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[1] With the aim to understand the origin of the pressure-balanced magnetic structures in
the form of holes and humps commonly observed in the solar wind and planetary
magnetosheaths, high-resolution hybrid numerical simulations of the Vlasov-Maxwell
(VM) equations using both Lagrangian (particle in cells) and Eulerian integration schemes
are presented and compared with asymptotic and phenomenological models for the
nonlinear mirror mode dynamics. It turns out that magnetic holes do not result from direct
nonlinear saturation of the mirror instability that rather leads to magnetic humps.
Nevertheless, both above and below threshold, there exist stable solutions of the VM
equations in the form of large-amplitude magnetic holes. Special attention is paid to the
skewness of the magnetic fluctuations (that is negative for holes and positive for
humps) and its dependency on the distance to threshold and the beta of the plasma.
Furthermore, the long-time evolution of magnetic humps resulting from the mirror
instability in an extended domain far enough from threshold may, when the beta of the
plasma is not too large, eventually lead to the formation of magnetic holes.

Citation: Califano, F., P. Hellinger, E. Kuznetsov, T. Passot, P. L. Sulem, and P. M. Trávnı́ček (2008), Nonlinear mirror mode

dynamics: Simulations and modeling, J. Geophys. Res., 113, A08219, doi:10.1029/2007JA012898.

1. Introduction

[2] Since the first observations of Kaufmann et al. [1970],
a strong interest has been paid to the pressure-balanced
magnetic structures observed in regions of the solar wind
and of planetary magnetosheaths where b is relatively large
and the ion perpendicular temperature exceeds the parallel
one. These structures that are static in the plasma frame,
display a strong anticorrelation between magnetic intensity
and pressure as well as density variations. Their shape is
cigar-like, elongated along a direction making a small angle
with the ambient magnetic field [Horbury et al., 2004, and
references therein]. Early observations tended to suggest a
predominance of magnetic holes [Sperveslage et al., 2000],
but more recent data indicate that magnetic humps are also
frequently encountered [Lucek et al., 1999; Joy et al., 2006;
Soucek et al., 2008]. Recently, Joy et al. [2006] correlate the
existence of magnetic holes or humps with the relatively
small or large value of b. Génot et al. [2006] used a more
quantitative characterization of the statistically dominant
type of magnetic structures by measuring the degree of
skewness that reflects the preference toward magnetic holes
or humps, depending of its negative or positive sign. Similar
analyses were performed by Soucek et al. [2008] after

wavelet filtering of the data. It turns out that there exists a
clear statistical correlation between the skewness and the
distance to the mirror instability threshold. Slightly above
threshold, quasi-sinusoidal fluctuations dominate, while at
further distance (which often corresponds to larger values of
b), magnetic humps are preferably observed. Magnetic
holes are mainly observed both below threshold and slightly
above in a range corresponding to ion (proton) bk � 5 and a
temperature anisotropy empirically fitted as T?/Tk � 2.15/

bk
0.39 [Soucek et al., 2008].
[3] The nature and the origin of these structures remains

the object of different interpretations. Stasiewicz [2004a]
interprets them as magnetosonic solitons, an approach
initiated by Baumgärtel et al. [1997] (see also Baumgärtel
[1999]). A more general opinion nevertheless associates
them to nonlinearly saturated mirror modes. Such an origin,
although plausible, is however not fully established. In
realistic situations, the mirror instability is often competing
with the anisotropic ion cyclotron instability, especially at b
of order unity and moderate angles [Price et al., 1986;
McKean et al., 1992], although the presence of helium He++

can enhance the relative importance of the former effect
[Price et al., 1986; McKean et al., 1994].
[4] The question arises of the driver of these instabilities,

probably associated with the shock transition and the
compression/expansion of the magnetosheath plasma
[Hellinger and Trávnı́ček, 2005; Trávnı́ček et al., 2007],
which may increase the ratio between the perpendicular and
parallel temperatures. The detailed mechanism of such
processes, albeit of great importance, are nevertheless
difficult to include in numerical simulations of the mirror
instability. As a consequence, most of numerical simula-
tions assume an initially bi-Maxwellian distribution and a

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, A08219, doi:10.1029/2007JA012898, 2008

1Dipartimento di Fisica and CNISM, Università di Pisa, Pisa, Italy.
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collisionless plasma, conditions that are consistent with the
separation between the timescale of the addressed phenom-
ena and that of collisional effects. In this context, previous
numerical integrations of VM equations, using hybrid
particle-in-cell (PIC) methods [Baumgärtel et al., 2003]
have shown saturation of the mirror instability in the form
of magnetic humps and not holes. These authors neverthe-
less also noted that initial conditions in the form of large-
amplitude magnetic holes can persist during the whole
simulation, both when the plasma is linearly stable and
unstable, indicating the existence of a bistable regime.
[5] It is thus of interest to study in detail the nonlinear

development of the mirror instability. The linear regime has
been extensively investigated and it is now well known that
Landau and finite Larmor radius (FLR) effects play an
essential role in the instability growth rate [Vedenov and
Sagdeev, 1959; Hasegawa, 1969; Hall, 1979; Gary, 1992;
Southwood and Kivelson, 1993; Pokhotelov et al., 2005;
Hellinger, 2007]. In contrast, the understanding of the
nonlinear regime and of the origin of the saturating pro-
cesses is more limited. The quasi-linear theory that assumes
random-phase fluctuations was first suggested by Shapiro
and Shevchenko [1964]. Nevertheless, this approach cannot
apply to regimes dominated by coherent structures. Phe-
nomenological models, based on the cooling of trapped
particles in magnetic troughs [Kivelson and Southwood,
1996; Pantellini, 1998], were then developed to interpret
the existence of deep magnetic holes. These models are
however hardly consistent with the presence of magnetic
humps that they only predicted for exceptionally large
values of b. The possible existence of bistability is also
not reproduced. Furthermore, these models are aimed to
describe the microscopic processes associated with the
existence of static coherent structures, rather than the
dynamical processes leading to their formation.
[6] In order to study the formation of coherent structures

as the nonlinear development of the mirror instability, an
asymptotic analysis near threshold, based on a reductive
perturbative expansion of VM equations was recently pro-
posed. In this limit, the linearly unstable modes are confined
at large scales, which suggests that FLR corrections arise at
a linear level only, making the nonlinear contributions
amenable to a simplified computation in the framework of
the drift-kinetic equation [Kuznetsov et al., 2007a]. The
resulting asymptotic equation indicates that the retained
nonlinearities reinforce the mirror instability, leading to a
finite-time singularity associated with a subcritical bifurca-
tion [Kuznetsov et al., 2007b] and an early breaking of the
asymptotic scalings. Nonlinear kinetic effects then rapidly
become relevant and saturate the instability in a regime not
amenable to a perturbative approach.
[7] The aim of the present paper is to contribute to a

better understanding of the nonlinear dynamics of mirror
modes in a proton-electron homogeneous plasma, by means
of highly accurate numerical simulations and asymptotic
models. Vlasov-Maxwell equations are used for the proton
distribution function, while a fluid description is assumed
for the electrons that are assumed to be cold and massless
for an easier comparison with theoretical developments.
Section 2 is a short overview of the linear and quasi-linear
theories. Section 3 briefly describes the algorithms imple-
mented in the hybrid PIC and Eulerian simulations pre-

sented in the following sections. Section 4 discusses the
results of numerical simulations near threshold, and points
out the influence of the size of the domain on the early
nonlinear phase. Special attention is paid to the conditions
for the emergence of a quasi-linear phase that precedes the
structure formation. Section 5 describes a reductive pertur-
bative expansion directly performed on the VM equations,
that provides a systematic derivation of the asymptotic
equation derived by Kuznetsov et al. [2007a]. As already
mentioned, this equation displays a finite time singularity,
associated with a subcritical bifurcation, leading, near
threshold, to the formation of large-amplitude structures,
not amenable to a perturbative calculation. Supplementing
phenomenologically the effects of the local variation of the
ion Larmor radius nevertheless provides a simple model for
the nonlinear saturation, in good agreement with numerical
simulations and spatial observations [Génot et al., 2006;
Soucek et al., 2008], while models involving a saturation
resulting from particle trapping [Kivelson and Southwood,
1996; Pantellini, 1998; Pokhotelov et al., 2008] are unable
to reproduce the geometry of the created mirror structures.
Section 6 provides numerical evidence of the persistence of
initially assumed large-amplitude magnetic depressions
both in the mirror stable and unstable plasmas. In section 7,
we present a simulation which demonstrates that in an
extended domain far from threshold magnetic humps gen-
erated by the mirror instability can transform to magnetic
holes during the long-time evolution. Section 8 summarizes
the results and discusses a few open problems.

