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We present a set of three-dimensional direct numerical simulations of incompressible decaying magnetohy-
drodynamic turbulence in which we investigate the influence of an external uniform magnetic field By. A
parametric study in terms of B intensity is made where, in particular, we distinguish the shear-from the
pseudo-Alfvén waves dynamics. The initial kinetic and magnetic energies are equal with a negligible cross
correlation. Both the temporal and spectral effects of B are discussed. A subcritical balance is found between
the Alfvén and nonlinear times with both a global and a spectral definition. The nonlinear dynamics of strongly
magnetized flows is characterized by a different &, spectrum (where B defines the parallel direction) if it is
plotted at a fixed k; (two-dimensional spectrum) or if it is integrated (averaged) over all k; (one-dimensional
spectrum). In the former case a much wider inertial range is found with a steep power law, closer to the wave
turbulence prediction than the Kolmogorov one such as in the latter case. It is believed that the averaging effect
may be a source of difficulty to detect the transition towards wave turbulence in natural plasmas. Another
important result of this paper is the formation of filaments reported within current and vorticity sheets in
strongly magnetized flows, which modifies our classical picture of dissipative sheets in conductive flows.
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I. INTRODUCTION

The magnetohydrodynamics (MHD) approximation has
proved to be quite successful in the study of a variety of
astrophysical plasmas, electrically conducting gas or fluids,
such as those found in the solar corona, the interplanetary
medium, or in the interstellar clouds. These media are char-
acterized by extremely large Reynolds numbers (up to 10'3)
[1] with a range of available scales from 10'® m to a few
meters. The isotropy assumption, usually used in hydrody-
namic turbulence, is particularly difficult to justify when
dealing with astrophysical flows since a large-scale magnetic
field is almost always present such as in the inner interplan-
etary medium where the magnetic field lines form an
Archimedean spiral near the equatorial plane (see, e.g.,
[2,3]). Thus, MHD turbulence is much more complex than
Navier-Stokes turbulence with, in particular, a nonlinear
transfer between structures of various sizes due to both non-
linear couplings and Alfvén wave propagation along the
background magnetic field.

In the mid 1960s, Iroshnikov [4] and Kraichnan [5] (here-
after IK) proposed a first description of incompressible MHD
turbulence. In this approach a la Kolmogorov, the large-scale
magnetic field is supposed to act on small scales as a uniform
magnetic field, leading to counterpropagating Alfvén waves
whose interactions with turbulent motions produce a slow-
down of the nonlinear energy cascade. The typical transfer
time through the scales is then estimated as 7y, /7, (instead
of 7y, for Navier-Stokes turbulence), where 7y, ~ €/u, is the
nonlinear eddy turnover time at characteristic length scale ¢
and u, is the associated velocity. The Alfvén time is 74
~{/B,, where B, represents the large-scale magnetic field
normalized to a velocity (By— BgVuopg, With u, the mag-
netic permeability of free space and p, the uniform plasma
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density). Note that we will use this renormalization in the
rest of the paper; hence, the IK energy spectrum in k=2
unlike the k=° Kolmogorov one for neutral flows.

The weakness of the IK phenomenology is the apparent
contradiction between the presence of Alfvén waves and the
absence of an external uniform magnetic field. The external
field is supposed to be played by the large-scale magnetic
field, but its main effect, i.e., anisotropy, is not included in
the description. The role of a uniform magnetic field has
been widely discussed in the literature and, in particular, dur-
ing the last two decades [6-23]. At strong B, intensity, one
of the most clearly established results is the bidimensional-
ization of MHD turbulent flows with a strong reduction of
nonlinear transfers along Bg. In the early 1980s, it was
shown that a strong B, leads to anisotropic turbulence with
an energy concentration near the plane k-By=0 [6], a result
confirmed later on by direct numerical simulations in two
and three space dimensions [7,9]. A linear dependence be-
tween anisotropy and B, intensity was also suggested [13].
From an observational point of view, we also have evidence
that astrophysical (and laboratory) plasmas are mostly in an-
isotropic states like in the solar wind (see, e.g., [24,25]) or in
the interstellar medium (see, e.g., [26]).

The effects of a strong uniform magnetic field may be
handled through an analysis of resonant triadic interactions
[7] between the wave vectors (K,p,q), which satisfy the re-
lation k=p+(q, whereas the associated wave frequencies sat-
isfy, for example, w(k)=w(p)—w(q). The Alfvén frequency
is w(k)=k-By=k;B,, where | defines the direction along B,
(L will be the perpendicular direction to By). The solution of
these three-wave resonant conditions directly gives ¢,=0,
which implies a spectral transfer only in the perpendicular
direction. For a strength of B, well above the rms level of the
kinetic and magnetic fluctuations, the nonlinear interactions
of Alfvén waves may dominate the dynamics of the MHD
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flow leading to the regime of (weak) wave turbulence where
the energy transfer, stemming from three-wave resonant in-
teractions, can only increase the perpendicular component of
the wave vectors, while the nonlinear transfer is completely
inhibited along By [14,16].

Another important issue discussed in the literature is the
relationship between perpendicular and parallel scales in an-
isotropic MHD turbulence (see [8,10,22]). In order to take
into account the anisotropy, Goldreich and Shridar [10] pro-
posed a heuristic model based on a critical balance between
linear wave periods and nonlinear turnover time scales, re-
spectively, 74 ~€;/Bg and 7y, ~4€  /u, (Where €, and € are
the typical length scales parallel and perpendicular to By),
with 7,=7y; at all inertial scales. Following the Kolmogorov
arguments, one ends up with a E(k  ,k) ~k15/ 3 energy spec-
trum [where k=(k , ,k) and k, =|k , |] with the anisotropic
scaling law

ky~ k. (1)

A generalization of this result has been proposed recently
[27] in an attempt to model MHD flows in both the weak and
strong turbulent regimes, as well as in the transition between
them. In this heuristic model, the time-scale ratio x
=74/ Ty, 1s supposed to be constant at all scales but not nec-
essarily equal to unity. The relaxation of this constraint en-
ables one to still recover the anisotropic scaling law (1) and
to find a universal prediction for the total energy spectrum
E(kL,kH)~k1“k[B, with 3a+2B=7. According to direct nu-
merical simulations (see, e.g., [28-30]), one of the most fun-
damental results seems to be the anisotropic scaling law be-
tween parallel and perpendicular scales (1) and an
approximately constant ratio y, generally smaller than one,
between the Alfvén and the nonlinear times. This subcritical
value of y implies therefore a dynamics mainly driven by
Alfvén wave interactions.

In the weak turbulence limit, the time-scale separation y
<1, leads to the destruction of some nonlinear terms, includ-
ing the fourth-order cumulants, and only the resonance terms
survive [14,16,31,32], which allows one to obtain a natural
asymptotic closure for the wave kinetic equations. In the
absence of helicities and for k, >k, the dynamics is then
entirely governed by shear-Alfvén waves, the pseudo-Alfvén
waves being passively advected by the previous one. In the
case of an axisymmetric turbulence, and in the absence of
cross correlation between velocity and magnetic field fluc-
tuations, the exact power-law solution is E(k | , k) ~k7>f(k)),
where f is an arbitrary function taking into account the trans-
fer inhibition along B,. The regime of wave turbulence is
quite difficult to reproduce by direct numerical simulations
since it requires a strong external magnetic field as well as a
high spatial resolution. According to a recent theoretical
analysis, it seems to be currently not possible to fully reach
this regime [33] and only the transition towards such a re-
gime is likely to be obtained [23,34].

