION

We presented two general formulations for the GNA problem. The constrained GNA formulation
corresponds to a situation where we have a stronga priori about which pairs can be matched. In the
balanced GNA problem, we replace the binary constraints on which pairs are allowed by a more global
objective function which balances the matching of similar proteins with the conservation of interactions,
with a parameter to smoothly control the trade-off between these two contradictory goals. While MRF
and IsoRank are popular methods for these two formulations,we proposed in this paper new methods
which lead to significantly better alignments, when we assess the quality of an alignment in terms how
many conserved interactions are retrieved. In particular,the MP method, when it is applicable, finds the
optimal solution of a constrained GNA problem, and the GA method provides consistently good results
in both cases. The question of which formulation is the best for a given application and dataset, between
the constrained and balanced GNA, remains largely open and worth further systematic investigations.
Regarding the relative performance of the different methods in terms of how many conserved interactions
they find, we observed that the MP/GA/PATH methods outperform MRF and IsoRank in both situations.
This is not so surprising given that, once the problem is explicitly stated as a graph matching problems,
it makes sense to use methods borrowing ideas and techniquesfrom state-of-the-art graph matching
approaches. The impressive performance of GA compared to PATH in the balanced GNA experiment
(Figure 4) is more surprising, given the good performance ofPATH on a number of other benchmarks
[27]. We believe this weakness of PATH is due to the large difference in the number of nodes between
the two networks. Indeed, the resulting large number of dummy nodes that must be added generate
singularities in the convex relaxation in the PATH algorithm.

The GNA problems we studied have several extensions. First,it may be interesting to consider alignment
of weighted PPI networks with weights representing, for instance, experimental evidence of interaction
existence. Interestingly, the PATH, GA and IsoRank algorithm can be applied directly to a weighted
network, by just replacing the binary graph adjacency matrix by a real-valued matrix. Another relevant
extension is the alignment of multiple PPI networks, corresponding to more than two species, via pairwise
comparisons as it was presented by [19]. Finally, it may be relevant in some cases to match one protein
of one species with several proteins of the other species, toaccount for possible duplications or fusion
events. An interesting property of the PATH algorithm is thefact that estimate a permutation matrix by
first solving a relaxed problem. The solution of the relaxed problem is a doubly stochastic matrix whose
entries can be interpreted as probabilities for proteins tobe functional orthologs [27] . Therefore, in order
to allow many-to-many assignments of proteins, we could usethe solution of the convex relaxation.

Finally, although progresses in graph alignment algorithms can be monitored by objective quantitative
measures such as the number of conserved interactions, their biological relevance remains difficult to
assess. In particular, for the detection of functional orthologs, it is apparent that current GO annotations
or curated databases of functional orthologs are either biased by construction (e.g., HomoloGene), or
not precise enough and too scarce for systematic evaluation(e.g., GO annotations). We believe we are
reaching a point where more experimental validations are needed. On the other hand, there are many
other possible applications for efficient graph matching algorithms scaling to large biological networks,
such as phylogenetic comparison of sets of networks, detection of new conserved pathways, or curation
of PPI data. We expect the methods proposed in this paper to have a direct impact in these applications.
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