2. Brief Overview of the Linear and Quasi-Linear
Theories

[8] Before presenting numerical simulations of the mirror
instability in an electron-proton plasma, it is useful to
briefly review the linear and quasi-linear theories.
[9] For a gyrotropic proton distribution function f (0) =

f (0)(vk
2, v?) and cold electrons, the mirror instability

condition is given by Shapiro and Shevchenko [1964],
Pokhotelov et al. [2005], and Hellinger [2007]

G � �mp

pB

Z
v4?
4

@ f 0ð Þ

@v2jj
d3v� b? � 1 > 0 ð1Þ

where pB = B0
2/8p is the magnetic pressure, b? = mp

R
v?
2 /

2 f (0)d3v/pB (similarly, bk = mp

R
vk
2 f (0)d3v/pB), and mp is the

proton mass. For a bi-Maxwellian proton distribution,
equation (1) reduces to the usual condition [Vedenov and
Sagdeev, 1959; Hasegawa, 1969]

G* � b?
b?
bjj

� 1

 !
� 1 > 0: ð2Þ

[10] Near threshold (G 	 1), where it is possible to use a
low-frequency, long-wavelength expansion, the growth rate
of the mode of wave vector k is given by

gk ¼
ffiffiffi
2

p

r
jkkj~v G� 3

2
~r 2k2? �

k2k

k2?
c

 !
ð3Þ
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where

c ¼ 1þ 1

2
b? � bk

� �
ð4Þ

~v�1 ¼ �
ffiffiffiffiffiffi
2p

p mp

pB

Z
v4?
4
d vk
	 
 @f 0ð Þ

@v2k
d3v ð5Þ

~r 2 ¼ mp

24pB

1

W2
p

Z
�v6?

@f 0ð Þ

@v2k
� 3v4? f 0ð Þ

 !
d3v ð6Þ

are assumed to be positive [Hellinger, 2007]. The maximum
growth rate is given by

gm ¼ 1

4
ffiffiffiffiffiffi
3p

p ~v

~r

G2

c1=2
; ð7Þ

and appears at k?m and kkm given by

k?m~r ¼
ffiffiffi
G
6

r
and kkm~r ¼

1

2
ffiffiffi
6

p G
c1=2

: ð8Þ

[11] For each (k, w) mode, the linear response of the
distribution function is given by

f 1ð Þ ¼ v?

2

kjjv?

kjjvjj � w
@f 0ð Þ

@vjj
� @f 0ð Þ

@v?

� �
B 1ð Þ
z

B0

: ð9Þ

[12] In the quasi-linear regime considered by Shapiro
and Shevchenko [1964], the space-averaged distribution
function h f i obeys the diffusion equation (in velocity
space)

@h f i
@t

¼
X
k

gk
jB 1ð Þ

z kð Þj2

B2
0

Qkh f i ð10Þ

where

Qkh f i ¼
1

4

@

@vk

k2kv
4
?

k2kv
2
k þ g2k

@h f i
@vk

 !(

þ 1

v?

@

@v?
v3?

@h f i
@v?

�
2k2kvkv

4
?

k2kv
2
k þ g2k

@h f i
@vk

 !)
; ð11Þ

supplemented by

@B 1ð Þ
z kð Þ
@t

¼ gkB
1ð Þ
z kð Þ ð12Þ

where gk refers to the instantaneous growth rate defined by
equations (1), (3)–(6) with f (0) replaced by h f i.

3. Numerical Schemes for VM Equations

[13] In order to address the nonlinear dynamics of mirror
modes, numerical simulations of the VM equations were
performed in one space dimension, by assuming variations
only along a direction (parametrized by the coordinate z)
making a prescribed angle q with the ambient field (taken in
the z-direction), usually corresponding to the largest linear
growth rate. In the (z, z)-plane, h refers to the direction
perpendicular to z, and x to the direction perpendicular to z.
The direction perpendicular to the (z, z)-plane, is parame-
trized by the coordinate y. Periodic boundary conditions are
assumed for the space variable. As already mentioned, both
hybrid PIC and Eulerian simulations of VM equations were
performed, the two methods appearing as complementary.
The former, based on a resolution of the Vlasov equation by
the characteristic method, is suitable for integration in large
computational domains because of its computational effi-
ciency. The latter, that is usually more accurate but also
more time consuming, was implemented in the case of
relatively small boxes. This algorithm that is free from
statistical noise is especially adapted to simulations close
to threshold. Although in this case, the distribution function
seems to remain largely unperturbed, a high resolution is
nevertheless required in the velocity space in order to make
Landau resonances well resolved. Both codes were exten-
sively tested and compared with each other. We checked
that the resulting structures are the same, and so are the
typical timescales.

3.1. Hybrid PIC Simulations

[14] We used a hybrid code based onMatthews [1994] for
a proton-electron plasma where electrons are considered as
a massless, charge neutralizing fluid, with a constant tem-
perature here taken almost zero, while the protons are
described by a particle-in-cell model and are advanced by
an implicit leapfrog scheme

vnþ1 � vn

Dt
¼ q

m
Enþ1=2 þ

vnþ1 þ vn

2
� Bnþ1=2

h i
ð13Þ

that requires the fields to be known at half time steps ahead
of the particle velocities, in order to guarantee a better
energy conservation. This is achieved by advancing the
current density to this time step with only one computa-
tional pass through the particle data at each time step. The
particle contribution to the current density at the relevant
mesh points is evaluated with bilinear weighting followed
by smoothing over three points. No smoothing is performed
on the electromagnetic fields, and no resistivity is included
in Ohm’s law. The magnetic field is advanced in time with a
modified midpoint method, which allows time substepping
for the advance of the field.
[15] A resolution of 1024 points is used for the space

variable in both simulations described below. In the former
(section 4.1) the mesh size is Dz = 2dp, while in the latter
(section 7) it is Dz = dp, where dp = vA/Wp is the proton
inertial length, defined as the ratio of the Alfvén velocity to
the ion gyrofrequency. Such a large computational box

A08219 CALIFANO ET AL.: NONLINEAR MIRROR MODES

3 of 20

A08219



enables the system to evolve freely, with negligible finite-
size effects. There are initially 500,000 macroparticles per
cell, in order to make the numerical noise as low as possible
with the available processor array. More specifically, the
noise level in one-dimensional particle simulations scaling
like the inverse of the particle number per cell, the large
number of particles we used is aimed to ensure a good
separation between the generated waves and the noise, both
for the magnetic fluctuations and the distribution function.
Such extremely high number of (macro) particles per cell is
not common in hybrid simulations. The evolution of non-
linear structures in cases not too close to threshold can be
captured in simulations with a number of particles per cell
smaller by three orders of magnitude [Baumgärtel et al.,
2003]. In both simulations, the time step for the particle
advance is Dt = 0.05/Wp, whereas the magnetic field B is
advanced with a smaller time step DtB = Dt/4.

3.2. The Eulerian Code

[16] This hybrid approach is based on a fluid description
of the electrons which, in the present simulations, are
assumed at zero temperature (in hybrid PIC simulations,
be = 10�2), and on an Eulerian integration scheme for the
VM equations. The latter advances the proton distribution
function fp in the four-dimensional phase space (z, vz, vh,
vy), using the electromagnetic splitting method proposed by
Mangeney et al. [2002], where the space and velocity
advection terms are advanced separately. This method
ensures that there will be no secular growth in the energy
conservation error. In particular, the advection equation is
solved by using a third order Van Leer scheme. The splitting
algorithm is coupled to the Current Advance Method
(CAM) introduced by Matthews [1994] and extended to
the hybrid case by Valentini et al. [2007]. Furthermore, by
assuming quasi-neutrality and neglecting the displacement
current, the electric field is calculated by means of a
generalized Ohm’s law including electron inertia, while
the magnetic field is obtained by solving the Faraday
equation.
[17] A computational domain of size Lz = 15 � 2p dp is

used, thus smaller than in hybrid PIC simulations. The mesh
sizes for the various variables are Dz = 0.73, Dvz = Dvh =
0.16, Dvy = 0.25.
[18] The initial conditions of all Eulerian simulations pre-

sented here are as follows. We assume an ambient homoge-
neous magnetic field in the form

B0 ¼ B0 cos qbez þ B0 sin qbeh ð14Þ

and a bi-Maxwellian normalized equilibrium distribution
function for the protons with a temperature anisotropy A =
T?/Tk, given by

f 0ð Þ ¼ 1

p3=2vthjjv2th?
exp

�
� 1

v2th?
sin2 qþ A cos2 q
	 


u2z

h
þ cos2 qþ A sin2 q
	 


u2h þ A� 1ð Þ sin 2q uzuh þ u2y

i�
; ð15Þ

where vth? = (2T?/mp)
1/2 and vthk = (2Tk/mp)

1/2 are the
proton perpendicular and parallel thermal velocities respec-
tively. We consider two different types of initial perturba-

tions. The first one corresponds to density and magnetic
fluctuations given by

df ¼ m1

XNm

m¼1

cos 2pmz=Lz þ fm

	 

=m ð16Þ

dBh ¼ m2

XNl

l¼1

cos 2plz=Lz þ fl

	 

=l; ð17Þ

where m1 and m2 are small coefficients, usually taken equal
to 10�3. The phases fm and fl are randomly chosen. The
second one consists in an initial magnetic hole or hump
without density fluctuations, and corresponds to

df ¼ 0 ð18Þ

dBh ¼ �a tanh2 z � z0ð Þ=Lh½ � � 1
	 


; ð19Þ

where the amplitude a is usually taken equal to 0.5 and the
width Lh to 5. The structure is centered in the computational
box by choosing z0 = Lz/2. The positive sign corresponds to
a magnetic depression and the negative one to a bump like
perturbation.