In order to better understand the development of aniso-
tropy in natural magnetized plasmas, we perform a set of
tridimensionnal numerical simulations of incompressible
MHD. In this work, the regime of freely decaying flows is
chosen in an attempt to model the nonlinear evolution of
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outward and inward propagating Alfvén waves. We mainly
focus our analysis on the development of anisotropy in flows
at moderate Reynolds numbers, which freely evolve under
the influence of a uniform magnetic field whose strength will
be taken as a parameter. The details of the numerical setup
and simulations are given in the next section. In Sec. III, we
investigate the temporal characteristics of the different flows,
as well as different global quantities to measure the spectral
anisotropy. Section IV is devoted to the evolution of the
energy spectra together with their fluxes. The flow spatial
properties are examined in Sec. V. Section VI discusses the
second set of simulations. A summary and a conclusion are
given in Sec. VIL

II. NUMERICAL SETUP

A. Incompressible MHD equations

The MHD equations that describe the large-scale and low-
frequency dynamics of magnetized plasmas are, in the in-
compressible case and in the presence of a uniform magnetic
field By,

Ov—Bydb+v-Vv=—VP_+b-Vb+vAv, (2)

atb—BoaHV'FV -Vb=b-Vv+ 77Ab, (3)
V.v=0, (4)
V-b=0, (5)

where v is the plasma flow velocity, b is the magnetic field
(normalized to a velocity), P, is the total (magnetic plus
kinetic) pressure, v is the viscosity, and 7 is the magnetic
diffusivity. It is convenient to introduce the Elsdsser fields
z"=u=b for the fluctuations; in this case and assuming a
unit magnetic Prandtl number (i.e., v=17), we get

dz” +2" - V2= F Bydg" = - VP + V2", (6)

V.z*=0. (7)

Note that the second term in the left-hand side (LHS) of Eq.
(6) represents the nonlinear interactions between the z*
fields, while the third term represents the linear Alfvénic
wave propagation along the B, field, which will be assimi-
lated to the z direction in our numerical box. In the present
analysis, a unit magnetic Prandtl number is taken in order to
extend at maximum the inertial range for both the kinetic and
magnetic energies. We believe that such analysis is the first
step in understanding turbulence in anisotropic media. The
extension to other magnetic Prandtl numbers is the second
step: this situation, more realistic for turbulence like in the
interstellar medium, is supposed to keep a high level of tur-
bulence for both the kinetic and magnetic energies, which
necessitates a higher spatial resolution.

B. Poloidal and toroidal decomposition

In the presence of a large-scale magnetic field B, Alfvén
waves develop and propagate at Alfvén speed B along the
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TABLE 1. Computational parameters for runs Ia—VIIa with isotropic initial conditions, and for runs Ib and IIb with specific initial
conditions (see the text). Note that simulations VIIa and IIb use a hyperviscosity and a hyperdiffusivity (dissipation terms in V#). Spatial
resolution, viscosity v (=7), and applied magnetic field intensity B, are given, followed by initial integral length scales: isotropic L
=27 [[EY(k)/k]dk/ [E'(k)dk, perpendicular L =2 [[EV(k )/k ]dk /[E'(k,)dk,, and parallel Ly=2[[E"(k))/k ]dky/ [E"(k;)dk, scales.
Initial rms velocity u,,,,={v?)""? (=b,,,;=(b*)!"?) fluctuation is given together with the initial kinetic Reynolds number R,=u,,,,L/ v. Finally,
we find typical times: isotropic eddy turnover time 7’,'VL=L/u,mS (based on the isotropic length scale L), eddy turnover time 7y;=L | /tt,y,,

(based on L), Alfvén time based on rms magnetic fluctuations 7f4=L/b

numerical simulation.

ms» Alfvén wave period 74=L;/B,, and the final time t,, of the

v By L L, L, Upps Ry 0y TNL 7'£\ Ty ty
Ia 2563 4.1073 0 3.12 1 779 3.12 3.12 15
IIa 2563 4.1073 3.12 3.85 5.57 1 779 3.12 3.85 3.12 5.57 15
IIa 2563 4.1073 5 3.12 3.85 5.57 1 779 3.12 3.85 3.12 1.11 15
IVa 2563 4.1073 15 3.12 3.85 5.57 1 779 3.12 3.85 3.12 037 15
Va 5122 X 64 1073 15 3.12 3.85 5.57 1 3120 3.12 3.85 3.12 037 15
VIa 5122 X 64 1073 30 3.12 3.85 5.57 1 3120 3.12 3.85 3.12 018 15
VIla 5122 X 64 107° 15 3.12 3.85 5.57 1 3.12 X 10° 3.12 3.85 3.12 037 15
Ib 5122x64 5107 15 1.27 1.90 204 1 2530 1.26 1.90 126 013 40
IIb 5122 X 64 107° 15 1.27 1.90 2.04 1 3.16 X 10° 1.26 1.90 126  0.13 40

B, direction. These waves may be decomposed into shear-
and pseudo-Alfvén waves denoted, respectively, zf and z, .
The divergence-free condition implies that only two types of
scalar field (= and ¢*) are needed to describe the incom-
pressible MHD dynamics which are, respectively, the toroi-
dal and poloidal fields. For the Fourier transforms of the
involved fields, we have:

25 (k) =2, (k) + 25 (k), (8)

with
2y (k) = ik X e, (k), )
if(k)=—w3)ﬁ(k), (10)

where in our simulations k, =Vk>+k> and k= \r’ki+k3+k§.
Here, k.=k; and e denotes the unit vector parallel to the By
direction. Hence, the shear-Alfvén waves correspond to a
vector field perpendicular to the external magnetic field B,
whereas the pseudo-Alfvén waves is a vector field which
may have a component along By; but both vector fields de-
pend on the three coordinates of k.

C. Initial conditions

We numerically integrate the three-dimensional incom-
pressible MHD equations (2)—(5), in a 27-periodic box, us-
ing a pseudospectral code (including dealiasing), and with
spatial resolution from 256% to 5122 X 64 grid points accord-
ing to the initial conditions (see Table I). The time marching
uses an Adams-Bashforth or Cranck-Nicholson scheme, i.e.,
a second-order finite-difference scheme in time (see, e.g.,

[35]).
1. Runs Ia to IVa

The initial kinetic and magnetic fluctuations are charac-
terized by spectra at large scales, i.e., for k=[1,8], propor-

tional to k?exp(—k>/4); for k>8, the spectra are exactly
equal to zero. This condition means that for wave numbers k
up to 2, we have mainly a flat modal spectrum, which pre-
vents initially any favored wave vectors. No forcing is
present during the simulations and the flows may evolve
freely for time #>0. The associated kinetic,

E= ), (11)

and magnetic,

1
E'= 5<b2(X)>, (12)
energies are chosen initially equal, namely, E’(t=0)=E"(t
=0)=0.5. (Note that {-) means space averaging.)
The correlation between the velocity and magnetic-field
fluctuations, which is measured by the cross correlation

_ 2u(x)-b(x))

P W) + b2 1

is initially less than 1%.

