
HAL Id: hal-00382306
https://hal.science/hal-00382306v1

Submitted on 7 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Storage Operators
Karim Nour

To cite this version:
Karim Nour. On Storage Operators. 25 Years of Constructive Type Theory, Oct 1995, Venice, Italy.
pp.173-190. �hal-00382306�

https://hal.science/hal-00382306v1
https://hal.archives-ouvertes.fr

On Storage Operators

Karim NOUR
LAMA - Equipe de Logique

Université de Savoie
73376 Le Bourget du Lac
e-mail nour@univ-savoie.fr

Abstract

In 1990 Krivine (1990b) introduced the notion of storage operators.
They are λ-terms which simulate call-by-value in the call-by-name strat-
egy. Krivine (1990b) has shown that there is a very simple type in the AF2
type system for storage operators using Gődel translation from classical to
intuitionistic logic. Parigot (1993a) and Krivine (1994) have shown that
storage operators play an important tool in classical logic. In this paper,
we present a synthesis of various results on this subject.

1 Introduction

Lambda-calculus as such is not a computational model. A reduction strategy is
needed. In this paper, we consider λ-calculus with the left reduction. This strat-
egy has much advantages : it always terminates when applied to a normalizable
λ-term and it seems more economic since we compute a λ-term only when we
need it. But the major drawback of this strategy is that a function must com-
pute its argument every time it uses it. This is the reason why this strategy is
not really used. In 1990 Krivine (1990b) introduced the notion of storage opera-
tors in order to avoid this problem and to simulate call-by-value when necessary.

The AF2 type system is a way of interpreting the proof rules for the sec-
ond order intuitionistic logic plus equational reasoning as construction rules for
terms. Krivine (1990b) has shown that, by using Gődel translation from clas-
sical to intuitionitic logic (denoted by g), we can find in system AF2 a very
simple type for storage operators. Historically the type was discovered before
the notion of storage operator itself. Krivine (1990a) proved that as far as to-
tality of functions is concerned second order classical logic is conservative over
second order intuitionistic logic. To prove this, Krivine introduced the following
notions : A[x] is an input (resp. output) data type if one can prove intuitionisti-
cally A[x] → Ag[x] (reps. Ag[x] → ¬¬A[x]). Then if A[x] is an input data type
and B[x] is an output data type, then if one prove A[x] → B[x] classically one
can prove it intuitionistically. The notion of storage operator was discovered by
investigating the property of all λ-terms of type Ng[x] → ¬¬N [x] where N [x]

1

is the type of integers.

Parigot (1992) and Krivine (1994) have extended the system AF2 to the
classical logic. The method of Krivine is very simple : it consists of adding a
new constant, denoted by C, with the declaration C : ∀X{¬¬X → X} which
axiomatizes classical logic over intuitionistic logic. For the constant C, he adds
a new reduction rule which is a particular case of a rule given by Felleisen (1987)
for control operator. Parigot considerd a (second order) naturel deduction sys-
tem with several conclusions which is more convenient that the usual naturel
deduction system with the classical absurdity rule. Its computational interpre-
tation is a natural extation of λ-calculus, called λµ-calculus, which preserves
the main properties of λ-calculus and alows to model controle structures too.
In these systems the property of the unicity of representation of data is lost, but
Parigot (1993a) and Krivine (1994) have shown that storage operators typable
in AF2 can be used to find the values of classical integers.

This paper studies some properties of storage operators in pure and typed
λ-calculus. We present, in particular, the results of Krivine, Parigot and the
author.

2 Pure and typed λ-calculus

Let t, u1, ..., un be λ-terms, the application of t to u1, ..., un is denoted by
(t)u1...un. Fv(t) is the set of free variables of a λ-term t. The β-reduction
(resp. β-equivalence) relation is denoted by u →β v (resp. u ≃β v). If t is a
normalizable λ-term, we denote by N(t), the number of steps used to go from t
to its normal form. The notation σ(t) represents the result of the simultaneous
substitution σ to the free variables of t after a suitable renaming of the bounded
variables of t. We denote by (u)nv the λ-term (u)...(u)v where u occurs n times,
and u the sequence of λ-terms u1, ..., un (n ≥ 0). If u = u1, ..., un, we denote by
(t)u the λ-term (t)u1...un.
Let us recall that a λ-term t either has a head redex [i.e. t = λx1...λxn(λxu)vv,
the head redex being (λxu)v], or is in head normal form [i.e. t = λx1...λxn(x)v].
The notation u ≻ v means that v is obtained from u by some head reductions.
A λ-term t is said to be solvable if and only if the head reduction of t terminates.
If u ≻ v, we denote by n(u, v) the length of the head reduction between u and
v. And if t is solvable, we denote by n(t) the number of steps used to go from t
to its head normal form. Krivine (1990b) has shown that :

Lemma 2.1 1) If u ≻ v, then, for any substitution σ, σ(u) ≻ σ(v), and
n(σ(u), σ(v))=n(u,v).
2) If u ≻ v, then, for every sequence of λ-terms w, there is a w, such that
(u)w ≻ w, (v)w ≻ w, and n((u)w,w) = n((v)w,w) + n(u, v).

2

Lemma 2.1 shows that to make the head reduction of σ(u) (resp. of (u)w)
it is equivalent to make some steps in the head reduction of u, and after make
the head reduction of σ(v) (resp. of (v)w).