4. Simulations Near Threshold

[19] Simulations were performed both in an extended
domain and in a relatively small computational box, in
order to address the possible influence of finite-size effects.
As discussed below, such effects can for example prevent
the development of a quasi-linear regime and enhance
magnetic energy oscillations due to trapping. As previously
mentioned, different algorithms appear suitable in these
different configurations.

4.1. Dynamics in an Extended Domain

[20] These simulations were done using the hybrid PIC
algorithm. The system evolves from a bi-Maxwellian proton
distribution function with an inherent numerical noise. The
initial proton parameters are bk = 1 and b? = 1.857,
whereas the electrons are cold with be = 10�2. For these
parameters, G = 0.6, and the full kinetic linear theory
predicts a maximum growth rate g = 5 � 10�3 Wp for a wave
number direction making an angle q = 72.8� with the
ambient field. Note that the asymptotic expression, given in
section 2, predicts gm = 10�2 Wp. These parameters result
from a compromise between numerical constraints and the
aim to be as close as possible to threshold. The integration
being performed in a large domain (of size 2048 dp), a broad
range of modes is linearly unstable, even relatively close to
threshold. Simulations were also performed with b � 1,
leading to a qualitatively similar dynamics. We however
concentrate here on cold electrons, a regime permitting an
easier comparison with the theory that becomes more
complex when the electrons are warm.
[21] Figure 1 (top left) displays the gray scale plot of the

amplitude Bh of magnetic fluctuations, as a function of time
and space. Coherent structures in the form of magnetic
humps are seen to emerge relatively early. As time elapses,
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they exhibit a coarsening process leading to the persistence
at the end of the simulation of only a few intense and well-
separated magnetic peaks, in agreement with previous
simulations by Baumgärtel et al. [2003]. In order to
quantify the onset of the structures and their typical profile,
we plot in Figure 1 (top right) the skewness of the magnetic
fluctuations Bh, that starts around zero, rapidly increases
within the period 600–3000 Wp

�1 and saturates at a value
exceeding 2.5. The period of the rapid growth coincides
with that of intensive coarsening, and the evolution to a
significant positive value is consistent with the formation of
strong magnetic humps.
[22] The energy of magnetic fluctuations (Figure 1, left

bottom) first increases monotonically until 3000 Wp
�1 when

it rapidly saturates. Later on, both the skewness and the
fluctuation energy display only weak variations on long
timescales, associated with the slowing down of the coars-
ening effect. Figure 2 illustrates typical stages of this
evolution by displaying the profiles of magnetic fluctuations
Bh (top) and their Fourier spectra (bottom) at time t =
2000 Wp

�1 (left) during the period of active coarsening and
at the later time t = 10,000 Wp

�1 of the simulation (right).
[23] It is also of interest to analyze the global evolution of

the plasma in terms of the instantaneous distance to the
instability threshold. Figure 1 (right bottom) shows the time
evolution of this distance G (solid line) given by equation (1)
with f (0) replaced by the space-averaged instantaneous
proton distribution function. Dashed line corresponds to

Figure 1. Simulation of the mirror instability in an extended domain near threshold (bk = 1, T?/Tk =
1.857, and q = 72.8�). Gray scale plot of the magnetic fluctuation Bh as a function of time and space (left
top); Time evolution of skewness of Bh (right top), of fluctuating magnetic energy dB2/B0

2 (left bottom),
of the instantaneous distance from the threshold (right bottom): G (solid line) as given by equation (1) and
the corresponding bi- Maxwellian value G* (dashed line) obtained from equation (2).

Figure 2. Same conditions as Figure 1. (top) Profile and (bottom) spectrum of dBh at times t = 2000/Wp

(left) and t = 10000/Wp (right).
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the bi-Maxwellian expression G* calculated from equation
(2) with the instantaneous parallel and perpendicular betas.
A main observation is that G rapidly departs from G* (that
hardly changes) and displays a monotonic decrease, becom-
ing negative (at t � 2000 Wp

�1), while the energy of the
magnetic fluctuations is still growing. It saturates by
3000 Wp

�1, at about the same time as the skewness and
the energy of the magnetic fluctuations. The very different
behavior of G and G* indicates a significant distortion of the
proton distribution function during the evolution. In order to
make this observation more quantitative, let Df denote the
difference between the proton distribution function at times
t and 0. Figure 3 displays as gray scale plots the averaged
value of v?Df over regions where dBh/B0 > 0.01 (left panel)
and d Bh /B0 < �0.01 (right panel), at time t = 1000 Wp

�1

which roughly corresponds to the end of the linear phase.
During this period, the variation can be estimated by the
linear response of the distribution function f (1) given by
equation (9). On Figure 3, we thus superimpose the
contours of v? f (1) at maximum (left) and, symmetrically,
minimum (right) value of Bz

(1) for the linearly most unstable
mode. These extrema are supposed to mimic the high and
low regions of dBh. Solid and dashed curves denote positive
and negative values of v? f (1), respectively. We observe that
at maximum (minimum) of dBh the density of resonant
particles (with vk � 0) increases (decreases), whereas the
density of nonresonant particles decreases (increases) in
good agreement with the linear prediction. Note that the
noisy aspect of the distribution function perturbation in
magnetic humps is due to the poorer statistics in these
regions. These results are consistent with the schematic
Figure 2 of Southwood and Kivelson [1993] and similar to
the simulation results displayed in Figure 1 (top) of
Pantellini et al. [1995].
[24] A main question concerns the detailed nonlinear

processes leading to the saturation of the linear instability,
and their signature at the level of the ion distribution
function. Using a gray scale plot where here white corre-
sponds to negative values whereas black to positive ones,
Figure 4 (top) indeed reveals important modifications of the
space-averaged proton distribution function as measured by
v?Dh f i, where Dh f i = h f i �f (0) at two different times t =
2000/Wp (left) and t = 10,000/Wp (right). The significant

changes mainly affect the resonant particles (with vk � 0).
The two bottom panels of the figure show at these two times
the profiles (solid line) of h f i integrated over v?, together
with the corresponding initial profiles (dotted line).
The visible flattening of the distribution profile is confirmed
by detailed analysis of its behavior near vk = 0, which
shows that it is not parabolic in vk and consistent with @h f i/
@vk

2 � 0.
[25] This evolution of the distribution function can be

plausibly interpreted in terms of a diffusion in velocity
space, as predicted by the quasi-linear theory. To address
this question it would be necessary to resolve numerically
the full quasi-linear system (section 2). This project is
beyond the scope of this paper. Here we limit ourselves to
qualitatively estimate the effect of quasi-linear diffusion by
calculating Qk f

(0) (defined by equation (11)). Figure 5
shows the results of this calculation for the most unstable
(left) and a weakly unstable (right) modes. Solid and dashed
curves denote positive and negative values of Qk f

(0),
respectively. We see that the quasi-linear theory predicts a
preferable diffusion of particles with small parallel velocity
to regions with higher parallel velocity, in qualitative
agreement with the simulation results (Figure 4, top).
[26] These results lead to the conclusion that in an

extended domain near threshold, a quasi-linear regime can
exist during the early nonlinear phase. However, later on,
the onset of coherent structures invalidates the random
phase approximation of the quasi-linear theory. Further-
more, as previously noted on Figure 1 (bottom right), the
energy of the magnetic fluctuations continues to increase
even when the system is linearly stable, an effect which is
also at variance with the quasi-linear theory.
[27] The further evolution thus requires a different theoret-

ical approach, more suitable for describing the dynamics of
coherent nonlinear waves (see section 5.1). Moreover, as
already mentioned, the quasi-linear regime that assumes an
incoherent dynamics where the phase of the various modes
can be viewed as essentially random, requires a large number
of interacting modes and thus a large computational box. As
discussed in the next section, this transient is indeed absent in
a small computational domain where, after the linear phase,
the system directly enters a regime of structure formation.

Figure 3. Same conditions as Figure 1. Gray scale plots of v?Df averaged over regions where (left)
dBh /B0 > 0.01 and (right) dBh/B0 < �0.01, at time t = 1000/Wp. White corresponds to positive values and
black to negative ones. Superimposed are the contours of the linear prediction, v? f (1), at maximum (left)
and, symmetrically, minimum (right) of Bz

(1), for the most unstable mode. Solid and dashed lines denote
positive and negative values of v? f (1), respectively.