The initial (large-scale) kinetic and magnetic Reynolds
numbers are about 800 for the flows with v=4 X 1073 (see
Table 1), with u,,,;=b,,,,=1; the isotropic integral scale is

f [EV(k)/k]dk

L=2m7 (14)

~ .

J E°(k)dk

A parametric study is performed according to the intensity
of B,. Four different values are used, namely, By=0, 1, 5, and
15. All these simulations are run up to a maximum compu-
tational time =15, and correspond to runs Ia to IVa de-
scribed in Table L.
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2. Runs Va to VIla

Taking advantage of the strong reduction of the nonlinear
transfers along By in highly magnetized flows, a second set
of direct numerical simulations is performed with a spatial
resolution of 5122 grid points in the perpendicular plane to
B, and with only 64 grid points in the parallel direction (runs
Va and VIa in Table I). For such runs, the initial conditions
are the same as before with, however, a uniform magnetic
field By=15 and 30, and a smaller viscosity.

Such simulations were analyzed in the past to explore the
self-consistency of the reduced MHD model [36] with the
conclusion that small values of viscosities, adjusted accord-
ing to the transverse dynamics, are not incompatible with the
smaller spatial resolution in the parallel direction since the
transfer toward small scales is also reduced along the uni-
form magnetic field. We checked that the viscosity v=1073 is
indeed well adjusted. Note that such a small aspect ratio may
reduce the number of resonant wave interactions, which in
turn may affect the dynamics (see, e.g., [37]). However, in
Alfvén wave turbulence, the resonant manifolds foliate
wave-vector space [14] which, in principle, prevents such a
problem.

In the same manner, another computation (run VIIa) is
made using a hyperviscous scheme, where the Laplacian op-
erator of the dissipative terms is replaced by a bi-Laplacian,
in order to enlarge the inertial range of the energy spectra.

3. Runs Ib and IIb

Finally, to evaluate the influence of the initial conditions,
a third set of runs is performed with a uniform magnetic field
fixed to By=15, and with either a viscous (Ib) or a hypervis-
cous dissipation (ITb). In both simulations, we use 5122
X 64 grid points. The specific initial conditions of these runs
correspond to a modal energy spectrum E~(k, k)
=C(ky)k> , for k, and k, € [0,4], the value of C(k,) increas-
ing with k; to reach a maximum at k;=4. Note that this initial
spectrum allows a transient period of cascade toward smaller
scales during which energy is mainly conserved. Initially, the
ratio between kinetic and magnetic energies is still fixed to 1,
whereas the cross-correlation coefficient is zero. A first set of
results was given in [23].

For all the runs described in this section, the computa-
tional parameters (initial Reynolds numbers, characteristic
length scales and times...) are summarized in Table 1.

III. TEMPORAL ANALYSIS
A. Energetic properties
1. Elsdsser z* Cartesian fields

In this section, we study the temporal behavior of several
global quantities to characterize the MHD flow dynamics
and the influence of the B, strength on it. In all the following
figures, time evolutions are shown from initial isotropic con-
ditions up to time 7y, (the maximum computational time
reached), for simulations Ia—IVa at moderate resolution
(256° mesh points) and B,=0, 1, 5, and 15, together with
highly magnetized flows Va and VIa at By=15 and 30, using
5122 X 64 spatial resolution (see Table I).
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L -—-- Bg=1(256%

1.2 C B,=0 (256%)
1

T T

l.2¢f B,=0 (256%)
) - —— - Bg=1 (256%)
A By=5 (2567
OBy=15 (2567)

X By=15 (512%x64

© By=30, (512564

* By=15" (512°x64)

(b) time

FIG. 1. Temporal evolution of energies E* (a) and E~ (b) for
By=0,1,5,15 (runs Ta-IVa; 256%) and B;=15,30 (runs Va and
VIa; 5122X64). The hyperviscous run VIIa with By=15 (5122
X 64) is also given up to r=14.

We first consider the evolution of the Elsisser energies,

E*(0) = 50000, (15)

displayed in Fig. 1. Note that, for periodic boundary condi-
tions, these energies are two independent invariants of the
inviscid MHD equations (6), with or without the presence of
a uniform magnetic field. Energies E*(¢) and E~(¢) present a
similar behavior for a given B. For runs Ia—IIla, where B,
intensity is increased, we clearly see a slowdown of the en-
ergy decay. On one hand, this slowing down reflects the en-
ergy transfer inhibition along the B direction, and thus, the
flow inability to create, in the parallel direction, smaller and
smaller scales up to the dissipative ones. Hence, the energy
dissipation mainly takes place in transverse planes, which are
led to play a more efficient role as the flow magnetization is
increased. On the other hand, energy transfers themselves
could also be weakened (in the transverse planes) since the
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FIG. 2. Temporal evolution of the global dissipation »Q* (a) and
vQ~ (b); same viscous runs as in Fig. 1.

time

MHD cascade of energy to smaller scales is produced by
successive interactions of oppositely directed waves. Indeed,
for higher B, intensities, the waves become faster and thus
the time duration of an individual collision of z* waves de-
creases. Therefore it takes many more collisions between
(fast) Alfvén wave packets (as measured by the ratio between
the nonlinear turnover time on the linear wave period;
7n/ T4) to have an efficient energy cascade process. One
could also note that, for a given flow, a saturation effect
occurs according to By intensities. Indeed, the E*(f) evolu-
tions are quite similar for flows at v=4X 10" with By=5
and 15 (runs ITa and IVa, respectively), as well as for flows
at v=10"% with B,=15 and 30 (runs Va and VIa, respec-
tively). The hyperviscous run VIIa is also shown but only up
to r=14. We see that the initial plateau is wider and almost
flat because of the larger inertial range and the higher Rey-
nolds number. Then, we see a decay of energy, which is
slower than for the other viscous runs.

The B saturation effect is also visible on the time evolu-
tion of the global dissipation of the flow,

v (1) = K[V X 27 P(x)(1), (16)
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9] 5 10 15
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FIG. 3. Temporal evolution of the cross-correlation coefficient
p; same runs as in Fig. 1.

displayed in Fig. 2. The early time dynamics, near the first
inflection point, is almost inviscid; it corresponds to the
small-scale generation (e.g., at times <1 in the B,=0 simu-
lation). As the By intensity is increased, this small-scale de-
velopment is slightly retarded, which means that the duration
of the essentially inviscid phase increases. Moreover, the
maximum of the dissipation is substantially reduced, and oc-
curs at later times, namely, ¢t~ 2 for flows with By=0 and 1,
t~3 with By=5,15 and r~4 for the less viscous flows with
By=15,30. Altogether, in physical space, this corresponds to
the creation of more elongated structures along B, as the
flow is more magnetized, with a smaller dissipation on the
whole, and, in spectral space, to higher inhibition of parallel
energy transfers, as already explained. One can also note that
the dissipation peak is smoothed in the less viscous flows
(v=107?%), meaning an almost constant dissipation between
t~3 and r~5 in runs Va and VIa with a more extended
range of small scales. Finally, note a different evolution be-
tween case IVa (with »=4X107%) and Va (with »=107%)
whereas the uniform field B is the same. A factor 4 of dif-
ference is visible initially, which may be attributed mainly to
a decrease of factor 4 of the viscosity. In this case, the time
delay to reach the maximum may be explained by a wider
inertial range in k, and therefore a longer time needed to
reach the dissipative scales (an effect also seen in Fig. 1 with
a wider initial plateau where energy is roughly conserved).