A08219 CALIFANO ET AL.: NONLINEAR MIRROR MODES

6 of 20

A08219



4.2. Dynamics in a Small Computational Domain

[28] As a first run (based on a Eulerian scheme) per-
formed in a small computational box, we consider a
condition close to threshold, namely bk = 6, q = 83.86�
and T?/Tk = 1.25. The run is initialized with a weak random
noise as indicated in section 3.2. Figure 6 displays the time
evolution of the linearly unstable modes and their nonlinear
saturation. The most unstable mode (m = 3) has a growth
rate 1.7 � 10�3, which compares well with the value 2 � 10�3

computed from the full kinetic theory. In spite of its
relatively small value, it significantly differs from the
asymptotic prediction gm = 3.6 � 10�2 (see section 2), since
in the conditions of the simulation G = 0.88 initially. Here
also the possibility of performing simulations very close to
threshold is limited by numerical resources. In physical
space, the evolution leads to the formation of a steady
magnetic hump with an anticorrelated density hole
(Figure 7). In this simulation in a small domain, which

Figure 4. Same conditions as Figure 1. Simulation results at times (left) t = 2000/Wp and (right) t =
10,000/Wp: (top) Gray scale plots of the proton distribution variation v?Dh f i (black corresponds to
negative values and white to positive ones). Dotted lines correspond to the contours of the initial
condition v? f (0). (bottom) Profiles (solid line) of the proton distribution function h f i integrated over v? ,
together with the initial profile (dotted line).

Figure 5. Schematic view of the prediction of the quasi-linear theory: Effect of the diffusion operator on
the initial proton distribution function Qk f

(0) (left) for the most unstable mode and (right) for a weakly
unstable mode. Solid (dashed) contours show positive (negative) values.
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involves a very low numerical noise, no flattening is visible
on the distribution function, even at short times, consistent
with the absence of a quasi-linear dynamics.
[29] Large values of the beta parameter were also observed

in space plasmas. For example, Soucek et al. [2008] report
values of bk = 14 and Leckband et al. [1995] mention
instances with b = 30 in the terrestrial magnetosheath. A
second simulation was thus performed at larger distance
from threshold by taking bk = 15 and T?/Tk = 1.4 with q =
78.53�, which corresponds to G = 7.4. Essentially the same
dynamics is observed, with nevertheless the formation of
structures with much larger amplitudes (Figure 8). It is
noticeable that in contrast with the dynamics in a large
computational domain, the energy of magnetic fluctuations
displays time oscillations whose amplitude is progressively
damped, suggesting the relaxation to a steady nonlinear
structure. This effect is shown in Figure 9 that displays the
grey scale plot of the magnetic fluctuations Bh as a function
of space and time (top) and the time evolution of the
magnetic-energy fluctuations dB2/B0

2 (bottom). This effect is
in fact a consequence of the size of the domain, and not of
the distance from threshold. Indeed, a PIC simulation with
the same physical parameters as that reported in Figure 1
but performed in a small box displays the same type of
oscillations. In both cases, their period is consistent with the
ion bounce time T = 2p/wtr, where wtr

2 = (1/2)vth?
2 kk

2(dB/B0),
suggesting that particle trapping is at the origin of this
effect. We also note on Figure 9 (top) that, in addition to
the main structure, a weaker one is visible during the
time interval 400 < t < 600. Afterward, it is subject to
corsening. A signature of this effect is conspicuous on the
time vatiation of the magnetic-energy fluctuations near t =
600.

5. Reductive Perturbative Expansion Near
Threshold

5.1. Asymptotic Theory

[30] Near threshold, the onset of coherent structures is
amenable to an asymptotic approach based on the remark

that, in this limit, linearly unstable modes are located at
large scales. This approach, implemented by Kuznetsov et
al. [2007a] by patching the linear kinetic theory with an
estimate of the nonlinear effects in the framework of the
drift-kinetic equation, is here revisited using a systematic
reductive perturbative expansion directly performed on the
VM equations.
[31] The equation for the mean proton velocity, as clas-

sically derived from the Vlasov equation, reads

du

dt
þ 1

r
rrr � p� e

mp

Eþ 1

c
u� B

� �
¼ 0; ð20Þ

where, for cold and massless electrons,

E ¼ � 1

c
u� j

ne

� �
� B; ð21Þ

with j = (c/4p)rrr� B. The ion pressure tensor is rewritten
as the sum of gyrotropic and gyroviscous contributions p =

p?n + pkt + P, with n = I � bb � bb and t = bb � bb, where

Figure 6. Time evolution of unstable modes in an
Eulerian simulation very near threshold (bk = 6, temperature
anisotropy T?/Tk = 1.25, with q = 83.86�).

Figure 7. Magnetic humps and density holes formed as
the development of the mirror instability presented in
Figure 6. Here and in the following figures displaying results
of the Eulerian simulations, dashed lines refer to initial
conditions and solid lines to the final time of the simulations.
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bb = B/jBj is the unit vector along the local magnetic field.
Equation (20) is then rewritten in the form

r
du

dt
¼ �rrr p? þ jBj2

8p

 !
þ 1þ 4p

jBj2
p? � pjj
	 
 !

B � rrrB

4p

� bb jBj2
4p

bb � rrr
� �

1þ 4p

jBj2
p? � pjj
	 
 !

�rrr �P: ð22Þ

[32] Projecting this equation on the plane perpendicular to
the local magnetic field then gives

n � r du
dt

¼ �rrr p? þ jBj2

8p

 !

þ 1þ 4p

jBj2
p? � pjj
	 
 !

B � rrrð ÞB
4p

þ B � rrrð Þ p? þ jBj2

8p

 !
B

jBj2

� 1þ 4p

jBj2
p? � pjj
	 
 !

B � rrrð Þ jBj2

2

 !
B

4pjBj2

� n � rrr �P: ð23Þ

[33] In order to address the asymptotic regime, we rescale
the independent variables in the form X =

ffiffiffi
e

p
x, Y =

ffiffiffi
e

p
y,

Z = ez, T = e2t, where e measures the distance to threshold,
and expand any field 8 in the form

8 ¼
X1
n¼0

en=28n=2; ð24Þ

as indicated in Appendix A asymptotics. At this step, a
remark is in order. The ion bounce frequency in a structure
of size e�1 is of order e3/2 [Pantellini et al., 1995], suggesting

Figure 8. Magnetic and density fluctuation profiles at
initial and final times of the simulation, in the case T?/Tk =
1.4, bk = 15 and q = 78.53�.

Figure 9. Grey scale plot of the magnetic fluctuations Bh as a function of space and time and time
evolution of the magnetic-energy fluctuations dB2/B0

2 in the conditions of Figure 8.
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a timescale e�3/2 for the flattening of the distribution function
near the zero parallel velocity. This timescale thus appears
shorter than the one assumed by the performed scaling. As
discussed later, this flattening process turns out to have a
negligible effect on the nonlinear dynamics during the
considered timescale.
[34] When retaining the two first nontrivial orders, we get

(rrr? = (@X, @Y) denoting the transverse gradient)

rrr? p
1ð Þ
? þ B0B

1ð Þ
z

4p

� �
þ e rrr? p

2ð Þ
? þ B0B

2ð Þ
z

4p
þ

B 1ð Þ
z

	 
2
8p

 !(

� 2

b?
1þ

b? � bjj

2

� �
p

0ð Þ
? @Z

B
3=2ð Þ
?
B0

 !

þrrr? �P 2ð Þ
? þ @ZP

3=2ð Þ
?Z

)
¼ O e2

	 

; ð25Þ

that expresses the condition of pressure balance.
[35] The condition rrr? � B?

(3/2) = 0 established in
Appendix B, together with the divergenceless condition
rrr? � B?

(3/2) + @ZBz
(1) = 0, implies

B
3=2ð Þ
? ¼ �D?ð Þ�1rrr?@ZB

1ð Þ
z : ð26Þ

[36] Here, the subscript ? refers to vector component
perpendicular to the ambient field (taken along z). Defining
bz = Bz

(1) + eBz
(2) and p? = p?

(1) + ep?
(2), we can write at the

order of the expansion

rrr? p? þ B0

4p
bz

�
þ e

b2z
8p

þ 2"

b?
1þ

b? � bjj

2

� �
p

0ð Þ
? D?ð Þ�1@ZZ

bz

B0

�
þ e rrr �Pð Þ 5=2ð Þ

? ¼ O e2
	 


; ð27Þ

where the last term in the LHS, given by equation (C9), is
also a transverse gradient.
[37] Using equations (C2) and (C9) to express the per-

pendicular pressure and the gyroviscous force and rewriting

B0
2/8p = p?

(0)/b?, we obtain in the case of a bi- Maxwellian
equilibrium ion distribution function

� b?
b?
bjj

� 1� 1

b?