Figure 3 shows the cross-correlation coefficient (13) be-
tween velocity and magnetic fields, which also reads, in
terms of the Elsésser energies, as

B E*(t)—E~ (1)

= e w0

(17)

It measures the relative amount of the two z* species. In-
deed, p(t) — * 1 means that E¥ =0, and hence only one type
of wave is excited, whereas when p(f) — 0, there are as many
z* as 7z~ counterpropagating waves, with the same amount of
energy. Initially, p(t=0)~0 (i.e., less than 1%), and stays so
during the flow inviscid phases. Close to the times at which
the maximum of dissipation occurs in the different flows,
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FIG. 4. (Color online) Time evolution of the Alfvén ratio r, for
runs Ia—IVa, with By=0, diamond symbols; By=1, black dashed
line; By=5, blue (thick dark gray) solid line; and By=15, the red
(thin gray) solid line.

p(t) deviates from zero with a lesser departure as the flow is
more magnetized, from By=1 up to By=30, because the field
lines are rigidified by the ambient magnetic field, and the
dissipation is delayed. In the case of B,=0, the temporal
evolution of the cross-correlation coefficient is globally dif-
ferent, due to the absence of a guiding magnetic field and
different dissipative processes. Note, however, that all flows
evolve toward an excess of E~ energy.

Apart from this, the prevalence of the Alfvén wave fluc-
tuations can be measured by the so-called Alfvén ratio

E'()  (v)(0)
E'() - ()0

(18)

ra(t) =

between kinetic and magnetic energies. For example, in the
wave turbulence regime we have an equipartition (at the
level of the kinematics [14]) between kinetic and magnetic
energies. Its departure from unity suggests the presence of
non-Alfvénic fluctuations. Indeed, the energy of an indi-
vidual Alfvén wave is equipartitioned between its kinetic and
magnetic components, averaged over a wave period, with
thus a ratio r,=1. In the presence of an external magnetic
field, exchanges between magnetic and velocity fluctuations,
due to Alfvén waves, produce oscillations as shown on r4(¢)
in Fig. 4. The period of these oscillations is given by the
Alfvén time 7, ~5, 1, and 0.4 (see Table I), which are found
by a simple analysis based on the values By=1, 5, and 15,
respectively, and the values of the characteristic parallel
length scale L' ~5.57 for runs Ila-IVa. Although initially the
magnetic and Kinetic energies are chosen equal, EV(r=0)
=FE’(t=0)=0.5, the magnetic energy stabilizes around twice
the kinetic energy, after r~5, for the nonmagnetized flow
(By=0), while for the magnetized flows, whatever the B,
intensity is, the magnetic energy saturates to about 1.25
lower than the kinetic energy level after time 7~ 2. This re-
sult may be compared with solar wind data where the same
tendency is found with a domination of the magnetic energy.
(This comparison is, however, not direct since outward
propagating Alfvén waves are initially dominant.) This
Alfvén ratio seems to find a limit of about 1/2 at several
astronomical units, which might be explained by the decreas-
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ing importance of the large-scale magnetic field at larger
heliocentric distances (see e.g., [38]).

Figure 5 displays the probability distribution function
(PDF) of the cross correlation for different times (the same
runs as in Fig. 3). As expected, we start initially with a dis-
tribution clearly centered around zero. As the time increases,
we see a distribution shifted towards negative values to fi-
nally be centered around —0.4 for the nonmagnetic case. The
case By=1 is even more shifted with a maximum of the
distribution around —0.6. The strongly magnetic cases are
mainly characterized by the formation of extended plateaus
centered around the negative values. This result means that
although the cross-correlation coefficient (13) is close to zero
for strongly magnetized flows (see Fig. 3), a wide range of
values is often reached locally.

2. Shear- and pseudo-Alfvén wave decomposition

In the presence of an external magnetic field, it is conve-
nient to describe the flow dynamics in terms of shear- and
pseudo-Alfvén waves, or in other words to use, respectively,
the toroidal and poloidal components of the z* fields [see
Eq. (8)]. Indeed, the Alfvén waves dynamics for the stronger
magnetized flows have crucial consequences on the turbulent
properties. We will use here the shear- and pseudo-Alfvén
wave decomposition to analyze our numerical simulations
and, therefore, we will not consider the By=0 case anymore.

In Fig. 6, we show the temporal evolutions of energies E}
and E; associated, respectively, to the shear-Alfvén and
pseudo-Alfvén waves; they are defined as

(0 = (Z (), (19)

and are not inviscid invariants. Note that E*# E; +E; be-
cause the energy contained in the k; =0 modes is not in-
cluded in the toroidal and poloidal decomposition (although
it is, of course, in the original Cartesian fields). First, we
observe a slowdown of the energy decay when the intensity
of By increases. It is a behavior similar to the one found in
Fig. 1 for the energies E~. With such a decomposition, a
similar behavior is also found for runs IIla and IVa, and
runs Va and VIa. The important new information is about
the initial increase of energies, which is more pronounced for
runs Va and VIa, and for the shear-Alfvén waves. These
energies are, in fact, pumped from the k ; =0 mode (the total
energy is not an increasing function). Note that the same
behavior is found for the — polarity.

Figures 7 present the temporal evolution of the dissipa-
tions

v ,(1) = K[V X (27 ) (1), (20)

for, respectively, the shear- and pseudo-Alfvén waves (only
the + polarity is shown since the same behavior is found for
the — polarity). No clear difference is found between the
type of dissipation. We also note no significant difference
with Fig. 2 except a factor of 2 in magnitude because here
we do not see the total dissipation for a given polarity but
either the shear- or the pseudo-Alfvén waves contribution.

Figure 8 presents the temporal evolution of the Alfvénic-
ity (or Alfvén ratio)
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FIG. 5. (Color online) Probability distribution functions of the cross correlation (runs Ia—VIa) initially (a), at the maximum of the global
dissipation (b), when 77% of the total energy is dissipated (c), and at the final time (d).

1)
EV (0

for the shear- and pseudo-Afvén waves, respectively, with

MOE (1)

1 _
11},2 = 5<(ZT2 + 11,2)2>’ (22)

and

Ef,= : <(ZJ1r,2 -77,)%). (23)
This plot is particularly interesting since it shows that shear-
Alfvén waves and pseudo-Alfvén waves behave differently
with an Alfvén ratio of about 1 for the latter and significantly
smaller than 1 for the former. Since for strongly magnetized
flows the perpendicular fluctuations are mainly made of
shear-Alfvén waves and the parallel ones made of pseudo-
Alfvén waves, we have here a prediction that can be com-
pared with measurements made in natural plasmas like in the
solar wind. Additionally, we observe the same oscillations as
in Fig. 4 where the same type of analysis on the time scales
may be made.

Figure 9 displays the temporal evolution of the spectral
Alfvénicity for shear-Alfvén waves

EY(ky,1)
El (k)

ra,(ky,t) = (24)

with k=0, 1, 2, and 3 (run Ila—IVa). The initial Afvén ratio
is close to unity for every parallel wave number, then a dif-
ferent behavior is found for the 2D state (k;=0), which de-
viates strongly from the equipartition and tends approxi-
mately to 1/2 independently of the B, intensity. For the 3D
modes, the spectral Alfvén ratio oscillates around unity
meaning a tendency towards equipartition between the ki-
netic and magnetic energies. This tendency is stronger for
stronger magnetized flows. Thus the 3D modes follow the
dynamics expected in wave turbulence in which an exact
equipartition happens [14]. It is actually the 2D state that
explains the behavior found previously in Fig. 8, where a
discrepancy from the equipartition was observed. Therefore,
Fig. 8 is not in contradiction with the wave turbulence re-
gime and offers another possible interpretation of observa-
tions in natural plasmas like the solar wind. Note that the
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FIG. 6. Temporal evolution of energies (a) E| and (b) E} of the
shear- and pseudo-Alfvén waves for runs Ila—VIa.

same type of results are found for pseudo-Alfvén waves (not
shown) with a deviation from the equipartition for the 2D
state.

B. Characteristic length and time scales

Figures 10 and 11 present the time evolutions of the per-
pendicular integral length scales, defined as

fET,Z(kL’k)/kiddek
+ —

1 12 - + > (25)
1,2
and the parallel integral length scales
J 1ok L k)/kdk  dk,
L = : (26)
12 EJ{’2

for, respectively, the shear- and pseudo-Afvén waves. We
first note, for shear-Alfvén waves, a decrease of the perpen-
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FIG. 7. Temporal evolution of the dissipations (a) ¥} and (b)
vQ)3 of shear- and pseudo-Alfvén waves for runs Ila—VIa.

dicular scales and an increase of the parallel one after we
observe a saturation. These behaviors may be interpreted as a
direct cascade in the perpendicular direction and a possible
inverse cascade in the parallel one. The saturation phase with
length scales approximately frozen means that the spectra are
well developed. The case By=1 deviates from this analysis
because the mean field is not strong enough to impose a full
anisotropic dynamics; it can be compared with a previous
study made for pure isotropic turbulence [35]. For pseudo-
Alfvén waves, the situation is less clear even if we still ob-
serve globally the same behavior as before in the initial
phase. It is the saturation phase that is the most different with
an apparent oscillation that can be related to the period found
from the previous analysis made for Fig. 4.
Figure 12 presents the temporal evolution of the nonlinear
time
1
TN, = (27)

rmsll

and the Alfvén time
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FIG. 10. Temporal evolution, up to =10, of perpendicular (a)
and parallel (b) integral length scales for shear-Alfvén (+) waves;
same runs as in Fig. 7.

II
T:‘m: —L2 (28)

based on the shear- and pseudo-Afvén waves dynamics. We
mainly observe a decrease of the Alfvén time when the
strength of the uniform field B, increases, whereas the non-
linear time is not strongly affected. Note that the profiles of
the nonlinear times for the case By=5 and By=10 look simi-
lar with oscillations whose periods are approximately the
same as before. This is simply due to the definition used to
build the nonlinear time, which includes the previous length
scales. It is also this definition that explains the initial de-
crease (¢=<2) of the nonlinear time since the perpendicular
integral length scales follow the same behavior.

Figure 13 shows the temporal evolution (a) of the time-
scales ratio

74,0

Tl-:’Ll(t) ’

xi(0) = (29)

between the Alfvén (28) and eddy turnover (27) times. Only
the case of shear-Alfvén waves is shown since the same be-
havior is found for pseudo-Alfvén waves. This new plot
gives a quantitative estimate of the balance between the time
scales that we discussed in the Introduction. We clearly see
that the balance is subcritical [x(z) stays well below unity]
as the strength of B, increases with a value that remains
about constant during the time of the simulation.

066301-9



BIGOT, GALTIER, AND POLITANO

2.5]
2.0¢

1.5

+
Lo

1.0
0.5

4.0

Ly

(b)

FIG. 11. Temporal evolution, up to =10, of perpendicular (a)
and parallel (b) integral length scales for pseudo-Alfvén (+) waves;
same runs and legend as in Fig. 10.

Figure 13 also displays the spectral ratio between the
Alfvén and nonlinear time scales for shear-Alfvén waves. It
is defined as

0 = o (30)
b t= 9
X1\K 1K k“BO
with
_ <,
Zel(f) = VE (k. k)k k. (31)

The previous definition (29) is based on a global estimate of
the time scales. This new definition is more precise since it

PHYSICAL REVIEW E 78, 066301 (2008)

allows one to take into account the scale at which the times
are defined. Then, each time evolution is associated with a
couple of (spectral) scales (k,,k;). Different couples have
been tried and only those for which the ratio xj(k, ,k) dis-
plays an extended plateau have been reported. It is basically
for times between =2 and =4, a range of time during which
the small scales have been produced and the nonlinear inter-
actions are still important. Note that we still observe oscilla-
tions that can be explained in terms of Alfvén time scales.

In Fig. 14, we report each couple (k, ,k;) and show the
anisotropic scaling law &~k L3 as a reference. We see that
such a law well fits the points, which means that the subcriti-
cal balance [observe again here with xj(k k) <1] is still
well described by the anisotropic scaling law (1). This prop-
erty may be understood by a heuristic model [27] where the
time-scale ratio ) is supposed to be constant at all scales but
not necessarily equal to unity, which allows one to use the IK
phenomenology instead of the Kolmogorov one [10]. [Note
that the same behavior is found when xj(k, .k)) is consid-
ered.]

The questlon of the validity of the anlsotroplc scahng law
k~k*?/B, (we use here the formulation given in [27],
Wthh includes the uniform magnetic field) beyond the iner-
tial range, and, in particular, at larger scales, may be ad-
dressed from these numerical simulations. A first answer is
given in Fig. 14 with the couple (k |, =4,k;=1), which is at the
largest scales of the system but does not follow the aniso-
tropic law.

C. Generalized anisotropy angles

To quantify the degree of anisotropy associated with the
flow, we use the generalized Shebalin angles (see [7,9], and
references therein), defined as

”_ s 2 Kilqk.nP
T RlqnP

where q is a vector field, like v, b, or z* in Fig. 15. We start
initially with a 3D isotropic flow for which 6,~54,74°. Fig-

2

tan (32)
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FIG. 12. Temporal evolution, up to #=10, of nonlinear (solid line) and Alfvén (dashed line) time scales for shear [(a)—(c)] and pseudo-

Alfvén [(d)—(f)] waves for runs Ila—IVa (from left to right).
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ure 15 shows that the temporal evolution of the different
angles (for the different fields) is the same with a behavior
depending mainly on the intensity of B,. For By=0 the en-
ergy transfer is similar in all directions and the temporal
evolution of Shebalin angles remains almost constant, close

10§ ¥ run256° B,

t O run256: B,

100

FIG. 14. Couples of points extracted from Fig. 13 well fitted by
the anisotropic scaling law k”~k2l/3.

to its initial value. For By=5 and By=15, the Shebalin angles
quickly increase and stabilize around 78°. Thus, and as ex-
pected, the anisotropy develops with B,. However, the flow
is not totally confined in planes perpendicular to B, like for a
purely bidimensional fluid for which the Shebalin angle is
90°. Note that a stronger anisotropy is produced for runs Va
and VIa (for which the Reynolds number is higher) with
angles up to 83°. This is explained by the wider range of k|
available for such runs.