 !
B0bz

4p
þ e

ffiffiffi
p

p

vth jj
�H @Zð Þ�1@T

b2
?

bjj

B0bz

4p

� ep 0ð Þ
?

"
9

4b?
r2LD?

bz

B0

þ 1� 4
b?
bjj

þ 3
b?
bjj

 !2
0@ 1A bz

B0

� �2
#

þ e
b2z
8p

þ e 2�
bjj

b?

� �
p

0ð Þ
? D�1

? @ZZ
bz

B0

� 3

4
e 1� b?

bjj

 !
p

0ð Þ
? r2LD?

bz

B0

¼ O e2
	 


: ð28Þ

[38] We note that the time derivative and the Hilbert
transform H originate from Landau resonance. The param-
eter rL = vth?/Wp is the ion Larmor radius. The two nonlinear
terms, when put together, involve a coefficient l that
simplifies when noticing that it can be evaluated

by neglecting the distance to threshold, thus making the
replacement b?/bk = 1 + 1/b?. This gives

l ¼ 1� 4
b?
bjj

þ 3
b?
bjj

 !2

þ 1

b?

¼ 3

b?
1þ 1

b?

� �
: ð29Þ

[39] We thus obtain the asymptotic equation governing
the nonlinear dynamics of mirror modes near the instability
threshold in the form

@T
bz

B0

¼
vth jjffiffiffi
p

p
bjj

b?
�H@Zð Þ 1

e
b?
bjj

� 1� 1

b?

 !
bz

B0

(

þ 3

4b?
r2LD?

bz

B0

� 1

b?
1þ

b? � bjj

2

� �
D�1

? @ZZ
bz

B0

� 3

2

1þ b?

b2
?

 !
bz

B0

� �2
)

¼ O eð Þ: ð30Þ

[40] This equation can be viewed as the linear dispersion
relation of large-scale mirror modes retaining leading order
FLR corrections, supplemented by dominant nonlinear
contributions. It is noticeable that kinetic effects (such as
Landau and FLR effects) contribute only linearly.
[41] We now define c = 1 + (b? � bk)/2 and characterize

the regime of linear stability or instability by the parameter
s = sgn(b?/bk � 1 � 1/b?). The expansion parameter e is
related to the distance to threshold by the condition
jb?/bk � 1 � 1/b?j = ec/b?, or in other words e = G*/c
with G* defined in equation (2) as the bi-Maxwellian
threshold parameter. We then perform a simple rescaling by
introducing the new longitudinal and transverse coordinates
x = (2/

ffiffiffi
3

p
)c1/2rL

�1Z, R0
? = (2/

ffiffiffi
3

p
)c1/2 rL

�1R?, and the new
time variable t = (2/

ffiffiffi
3

p
)(
ffiffiffi
p

p
b?)

�1(cbk/b?)
3/2WpT. We also

write

bz=B0 ¼ 2cb? 1þ b?ð Þ�1
U : ð31Þ

[42] The equation then reduces to

@tU ¼ �H@x sU þD?U �D�1
? @xxU � 3U2

� �
; ð32Þ

up to corrections of order e.
[43] Equation (32) further simplifies when the spatial

variations are limited to a direction making a fixed angle
with the ambient magnetic field. After a simple rescaling,
one gets

@TU ¼ bKX s þ @XXð ÞU � 3U 2
� �

; ð33Þ

where X is the coordinate along the direction of variation
and KX = �H@X is a positive operator whose Fourier
transform reduces to the multiplication by the wave number
absolute value.
[44] Equation (32) possesses the remarkable property of

being of the form

@TU ¼ �bKZdF=dU ; ð34Þ
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where F =
R
[�s

2
U2 + U

2
D?

�1@ZZU + 1
2
(r?U)

2 + U3] d3R has
the meaning of a free energy or a Lyapunov functional. This
quantity can only decrease in time [Kuznetsov et al., 2007a].
[45] A main property of equation (32) is the onset of a

finite-time singularity, for arbitrary initial conditions when
e > 0 and under the assumption that they are large enough
when e < 0. Near blowup, F is negative and dominated by
the
R
U 3d3R contribution that can be viewed as proportional

to the skewness of the magnetic fluctuations. This indicates
that blowup solutions of the asymptotic equation (33) take
the form of magnetic holes. This property should however
be taken with caution because, unless possibly extremely
close to threshold (a regime almost impossible to achieve in
simulations and insufficiently generic to be relevant for
spatial observations), the involved scalings lead to an early
breakdown of the asymptotics. Specifically, the size of the
structures should be much larger than the ion Larmor radius,
in order to make nonlinear FLR corrections irrelevant. In
fact, the singularity essentially appears as the signature of a
subcritical bifurcation (addressed in detail by Kuznetsov et
al. [2007b]) where the hydrodynamic nonlinearities enhance
the instability, leading to finite-amplitude solutions where
neglected contributions, such as the nonlinear kinetic
effects, become relevant. As discussed below, nonlinear
kinetic effects do not just provide a local smoothing of
the singularity but, especially above threshold, prevent the
formation of magnetic holes driven by the hydrodynamic
nonlinearities. This suggests that the origin of the observed
magnetic holes is more complex. A few scenari are dis-
cussed in sections 6 and 7.

5.2. Beyond the Asymptotics: Saturation by Nonlinear
FLR Effects

[46] Retaining the saturating effects of nonlinear kinetic
phenomena is not possible within a rigorous asymptotics
but their effects can nevertheless be described phenomeno-
logically. Models previously suggested in order to interpret
the nonlinear saturation of the mirror instability were based
on the cooling of a population of trapped particles, neglect-
ing FLR corrections [Kivelson and Southwood, 1996;
Pantellini, 1998]. These models mainly explain the forma-
tion of deep stationary magnetic holes, while, as seen in
section 2, Vlasov simulations of the mirror instability lead
to the formation of magnetic humps above threshold. They
also do not reproduce the phenomenon of bistability. A
more quantitative, although still phenomenological descrip-
tion was recently suggested by Pokhotelov et al. [2008],
assuming a flattening of the equilibrium ion distribution
function on a range that extends with the wave amplitude.
This correction, that tends to reduce the Landau damping,
results in a renormalization of the time derivative in
equation (33) by a factor that depends on the wave ampli-
tude and reduces to unity in the zero amplitude limit. The
leading order correction arising in this factor scales like
U1/2, consistent with a bounce time scaling like U�3/2. This
correction, aimed to model the effect of ion particle bounc-
ing, is nevertheless a subdominant term that does not
significantly affect the dynamics on the timescale of the
present asymptotics.
[47] It turns out that a different saturating process that

affect the geometry of the structures can be phenomenolog-
ically supplemented to the above asymptotic equation by

retaining the local variation of the ion Larmor radius rL,
making the resulting model consistent with VM simulations
[Kuznetsov et al., 2007a]. The argument is that in regions of
weaker magnetic field (and/or large T?), the ion Larmor
radius is larger, making stabilizing effects of FLR correc-
tions more efficient than in the linear regime. Consequently,
the mirror instability is more easily quenched in magnetic
field minima than in maxima, making magnetic humps
more likely to form in the saturating phase of the mirror
instability.
[48] More quantitatively, due to the conservation of the

magnetic moment, the ion Larmor radius satisfies rL
2 /

T?/jBj2 / 1/jBj � 1/Bz. Its variation can be retained in
equation (32) by replacing the term D?U by [1/(1 +
aU)]D?U, where a, given by equation (36) below, results
from the rescaling procedure. In addition to the Laplacian,
which originates from the leading order expansion of a
nonlocal operator associated with FLR corrections
[Pokhotelov et al., 2005], it is possible to add the next order
contribution in the form (4/9)[v/(1 + aU)2]D2

?U. This extra
term quantitatively improves the model predictions, in that it
prevents the formation of regions of very low magnetic field.
On the other hand, higher order terms do not drastically affect
the value of magnetic field minimaBmin =B0(1 +aUmin). The
model equation that was numerically integrated then reads

@TU ¼ bKX sU � 3U 2 þ @2
X U

1þ aU
� 4n @4

X U

9 1þ aUð Þ2

" #
; ð35Þ

where the coefficient v is related to the size of the
computational domain. The parameter a is a combination of
the bi-Maxwellian distance to threshold and of the value ofb?
given by

a ¼ 2�cb?
1þ b?

¼ 2b?
1þ b?