In Fig. 16, we report the generalized Shebalin angles for
the vector fields j, w, and w=, where w==V X z*. The same
behavior as before is found with apparently a slightly stron-
ger anisotropy (with angles closer to 90°) for the highest
values of By. This is explained by the fields used, which are
built on the rotational of the previous fields shown in Fig. 15
and thus to a higher dependence of relation (32) in perpen-
dicular wave numbers (in k% instead of k7).

IV. SPECTRAL ANALYSIS

A. Reduced spectra

Figures 17(a)-17(e) display the one-dimension (reduced)
spectra

066301-11



BIGOT, GALTIER, AND POLITANO

90 ' ' 90 ' '
80 ¢ 80t
£ 70t = 70t
Sa T, By=0 (256:) s J By=0 (256:)
S = === Bl (256%) - ——- Bg=1 (256"
60  BEi T 60 BBl
h X By=15 (512%x64 4 X By=15 (512%x64
4 © By=80 Es1z=xe4} & By=30 2512=xe4
50 s s 50 s :
0 5 10 15 0 5 10 15
(a) time (b) time
90 ' ' 90 ' ‘
80} 80}
< 70 Z 70}
D ’ B,=0 (256%) ] © v B,=0 (256%)
§ ! - ——- Bg=1 (2569 fi, ---—- By=1 (256%
60 ¢ ég:js(z‘gge):) ] 60 ég::?s(agge):
g X By=15 (512%x64 ) X By=15 (512%x64
f © By=30 2512%64} © By=30 Es1z=xe4
50 . ! 50 \ ;
0 5 10 15 0 5 10 15
( C) time (d) time
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E*(k) = f E*(K)dk,dk., (33)
E*(k,) = f E*(K)dk,dk., (34)
E*(k) = f E*(K)dkdk,, (35)

for different B, intensity, with the same initial condition, and
at times where the spectra are the most extended (i.e., t~2
for runs Ia and Ila, r~3 for Ila and IVa, r~4 for Va and
VIa). It basically illustrates the different spectral transfers in
the perpendicular and parallel directions when the strength of
the uniform magnetic field increases, whereas the x and y
dependence is roughly the same. The equivalent spectra with
polarity — is not shown since it gives the same picture. Note
that the scaling at large scales is not in contradiction with the
initial condition discussed in Sec. II C, which concerns the
modal spectrum.

B. Energy fluxes

In Fig. 17 (right) the associate reduced energy fluxes are
given in k,, k,, and k.. They are built from the Cartesian z*
fields. A constant flux is only found at the largest scales of
the system. The presence of a negative flux is sometimes
observed for a uniform field By=5. This property may be
linked to the increase of the parallel length scale seen in Fig.
10. In this case, the flux is clearly not constant, which means
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FIG. 16. Temporal evolution of generalized Shebalin angles for
the (a) vorticity, (b) current density, and (c) and (d) w™ vorticity
fields (runs Ia—VIa).

that it is likely the result of a nonlocal interaction rather than
an inverse cascade. Note that the same behavior is also found
for the — polarity.

The locality or nonlocality of the energy flux and transfer
of runs Ia—IVa has been investigated recently [39] by means
of different geometrical wave number shells. It is shown that
the interactions between the two counterpropagating Elsidsser
waves may become nonlocal for strong magnetized flows. In
particular, the energy flux in the k| direction is mainly due to
modes that interact with the plane k=0 (with local interac-
tions), while the weaker cascade in the parallel direction is
due to modes that interact with k=1 (with possible nonlocal
interactions) [39,40]. This property has been interpreted as a
signature of a transition towards the weak turbulence regime
during which the number of effective modes in the energy
cascade is reduced.

C. Anisotropic spectra

Figure 18 shows anisotropic spectra for shear-Alfvén
waves (polarity +) at times for which turbulence is fully
developed (t~4). First, we see spectra E; (k) (top), which
are defined as

Ey(k,)= f Ey (k  ky)dk;. (36)

Then two other sets of spectra are given: E; (k, ,k,;=0) and
E; (k. ,k=1) (the middle and bottom panels, respectively).
The most interesting case seems to be the middle panel, i.e.,
the spectra of the two-dimensional (2D) state, from which we
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FIG. 17. [(a)-(e)] Reduced spectra E* built from the Cartesian fields z*. [(f)-(j)] The associated reduced energy fluxes IT* for the
variables k, (solid line), k, (dashed line), and k, (dotted line for E* and long-dashed line for II*). In the latter case when a negative flux is
found, the absolute value is taken (dotted line). (Runs Ia~IVa and run VIa, from top to bottom.)

see a clear inertial range where a power law may be ex-
tracted. An attempt is made to find this power law by com-
puting the compensated spectra E¥E~k™. Different values are
proposed in the insets. We see that the 2D state is character-
ized by approximately m=14/3, which means on average a
spectrum steeper than the Kolmogorov one. This scaling is
clearly different from the value found for E; (k,) where the

Kolmogorov value m=10/3 is better fitted. The last case
E; (k, ,k=1) is the most difficult one to analyze and no clear
scaling appears. Note that the hyperviscous runs do not ex-
hibit significant differences with, for example, a wider iner-
tial range. In fact, the latter effect is easier seen for spectra
plotted at fixed, but large, k; (k,>1). Finally, note the differ-
ence between these spectra and those found in Figs.
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v=10"% with By=15). Insets: compensated product of energy spectra, E*E"k" for a given m as indicated in the insets.

17(a)-17(e) with an inertial range easier to determine in Fig.
18, which may be attributed to the choice of the representa-
tion (anisotropic spectra instead of reduced spectra).

D. Anisotropic scaling laws

In order to extract a scaling law between parallel and
perpendicular wave numbers, we plot the modes (k| , k) cor-
responding to the equality E|(k,)=E] (k) with

ET(kH) = f ET(kpku)dkr (37)

The result is given in Fig. 19 for runs Ila (r~2), Illa—-IVa
(t~3) and VIa (1~4). We clearly see different slopes for

different magnitudes of B, with an isotropic law k;~k, for
By=1 and an anisotropic law around k; ~ sz for By=15 (see
the insets). For all cases, we see that the scaling law extends
to the dissipative range. The same behavior is found for the
pseudo-Alfvén waves (not shown here). Note that with this
method the scaling law extracted suffers from an average
effect since each spectrum is obtained after summation over
the parallel or the perpendicular direction. Nevertheless, the
anisotropic prediction proposed by [10] is often recovered,
but as it was explained above for a subcritical balance be-
tween the Alfvén and nonlinear times, which may be under-
stood in a wider context [27] as discussed in the Introduc-
tion.
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V. VISUALIZATIONS

A. Spectral space

At a time at which energy spectra are fully developed,
Fig. 20 displays perpendicular, at k=0, and parallel, at k,
=0, cuts in Fourier space for E*(k) in flows at v=7y=4
X 107 without (By=0, r=2; run Ia) or with (By,=15, t=3;
run IVa) an applied magnetic field. Initially, for both flows,
the isotropic energy injection corresponds to spherical shells
with maximum radius k=8. The spectra then evolves de-
pending on the level of the flow magnetization. Indeed, at
By=0, the maximum spectral radius increases in all direc-
tions, meaning an isotropic energy transfer towards small
scales, while at By=15, the three-dimensional energy spec-
trum collapses into ellipsoidal shapes with ratio 1/6, corre-
sponding to an anisotropic transfer, strongly inhibited in the
B, parallel direction. In this case, in B, perpendicular planes
(shown here at k;=0), one can observe a loss of excitation at
higher modes together with a loss of axisymmetry, with two
preferred directions, compared to nonmagnetized flows.