G*: ð36Þ

[49] Note that in addition to the sign of s that character-
izes the system relatively to the linear instability, and to v
that fixes the domain size, the present model only involves
the parameter a, related to the distance to threshold. It turns
out that the magnetic field minima Bmin are found to be
independent of the value of a.
[50] Equation (35) was integrated in a periodic domain of

size 2p/
ffiffiffi
v

p
with a pseudo spectral method based on Fourier

expansions. Linear contributions, including, in addition to
the term proportional to s, the Laplacian and biLaplacian
terms without the denominators, are integrated exactly. The
remaining nonlinear terms are treated with a second-order
Adams-Bashforth scheme. A first integration of the model
equation above threshold (s = +1) was performed in a
domain containing 512 grid points, with n = 0.01 and
starting with a small random noise. Furthermore, bk = 6
and T?/Tk = 1.25, which corresponds to a = 1.54. We
observe the formation of magnetic humps whose number
decreases as time elapses, by a coarsening process very
similar to that observed in the Vlasov simulations when
assuming the same plasma parameters. Figure 10 exem-
plifies this evolution by displaying four snapshots at times
t = 3, 5, 9 and 10. As already mentioned, the formation of
magnetic humps when the variations of the local Larmor
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radius is retained can be understood on the basis that in
regions of weak magnetic field (and large perpendicular
temperatures), the ion Larmor radius is larger, making the
stabilizing effect of finite Larmor radius corrections more
efficient than in the linear regime. The mirror instability is
thus more easily quenched in magnetic field minima than in
maxima, making magnetic humps more likely to form.
[51] In order to address the influence of the parameter a

on the nature of the magnetic structures, we proceed as
Génot et al. [2006], and introduce the third standardized
moment or skewness S of the magnetic fluctuations, defined
as the ratio of the third moment about the mean divided by
the third power of the standard deviation. It is noticeable

that S is not constant during the simulation, in that it
displays significant jumps each time a structure disappears.
Nevertheless, after a few steps, the coarsening becomes
extremely slow and we resorted to retain the value of the
skewness in this quasi-stationary regime. The resulting
variation of the skewness with the parameter a is displayed
in Figure 11 that summarizes the results of a series of
simulations, starting with an initial random perturbation
whose amplitude is small in the simulations above threshold
and much larger below threshold. These simulations were
performed in a domain containing 2048 grid points with n =
10�3. The formation of magnetic holes is illustrated in
Figure 12 which displays various structures which develop
with a negative skewness. Slightly above threshold (a =
0.05), deep holes are formed whose minima are narrow and
flat. In the subcritical case and the same value of a, holes
are wider and magnetic field maxima slightly smaller, but
the minima are identical. As the value of sa is decreased to
�0.3 and �0.4, holes become less deep in this unit (their
depth remains the same in physical units) and more spiky.
Below this value of sa, the structure relaxes after a while
toward the trivial solution.

6. Persistence of Large-Amplitude Magnetic
Holes

[52] In the previous sections, we presented numerical
evidence that the nonlinear development of the mirror
instability leads to the formation of magnetic humps (and
density holes). Magnetic holes are also predicted below
threshold by the model discussed in section 5.2, as an effect
of bistability. It is thus of interest to ask whether initially
prescribed large-amplitude magnetic depressions are pre-
served by the evolution of the VM equations in a mirror
unstable plasma. For this purpose, we performed Eulerian
integrations of these equations in the conditions described
above, using bk = 6, q = 83.82� and T?/Tk = 1.36, a regime
close to the instability threshold. The run is initialized with a
strong magnetic hole with a maximal amplitude exceeding
50% of the ambient field magnitude, with no density
perturbations. We observe on Figure 13 the formation of a

Figure 10. Time evolution of magnetic structures resulting
from the mirror instability in the framework of the
phenomenological model for a = 1.54, n = 10�2 and a
weak initial noise. Panels are displayed at times t = 3, 5, 9,
and 10 (from top to bottom). The horizontal axis refers to
grid point numbers.

Figure 11. Variation of the skewness with the parameter
sa, as predicted by the phenomenological model.
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density hump and the persistence of the magnetic hole that
evolves slightly, leading to the development of an overshoot
qualitatively similar to Cluster observations reported by
Génot et al. [2006]. A similar evolution is observed in
Figure 14 at larger distance from threshold (bk = 6, T?/Tk =
1.5). The overshoot is however more important.
[53] In order to test the bistability regime, we used the

same initial conditions and kept all the plasma parameters
fixed, except that now the plasma is strongly stable (bk = 6,
T?/Tk = 1). Figure 15 shows than in this case also magnetic
holes are preserved but, in contrast with the supercritical
regime, do not develop overshoots. Note that in such a
stable plasma, initial magnetic humps with no density
perturbations cannot maintain, the system rapidly relaxing

to the trivial solution. A detailed theory of the geometry of
the nonlinear mirror structures is delicate. A partial
understanding is nevertheless provided by an energy
minimization argument in the simplified framework of
usual anisotropic magnetohydrodynamics [Passot et al.,
2006]. The component of the magnetic field perpendicular
to the (k, B0) plane, is like the longitudinal component,
symmetric with respect to the center of the magnetic hole

Figure 12. Magnetic holes predicted by the phenomen-
ological model for sa = 0.05, �0.05, �0.3, �0.4 (from top
to bottom), when initialized with a random noise of small
amplitude when s = +1 (over threshold) and of large
amplitude when s = �1 (below threshold).

Figure 13. Persistence of initial perturbations in the form
of a (top) magnetic hole and (middle) resulting density
hump for bk = 6 and T?/Tk = 1.36, with q = 83.82�. The
bottom panel displays the magnetic field component in the
direction perpendicular to the plane defined by the ambient
field and the direction of spatial variation.
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(Figure 13, bottom). This property contrasts with all previous
soliton models based on anisotropic Hall-MHD [Stasiewicz,
2004a, 2004b; Mjølhus, 2006], where it is found to be
antisymmetric. Similar signatures are observed in hybrid
PIC simulations of nonpropagating rarefractive solitary
structures generated by particle injection [Baumgärtel et
al., 2005]. Their symmetry properties however suggest that
they do not correspond to the same branch of solutions as the
slow magnetosonic solitons, in contrast with the claim by
Stasiewicz [2004b].

7. Mirror Instability Far From Threshold

[54] In order to address the nonlinear development of the
mirror instability far from threshold, we performed hybrid
PIC simulations in an extended domain with bk = 1 and
T?/Tk = 4, with q = 50.5� corresponding to a maximum
growth rate g = 0.156 Wp.
[55] Figure 16 displays the evolution in the same format

as in Figure 1. A large number of magnetic humps is formed
in the early nonlinear phase. They evolve in time but
coarsening turns out to be significantly less efficient than
close to threshold. Furthermore, at long times (typically t >
100 Wp

�1), one can observe a slow motion of some of the
structures. Other important differences with respect to the

simulation near threshold (section 4.1) are visible on the
skewness (Figure 16, right top) and on the energy of
magnetic fluctuations (Figure 16, left bottom) that, after a
brief increase, both display a significant decay. In particular
the skewness becomes negative, which reflects a transfor-
mation of the early time magnetic humps into magnetic
depressions. This transition is illustrated in Figure 17 that
displays the magnetic fluctuations in a quarter of the
computational domain, at various instants of time: while
magnetic humps are visible at early times, the long-time
regime (Figure 17, right bottom) clearly displays magnetic
holes.
[56] Another important difference concerns the parameter

G that measures the distance from threshold, as well as the
bi-Maxwellian estimate G*. They vary in a similar way,
remaining close to each other (Figure 16, right bottom). In
contrast with the near-threshold simulation in a similar
computational domain, G saturates at a positive value that
is essentially preserved until the end of the simulation. The
proximity of G and G* indicates that the distribution remains
essentially bi-Maxwellian. This property is supported by
inspection of the distribution functions displayed in
Figure 18. The changes Dh f i affect a broader region of
the velocity space than in the near-threshold simulation and
it is compatible with a difference between two, essentially

Figure 14. Persistence of a (top) magnetic hole and
(bottom) resulting density hump at relatively large distance
from threshold (bk = 15, T?/Tk = 1.5, with q = 83.82�).

Figure 15. Persistence of a (top) magnetic hole and
(bottom) resulting density hump, in a plasma with T? = Tk
and bk = 6, with q = 83.82�.
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bi-Maxwellian distribution functions. Detailed analysis of
the profile h f i confirms this Gaussian form (except in the
wings).
[57] A significant result of this simulation concerns the

transition from magnetic humps to holes. The question
arises of the role of the parameter bk which, together with
the distance from threshold, control the instability dynamics.
We noted the importance of bk by performing a similar
simulation with bk increased from 1 to 2. In the latter case,
the skewness remains positive and magnetic holes do not
form. This remark is consistent with the energetic stability

argument given by Passot et al. [2006], but a detailed
analysis of this transition requires further investigations.

8. Conclusion

[58] Numerical investigations of the mirror instability in
one space dimension, based on the Vlasov-Maxwell equa-
tions, demonstrate that the nonlinear saturation is associated
with the formation of magnetic humps (and anticorelated
density holes). The early nonlinear dynamics near threshold
is sensitive to the size of the integration domain. In an

Figure 16. Evolution in an extended domain, for bk = 1, T?/Tk = 4 and q = 50.5�. Gray scale plot of the
magnetic fluctuation Bh as a function of time and space (left top); Time evolution of skewness of Bh (right
top), of fluctuating magnetic energy dB2/B0

2 (left bottom), of the instantaneous distance from the threshold
(right bottom): G (solid line) as given by equation (1) and the corresponding bi-Maxwellian value G*
(dashed line) obtained from equation (2).