Figure 21 shows the case of strongly magnetized flows,
By=30, at lower viscosity v= 1073, and resolved with 5122
X 64 grid points (r=4; run VIa). The aspect ratio of the
spectral ellipsoidal shape decreases up to 1/10 and in trans-
verse planes, a star shape with several “jets” appears. As time
evolves (not shown), the number of these jets increases lead-
ing to an enhanced isotropy in tranverse planes (at k;=0). In
all flows, similar observations stand for E~(k) spectra.

(d)

(©)

FIG. 20. (Color) E*(k) cuts in Fourier space at k=0 [(a) and
(¢)] and k,=0 [(b) and (d)] for flows at By=0 (run Ia with 256%) at
t=2, and By=15 (run IVa with with 256%) at r=3. Color bars are
normalized to 1 for the maximum intensity (red) and to O for the
minimum (blue) one.
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(@) (b)

FIG. 21. (Color) E*(k) cuts in Fourier space at (a) k=0 and (b)
k,=0 for flows at By=30 (run Vla using 512% X 64 grid points) at
t=4. Color bars are normalized to 1 for the maximum intensity
(red) and to O for the minimum (blue) one.

B. Physical space

In order to understand the observed spectral structures in
transverse planes for magnetized flows, we first visualize
their spatial counterparts, once some Fourier amplitudes at
wave vectors (kx,ky,kzzk”) are filtered for a given field.
Hence structures only corresponding to the 2D state are ob-
tained with (k,,k,,k;>0) modes filtered, and structures for
3D modes (k;>0) are obtained with (k,,k,,k;=0) modes fil-
tered. Figure 22, for a flow with By=30 (run VIa), displays
vorticity and current isosurfaces for the 2D state at the same
time as Fig. 21, r=4, and at a later time r=6. The transverse
spectral star shape is related to the spatial distribution of the
vorticity and current sheets, perpendicularly to two peculiar
directions at =4, and more irregularly distributed at =6 for
which a higher number of jets is observed in spectral trans-
verse planes (not shown).

Similarly, for a flow with By=15 (run Va), vorticity and
current isosurfaces for states with k=0 and k;>0 are shown
in Fig. 23 at r=7, when the total energy loss is about 20%.

PHYSICAL REVIEW E 78, 066301 (2008)

(@)

FIG. 22. (Color) Isosurfaces of vorticity (blue) and current (or-
ange) intensities for the 2D state k;=0 (see the text) for a flow with
By=30 (run VIa, 5122X64), drawn at 20% of their respective
maxima: (a) at t=4, |w|,,,=8.8 and [j|,;ex=11.3, and (b) at r=6,
[W],nar=6.6 and [j|e=8.1.

The 2D state structures are again related to the star shape
observed in transverse spectral planes (not shown), while the
vorticity and current sheets with k>0 present filamentary
structures. This filamentation is an important result. Indeed,
in the literature, until now the current and vorticity structures
were mainly described as smooth sheets in the numerical
(strongly) magnetized flows.

When looking at the dynamics in physical space (without
filtering), shown in Fig. 24, the vorticity and current intensi-
ties are superimposed sheetlike structures aligned along the
ambient magnetic field. At =7, a filament formation is ob-
served within the sheets. This can be related to the filamen-
tary structures with k;>0 (see Fig. 23) that do not exist in
the 2D state, meaning that this sheet filamentation is mainly
due to the wave components. At later times, =10, with a
total energy loss of about 55%, the vorticity and current
sheets are disruped by dissipation effects.

(b)

FIG. 23. (Color) Filtered vorticity (blue) and current (orange) intensities with (a) k;=0 (2D state) and (b) k;>0, for By=15 (run Va,

5122 64) at t=7: isosurfaces are drawn at 27% and 20% of their respective maxima (k;=0;

=18.5 and |j|pa=19.2).

W]max=3.7 and |j|max=9, and k;>0;

w|max
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FIG. 24. (Color) Temporal evolution of vorticity (blue) and current (orange) intensities for the same run as in Fig. 23. Isosurfaces are

drawn at 27% and 20% of |W|,.x and |j|max instantaneous maxima. (a) At t=0;
W]nax=9.2 and [j|nax=15.4.

lilmax=27.6. (c) At £=7,

w|max= 17.9 and |j|max=25~6~ (d) At =10,

Figure 25 shows the distribution of the cross-correlation
values at z=7r [(a) and (b)] and in the entire numerical box
[(c) and (d)]. A comparison with the current and vorticity
distribution shows that the high (absolute) value of the cross
correlation coincides with the position of dissipative struc-
tures, which means that the velocity and magnetic field fluc-
tuations tend to be aligned at small scales. This result cor-
roborates recent works on the dynamic alignment in MHD
[41] where a statistical model is proposed.

VI. RUNS Ib AND IIb

In a last set of simulations we change the initial condition,
as explained in Sec. II C 3, to evaluate, in particular, their
influence on the dynamics. It is thought that this new initial
condition is more appropriate to turbulent flows with a modal
spectrum at large scales (larger than the integral length scale)
in ki, which is in agreement with the phenomenology for

Winax=2.7 and |j|max=3. (b) At r=4;

W] max=24.3 and

freely decaying turbulence [23]. These runs correspond to a
strong magnetized flow (B,=15) and high resolution (512>
X 64). We will not focus on the temporal decay that has been
analyzed recently [23] and we will only look at the spectral
behavior.

In Fig. 26 we show the 1D spectra E7 (k) for shear- and
pseudo-Alfvén waves integrated over all parallel wave num-
bers. The time chosen is the one for which we have a fully
developed turbulence. Despite the high resolution no clear
inertial range appears. The Kolmogorov scaling is given as a
reference that is roughly followed.

Figure 27 gives at the same time the energy spectra
E}, and E7, of shear- and pseudo-Alfvén waves for the 2D
state (k;=0). The most remarkable result is the presence of a
relatively extended inertial range characterized by a compen-
sated energy spectrum on average around the IK prediction,
i.e., in k‘f/z (note, however, the presence of a bottleneck
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FIG. 25. (Color) (a) Isosurfaces (at z=1r) of the cross-correlation coefficient. (b) The corresponding isosurfaces of the current (red) and
vorticity (blue) drawn at 21% of their respective maxima. (c) Isosurfaces of the cross-correlation coefficient at —0.70 (yellow), —=0.75 (blue),
and —0.90 (red). (d) Isosurfaces of the cross-correlation coefficient at 0.96 (yellow) and —0.96 (pink). (Run Va at time #=10.)

effect for the viscous run [(a) and (c)]. We conclude that the
integration over the parallel wave numbers tends to hide the
true scaling by an average effect.

Figure 28 gives at the same time the energy spectra Eiz
and E7 , of shear- and pseudo-Alfvén waves at a fixed paral-
lel wave number (k;=1). Once again a relatively extended
inertial range is found. It is characterized by a compensated
energy spectrum steeper than the previous one with an index
around k’f and klm for, respectively, the hyperviscous and
viscous case. Other spectra at higher fixed parallel wave
numbers are not shown because they are characterized by a
smaller inertial range from which it is difficult to find a
power-law scaling.

VII. SUMMARY AND CONCLUSION

In this paper, we present a set of three-dimensional (3D)

direct numerical simulations of incompressible decaying
MHD turbulence in which the influence of an external uni-
form magnetic field B is investigated. A parametric study in
terms of By intensity is made to show the development of
anisotropy. In general, the temporal evolutions show oscilla-
tions that are associated with the presence of Alfvén waves.
The dynamics is slower for strongly magnetized flows with,
in particular, a cross correlation between the velocity and the
magnetic field fluctuations frozen on average around its ini-
tial (small) value but with, locally, a wide range of possible
values. For all temporal results, one can see that the flows
with the highest values of B, (=5) behave quite similarly
while for By=1, the flow presents a transient regime between
the case without background magnetic field and the other
cases. We also discuss the presence of a subcritical balance
between the Alfvén and nonlinear times with both a global
and a spectral definition. This regime is still associated with
the anisotropic scaling laws (1) between the perpendicular
and the parallel wave numbers. The nonlinear dynamics of
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FIG. 26. Energy spectra E7 ,(k ) for shear-(solid) and pseudo-
Alfvén (dashed line) waves integrated over all parallel wave num-
bers in the viscous case (run Ib, 512% X 64). The straight line fol-
lows a k77 law.
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strongly magnetized flows is characterized by a different k|
spectrum if it is plotted at a fixed k; (2D spectrum) or if it is
integrated (averaged) over all k; (1D spectrum). In the former
case a much wider inertial range is found with a steep power
law, closer to the wave turbulence prediction than the Kol-
mogorov one like in the latter case. Note that the inertial
range of these spectra is better seen for the shear- and
pseudo-Alfvén waves rather than for the Cartesian fields.
One of the most important results of this paper is the
difference found between the k| spectra plotted after integra-
tion over k; and those at a given k. This point is generally
not discussed in numerical works, whereas it appears to be a
fundamental aspect of this problem. Direct numerical simu-
lations of the Alfvén wave turbulence regime seems to be
still out of the current numerical capacity [33] and only the
detection of the transition towards such a regime seems pos-
sible. In such a study it is crucial to avoid any noisy effect
linked, for example, to the initial condition (or forcing) that
could favor one particular type of spectrum. But the other
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FIG. 27. Energy spectra ET,z (solid) and E|, (dashed) of shear [(a) and (b)] and pseudo [(c) and (d)] Alfvén waves for the 2D state
(k;=0). The viscous (run Ib, 512X 64) [(a) and (c)] and the hyperviscous case (run IIb, 5122X 64) [(b) and (d)] are shown. Inset:
Compensated energy spectra E} 5(k ,0)E] ,(k, ,0)k™, with a given value of m as indicated in the insets.
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FIG. 28. Energy spectra Etz (solid) and E7 , (dashed) of [(a) and (b)] shear-Alfvén waves and [(c) and (d)] pseudo-Alfvén waves for
k;=1. The viscous [(a) and (c); run Ib, 5122 X 64] and the hyperviscous case [(b) and (d); run IIb, 512X 64] are shown. Inset: compensated
energy spectra Ej 5(k ,1)E} 5(k, ,1)k™, with a given value of m as indicated in the insets.

effect that could hide the true dynamics of strongly magne-
tized flows is the averaging effect as we have clearly seen in
the second set of simulations: the presence of an inertial
range was not obvious from a first global analysis (Fig. 26),
whereas it was clear from the 2D spectra (Fig. 27). This
averaging effect may be due to the moderate spatial reso-
lution used but also to the regime that is in a transition phase
towards the wave turbulence regime. If we extrapolate such a
result to natural plasmas like the one found in the interplan-
etary medium (inner solar wind) then we may interpret the
current spectra as averaging spectra (since we are not able to
report spectra at a given parallel wave number with only one
spacecraft). Then it is not surprising that we observe both an
anisotropic flow with approximately a Kolmogorov scaling.

In a recent numerical analysis [34] dedicated to the devel-
opment of anisotropy and wave turbulence in forced incom-
pressible reduced MHD flows, a change of spectral slope was
reported for the k | -energy spectrum when the forcing is ap-
plied on a larger range of parallel wave numbers with no
driving of the k=0 modes. In the light of the present paper
this finding may be interpreted as a way to decrease the
averaging effect, which is mainly due to the dissipative

scales. Indeed, when a larger parallel wave number is excited
the spectrum integrated over all k; is more sensitive to the
nondissipative parallel wave numbers and tends therefore to
reveal the true scaling. Another way to avoid this noisy effect
would have been to plot the spectra at a given but low par-
allel wave number in order to avoid the dissipative range.
The question of the power-law index predicted by the
wave turbulence theory has not been addressed so far. A k>
spectrum is expected for strongly magnetized flows in the
regime of wave turbulence (even without assuming a restric-
tion on k, and k; [42]). In our simulations a scaling close to
this value is found when hyperviscosity is used (Fig. 28) in
the second set of simulations at k=1, whereas the 2D state
(spectrum at k;=0) scales on average around kf/ 2. This latter
result is the same as the one found generally in 2D isotropic
MHD turbulence [43,44]. The steep power law reported in
k1* with @ € [2,7/3] may be attributed to the very first sign
of the wave turbulence regime that should be confirmed nev-
ertheless at higher resolution. The a=7/3 case is a priori
unexpected although it was seen as a transient regime before
the finite energy flux solution settles down [14]. However, no
change of slope is observed in our simulation because, in
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particular, for larger times the reduction of the inertial range
does not allow one to conclude about the inertial scaling law.
The case a=7/3 is also a solution predicted by a heuristic
model based on a subcritical balance between the Alfvén and
the nonlinear times [27]. In this case, the total energy spec-
trum satisfies the relations E(k L,kH)~kf’k[ﬁ, with 3a+28
=7. Thus the a=7/3 solution implies no kj-scale depen-
dence, which could be linked to the weakness of parallel
transfers.

Our analysis in the physical space has revealed important
information about structures. A filament formation is ob-
served within the current and vorticity sheets. This important
property may be explained by the specific condition of our
simulation (large B, and large Reynolds number) and has to
be confirmed at higher Reynolds numbers. The classical pic-
ture of current sheets in MHD turbulence may be wrong in
the strongly anisotropic case and filaments may be the right
picture. This result may be compared with astrophysical
plasmas like in the solar corona where extremely thin (dissi-
pative) coronal loops (filaments or “strands™) are observed.
Although their presence is well accepted, the origin of these

PHYSICAL REVIEW E 78, 066301 (2008)

filaments is still not well explained. Turbulence and Alfvén
wave could be the main ingredients [45].

Other questions about scaling laws for structure functions
and intermittency for strongly magnetized flows are not dis-
cussed here. Forcing numerical simulations are then neces-
sary, which is out of the scope of this paper. The unbalanced
case has not been addressed in this paper. It is also an im-
portant issue not only from a theoretical point of view but
also from an observational point of view since the most ana-
lyzed astrophysical plasma, the inner solar wind, is mainly
made of outwards propagating Alfvén waves. This point is
left for future works.
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