Figure 17. Profiles of dBh as a function of z in a fraction of the simulation box, in the conditions of
Figure 16. From left to right and top to bottom: t = 60/Wp, t = 100/Wp, t = 150/Wp, and t = 600/Wp.
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extended domain, it is indeed well described by the quasi-
linear theory that involves the diffusion of particles essen-
tially in the longitudinal velocity space and leads to a
flattening of the distribution function near its maximum.
After a while, the system nevertheless evolves toward a
different regime, associated with the formation of coherent
structures in the form of magnetic humps. During this
phase, the linear growth rate calculated from the instanta-
neous distribution function is negative but the instability
still proceeds due to hydrodynamic type nonlinearities. As
time evolves, a coarsening phenomenon is observed, with
only a few high amplitude peaks surviving, whose evolution
becomes extremely slow. In a small domain, in contrast, the
system is too much constrained to develop a quasi-linear
dynamics and directly evolves toward structure formation
with damped temporal oscillations viewed as the signature
of particle trapping.
[59] In order to describe the structure formation, a reduc-

tive perturbation analysis on the Vlasov-Maxwell system
near threshold has been performed. It led to an asymptotic
pseudodifferential equation where kinetic effects arise at a
linear level only. This equation develops a finite-time
singularity, indicating the existence of a subcritical bifurca-
tion and the formation of large-amplitude structures. Satu-
ration of the mirror instability is thus not amenable to a
perturbative approach. A mechanism based on the local
variations of the ion Larmor radius, was thus phenomeno-
logically supplemented. In contrast with other models where
saturation is due to the cooling of a population of trapped
particles, the resulting equation correctly reproduces the
dynamical evolution observed in numerical simulations of
VM equations in a small computational box, such as the
development of magnetic humps from an initial noise, and
the existence of stable large-amplitude magnetic holes

below threshold. Such simulations also display the exis-
tence of large amplitude solutions in the form of magnetic
holes slightly above threshold, although there is no indica-
tion that these solutions can be obtained from direct
saturation of the mirror instability.
[60] In small domains, increasing distance from threshold

does not lead to any qualitative change, but only to different
values of the skewness parameter. This contrasts with the
dynamics in large simulation boxes. In this case, at suffi-
ciently large distance from threshold and for relatively small
values of beta (kept nevertheless of order unity), the energy
of the magnetic fluctuations displays a maximum at the time
where the linear instability saturates, followed by a drastic
reduction associated with the gradual transformation of
magnetic peaks into magnetic holes. The instantaneous
growth rate, that does not significantly depart from the bi-
Maxwellian estimate, remains positive. This scenario could
provide a realistic mechanism for the generation of mag-
netic holes in space plasmas at relatively small beta where
they are indeed preferably observed [Joy et al., 2006;
Soucek et al., 2008]. A similar transition from humps to
holes is also observed in a domain that expands in time in
order to model the magnetosheath plasma [Trávnı́ček et al.,
2007; V. Génot et al., Mirror structures above and below the
linear instability threshold: Cluster observations, fluid model
and hybrid simulations, submitted to Annales Geophysicae,
2008]. Further work is needed to address the possible
relations between the results of the two simulations. Never-
theless, in both cases, the magnetic holes are not directly
produced by the nonlinear saturation of the mirror instability,
but are rather outcome of nontrivial nonlinear evolution. This
remark could also apply to magnetic holes observed in space
plasmas. To support this conjecture, we note that the simu-
lation discussed in section 4.1, and a similar one (with bk = 3,

Figure 18. Same conditions as Figure 16. Simulation results at times (left) t = 60/Wp and (right) t =
100/Wp: (top) Gray scale plots of the proton distribution variation v?Dh f i (black corresponds to negative
values and white to positive ones). Dotted lines correspond to the contours of the initial condition v? f (0).
(bottom) Profiles (solid line) of the proton distribution function h f i integrated over v?, together with the
initial profile (dotted line).
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T?/Tk = 1.4, q = 72.4�), that both involve parameters for
which Soucek et al. [2008] observe magnetic holes, exhibit
stable magnetic humps.
[61] Several other problems remain open. From a theo-

retical perspective, it is interesting to ask whether there exist
conditions (in very large domains and/or very close to
threshold) where the mirror instability saturates by quasi-
linear effects. Numerical limitations preclude to study such
questions and also make difficult to obtain evidence of the
singularity predicted by the reductive perturbative expan-
sion. These questions are probably not of importance for the
understanding of mirror structures observed in space plas-
mas but could shed light on the role of the various
microscopic phenomena that govern their formation and
stability. Another interesting issue concerns the dimension-
ality of the structures. Again because of numerical limita-
tions, the computations were performed in one space
dimension. Such an assumption could be too constraining,
especially when the beta of the plasma reaches very large
values. This problem is essentially open. We nevertheless
mention the work of Constantinescu [2002] which provides
the explicit form of the linear mirror mode with axial
symmetry. Furthermore, we have analyzed in the present
paper simulations close to threshold where trapped particles
seemed to play a rather limited role on the long-time
dynamics of the mirror structures. It is natural to ask
whether this conclusion still holds further away from onset,
or in deep magnetic holes. Although possible mechanisms
for the formation of magnetic holes have been proposed, a
clear picture is still missing and observational evidences are
needed to confirm or infirm the suggested ideas. In partic-
ular, a distinction between mirror structures (immobile in
the plasma frame) and magnetosonic solitons (whose prop-
agation velocity is nonzero but can be quite small) could
result from an analysis of their magnetic hodographs,
obtained from satellite data. Another issue concerns mag-
netic holes observed in the solar wind by Stevens and
Kasper [2007], whose size can reach several hundreds to
one thousand ion gyroradii. Are they also associated with
the mirror instability, as seemed to be implied by their
analysis, and if so, by which mechanism can they reach
such large sizes?

Appendix A: Perturbative Solution of the Vlasov
Equation

[62] We consider the Vlasov equation for the distribution
function of each species (dropping the corresponding sub-
script index r) in the form

@t f þ v � rrrð Þf þ q

m
Eþ v� Bð Þ � rrrv f ¼ 0; ðA1Þ

where it is convenient to express the velocity v in a
cylindrical coordinate system by writing v = (v? cos f, v?
sin f, vk) and rrrv = (cos f @v? � (sin f/v?)@f, sin f @v? +
(cos f/v?) @.f., @vk). One then has

v� Bð Þ � rrrv ¼ � Bz@f þ cosfBy � sinfBx

	 

D

þ vjj=v?
	 


cosfBx þ sinfBy

	 

@f; ðA2Þ

where D = v? @vk � vk @v?. Furthermore, neglecting the
displacement current that is irrelevant in this low-frequency
asymptotics, the Maxwell equations are written

1

c
@tB ¼ �r� E ðA3Þ

r � B ¼ 4p
c

X
r

qrnr

Z
vfrd

3v ðA4Þ

r � E ¼ 4p
X
r

qrnr

Z
frd

3v: ðA5Þ

[63] As suggested by the linear instability growth rate
near threshold (equation (3)), the independent variables are
rescaled in the form X =

ffiffiffi
e

p
x, Y =

ffiffiffi
e

p
y, Z = ez, T = e2t,

where e measures the distance to threshold. Furthermore,
suppressing the species index to simplify the writing, the
proton distribution function is expanded in the form

f ¼ f 0ð Þ þ ef 1ð Þ þ e3=2f 3=2ð Þ þ e2f 2ð Þ þ � � � : ðA6Þ

[64] Similarly the magnetic field is written (we here
denote by the subscript ?, the transverse component of a
vector whose two components are referred to by the x and y
indices)

B? ¼ e3=2B 3=2ð Þ
? þ e5=2B 5=2ð Þ

? þ � � � ðA7Þ

Bz ¼ B0 þ eB 1ð Þ
z þ e2B 2ð Þ

z þ � � � : ðA8Þ

[65] From the Faraday equation and the assumption of
cold and massless electrons that implies E � B = 0, one has
for the electric field

E? ¼ e5=2E 5=2ð Þ
? þ e7=2E 7=2ð Þ

? þ � � � ðA9Þ

Ez ¼ e4E 4ð Þ
z þ e5E 5ð Þ

z þ � � � : ðA10Þ

[66] Introducing the ion gyrofrequency W = eB0/(m c) and
expanding the Vlasov equation to the successive orders, one
first gets W@f f

(0) = 0 and W@f f
(1) = 0. The (normalized)

equilibrium distribution function is taken bi-Maxwellian, in
the form

f 0ð Þ � 1

p3=2vthjjv
2
th?

exp�
v2jj

v2
thjj

þ v2?
v2th?

 !
: ðA11Þ

[67] On the other hand, f (1) = f (1), where the overline
indicates averaging on the gyroangle f (the fluctuating part
will be denoted by a tilde).
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[68] At the next orders, one has

W@ff 2ð Þ ¼ v? cosf @X þ sinf @Yð Þf 3=2ð Þ þ vjj@Zf
1ð Þ ðA12Þ

W@ff 3ð Þ ¼ v? cosf @X þ sinf @Yð Þf 5=2ð Þ þ @T f
1ð Þ þ vjj@Zf

2ð Þ

þ W

"
� B 1ð Þ

z

B0

@ff
2ð Þ þ cosf

B 3=2ð Þ
y

B0

� sinf
B 3=2ð Þ
x

B0

 !

� Df 3=2ð Þ þ
vjj

v?
cosf

B 3=2ð Þ
y

B0

þ sinf
B 3=2ð Þ
x

B0

 !
@ff

3=2ð Þ

#
:

ðA13Þ

and

W@ff 3=2ð Þ ¼ v? cosf @X þ sinf @Yð Þf 1ð Þ

þ W cosf
B 3=2ð Þ
y

B0

� sinf
B 3=2ð Þ
x

B0

 !
Df 0ð Þ ðA14Þ

W@ff 5=2ð Þ ¼ v? cosf @X þ sinf @Yð Þf 2ð Þ þ vjj@Zf
3=2ð Þ

þ q

m
cosfE 5=2ð Þ

x þ sinfE 5=2ð Þ
y

� �
@v? f

0ð Þ

þ W

"
� B 1ð Þ

z

B0

@ff
3=2ð Þ þ cosf

B 5=2ð Þ
y

B0

� sinf
B 5=2ð Þ
x

B0

 !

� Df 0ð Þþ cosf
B 3=2ð Þ
y

B0

� sinf
B 3=2ð Þ
x

B0

 !
Df

1ð Þ
#

ðA15Þ

where, for convenience, integer and noninteger orders are
considered separately. The solvability of equation (A15)
supplemented by equations (A12) and (A14), implies
f (3/2) = 0. Near threshold, it is useful to add the solvability
conditions at the two leading orders and write from
equations (A12) and (A13)

� v?h sinf @X � cosf @Yð Þ@f f 3=2ð Þ þ ef 5=2ð Þ
� �

i

þ e@T þ vjj@z
	 


f
1ð Þ þ evjj@z f

2ð Þ

� eWh cosf
B 3=2ð Þ
x

B0

þ sinf
B 3=2ð Þ
y

B0

 !
D�

vjj

v?

� �
v?f

1ð Þ
� �

i ¼ 0:

ðA16Þ

[69] Furthermore, equations (A14) and (A12) are solved as

ef 3=2ð Þ ¼ v?

W
sinf @X � cosf @Yð Þf 1ð Þ

þ sinf
B 3=2ð Þ
y

B0

þ cosf
B 3=2ð Þ
x

B0

 !
Df 0ð Þ ðA17Þ

and

ef 2ð Þ ¼ � v2?
4W2

cos 2f @XX � @YYð Þ þ 2 sin 2f @XY½ � f 1ð Þ

� 1

4W
cos 2f @X

B 3=2ð Þ
y

B0

� @Y
B 3=2ð Þ
x

B0

 !"

� sin 2f @X
B 3=2ð Þ
x

B0

� @Y
B 3=2ð Þ
y

B0

 !#
v?Df 0ð Þ: ðA18Þ

[70] At the order of the present approximation, it is
possible in (A18) to make the replacement

f
1ð Þ ¼ v?

2vjj
Df 0ð Þ B

1ð Þ
z

B0

¼ � 1

v2
thjj

� 1

v2th?

 !
v2?f

0ð Þ B
1ð Þ
z

B0

: ðA19Þ

[71] Defining bz = Bz
(1) + e Bz

(2) and F = f (1) + e f (2), it is
possible at the order of the present approximation, to replace
Bz
(1) by bz and f (1) by F in the terms preceded by e. We get

e@T þ vjj@Z
	 


F ¼ � v?

2
@v? f

0ð Þ e@T þ vjj@Z
	 
 bz

B0

þ v?

2
@vjj f

0ð Þ@Z
bz

B0

� e@ZA ðA20Þ

with

A ¼ � 3v3?
16W2

D?
bz

B0

� �
Df 0ð Þ �

v?vjj

2W
4p
c
j 2ð Þ
z Df 0ð Þ

þ v?

4

bz

B0

� �2

D f 0ð Þ � v?

2vjj
Df 0ð Þ

� �
: ðA21Þ

[72] At the same order of approximation, we solve
equation (A20) as

F ¼ � v?

2
@v? f

0ð Þ bz

B0

þ e@T þ vjj@Z
	 
�1 v

2
?
2
@vjj f

0ð Þ@Z
bz

B0

� e
A

vjj
;

ðA22Þ

where, as shown in Appendix B, jz
(2) = 0 and, consequently,

A is in fact proportional to vk.

Appendix B: Consequences of Ampère Equation

[73] To leading order, equation (A4) gives

@YB
1ð Þ
z ¼ 4p

c

X
r

qrnr

Z
v? cosf ef 3=2ð Þ

r d3v

¼ � 4p
c

X
r

qrnr
1

Wr

Z
v2?
2
@Y f

1ð Þ
r d3v: ðB1Þ

[74] Using equations (A19), one easily checks that for
cold electrons, only the ions contribute to the current,
leading to the threshold condition for the mirror instability,
in the form

0 ¼ b?
T

0ð Þ
?

T
0ð Þ

jj

� 1

0@ 1A� 1 ðB2Þ

or (see equation (2)),

G* ¼ 0: ðB3Þ

[75] Here b? = vth?
2 /v2Awhere vth? is the ion perpendicular

thermal velocity and vA = B0/(4pmn)
1/2 the Alfvén speed.
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[76] On the other hand,

@X B
3=2ð Þ
y � @YB

3=2ð Þ
x ¼ 4p

c
j 2ð Þ
z ¼ e�1 4p

c

X
r

qrnr

Z
vjjFrd

3v:

ðB4Þ

[77] Since F is an even function of vk, equation (A22)
then implies

j 2ð Þ
z ¼ e�1

Z
vjj e@T þ vjj@Z
	 
�1 v?

2
@vjj f

0ð Þd3v @Z
bz

B0

�
Z

v?vjj

2W
4p
c
j 2ð Þ
z Df 0ð Þd3v ðB5Þ

[78] The first term in the RHS does not contribute. The
resulting equality then prescribes jz

(2) = 0.

Appendix C: Estimate of the Pressure Tensor

[79] When dealing with the perpendicular pressure fluc-
tuations, we define

p? ¼ p
1ð Þ
? þ ep 2ð Þ

? ¼ mn=2ð Þ
Z

v2?Fd
3v: ðC1Þ

[80] Using equations (A22) and (A21), we obtain

p? ¼ b? 1� b?
bjj

 !
B0bz

4p
þ e

ffiffiffi
p

p

vth jj
@T �H @Zð Þ�1 b

2
?

bjj

B0bz

4p

� ep 0ð Þ
?

9

4b?
r2LD?

bz

B0

þ 1� 4
b?
bjj

þ 3
b?
bjj

 !2
0@ 1A bz

B0

� �2
24 35:

ðC2Þ

[81] HereH is the Hilbert transform along the direction of
the ambient magnetic field. The operator �H@Z is thus a
positive operator whose Fourier transform reduces to jKzj,
where Kz denotes the variable conjugated to Z.
[82] The leading order contributions of the nongyrotropic

components of the pressure tensor are given by

P 2ð Þ
xx ¼ �mn

2

Z
v2? cos 2f ef 2ð Þ

d3v ðC3Þ

P 2ð Þ
xy ¼ mn

2

Z
v2? sin 2f ef 2ð Þ

d3v ðC4Þ

P 3=2ð Þ
xz ¼ mn

Z
vjjv? cosf ef 3=2ð Þ

d3vþ p
0ð Þ
? � p

0ð Þ
jj

� �B 3=2ð Þ
x

B0

; ðC5Þ

that are easily computed as

P 2ð Þ
xx ¼ � mn

16W2

Z
v4? @XX � @YYð Þf 1ð Þ

d3v

¼ � 3

4
1� b?

bjj

 !
p

0ð Þ
? r2L @XX � @YYð ÞB

1ð Þ
z

B0

ðC6Þ

P 2ð Þ
xy ¼ � mn

8W2

Z
v4?@XY f

1ð Þ
d3v

¼ � 3

2
1� b?

bjj

 !
p

0ð Þ
? r2L@XY

B 1ð Þ
z

B0

ðC7Þ

P 3=2ð Þ
xz ¼ 0: ðC8Þ

[83] As a consequence,

rrr �Pð Þ 5=2ð Þ
? ¼ � 3

4
1� b?

bjj

 !
p

0ð Þ
? r2LD?r?

B 1ð Þ
z

B0

: ðC9Þ
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