The types will be formulas of second order predicate logic over a given lan-
guage. The logical connectives are ⊥ (a predicate symbol 0-air for absurde),
→, and ∀. There are individual (or first order) variables denoted by x, y, z, ...,
and predicate (or second order) variables denoted by X,Y, Z, We do not
suppose that the language has a special constant for equality. Instead, we
define the formula u = v (where u, v are terms) to be ∀Y (Y (u) → Y (v))
where Y is a unary predicate variable. Such a formula will be called an equa-
tion. We denote by a ≈ b the equivalence binary relation such that : if
a = b is an equation, then a[t1/x1, ..., tn/xn] ≈ b[t1/x1, ..., tn/xn]. The for-
mula F1 → (F2 → (... → (Fn → G)...)) is also denoted by F1, F2, ..., Fn → G.
For every formula A, we denote by ¬A the formula A→⊥.
Let t be a λ-term, A a type, Γ = x1 : A1, ..., xn : An a context, and E a set of
equations. We define by means of the following rules the notion “t is of type A
in Γ with respect to E” ; this notion is denoted by Γ ⊢AF2 t : A.

(1) Γ ⊢AF2 xi : Ai (1 ≤ i ≤ n)

(2)
Γ, x : A ⊢AF2 t : B

Γ ⊢AF2 λxt : A→ B
(3)

Γ ⊢AF2 u : A→ B Γ ⊢AF2 v : A

Γ ⊢AF2 (u)v : B

(4)
Γ ⊢AF2 t : A

Γ ⊢AF2 t : ∀xA
(*) (5)

Γ ⊢AF2 t : ∀xA

Γ ⊢AF2 t : A[u/x]
(**)

(6)
Γ ⊢AF2 t : A

Γ ⊢AF2 t : ∀XA
(*) (7)

Γ ⊢AF2 t : ∀XA

Γ ⊢AF2 t : A[G/X]
(**)

(8)
Γ ⊢AF2 t : A[u/x] u ≈ v

Γ ⊢AF2 t : A[v/x]

With the following conditions : (*) x,X have no free occurence in Γ and (**)
u (resp. G) is a term (resp. formula).
This typed λ-calculus system is called AF2 (for Arithmétique Fonctionnelle du
second ordre). It has the following properties (Krivine 1990a).

Theorem 2.1 1) Types are preserved during reduction.
2) Typable λ-terms are strongly normalizable.

3 Storage operators

For every n ∈ N, we define the Church integer n = λxλf(f)nx. Let s =
λnλxλf((n)(f)x)f ; it is easy to check that s is a λ-term for the successor.

3

Let F be a λ-term (a function). During the computation, by left reduction,
of (F)θn (where θn ≃β n), θn may be computed as many times as F uses it.
We would like to transform (F)θn to (F)n. We also want this transformation
depends only on θn (and not F). In other words we look for some closed λ-terms
T with the following properties :
- For every λ-term F , n ∈ N, and θn ≃β n, we have (T)θnF ≻ (F)n;
- The computation time of (T)θnF ≻ (F)n depends only on θn.

Definition (temporary) : A closed λ-term T is called storage operator
for Church integers iff for every n ∈ N, and for every θn ≃β n, (T)θnf ≻ (f)n
(where f is a new variable).

It is clear that a storage operator satisfies the required properties. Indeed,
since we have (T)θnf ≻ (f)n, then the variable f never comes in head position
during the reduction, and we may then replace f by any λ-term. We will show
(see Theorem 3.1) that it is not possible to get the normal form of θn. We then
change the definition.

Definition (temporary) : A closed λ-term T is called storage operator for
Church integers iff for every n ∈ N, there is a closed λ-term τn ≃β n, such that
for every θn ≃β n, (T)θnf ≻ (f)τn (where f is a new variable).

Krivine (1990b) has shown that, by using Gődel translation from classical
to intuitionitic logic, we can find a very simple type for storage operators. But
the λ-term τn obtained may contain variables substituted by λ-terms u1, ..., um

depending on θn. Since the λ-term τn is β-equivalent to n, therefore, the left
reduction of the τn[u1/x1, ..., um/xm] is equivalent to the left reduction of τn
and the λ-terms u1, ..., um will therefore never be evaluated during the reduction.

Definition (final) : A closed λ-term T is called a storage operator for
Church integers iff for every n ∈ N, there is a λ-term τn ≃β n, such that for
every θn ≃β n, there is a substitution σ, such that (T)θnf ≻ (f)σ(τn) (where f
is a new variable).

Let F be any λ-term (for a function), and θn a λ-term β-equivalent to n.
During the computation of (F)θn, θn may be computed each time it comes
in head position. Instead of computing (F)θn, let us look at the head reduc-
tion of (T)θnF . Since it is {(T)θnf}[F/f], by Lemma 2.1, we shall first reduce
(T)θnf to its head normal form, which is (f)σ(τn), and then compute (F)σ′(τn)
(σ′ = γ ◦ σ where γ(f) = F an dγ(x) = x if x 6= f). The computation has been
decomposed into two parts, the first being independent of F . This first part is
essentially a computation of θn, the result being τn, which is a kind of normal
form of θn. The substitutions made in τn have no computational significance,
since n is closed. So, in the computation of (T)θnF , θn is computed first, and

4

the result is given to F as an argument, T has stored the result, before giving
it, as many times as needed, to any function.

If we take : T1 = λn((n)δ)G where δ = λf(f)0 and G = λxλy(x)λz(y)(s)z ;
T2 = λnλf(((n)f)F)0 where F = λxλy(x)(s)y, then we can check that for ev-
ery θn ≃β n, (Ti)θnf ≻ (f)(s)n0 (i = 1 or 2) (Krivine 1990a and Nour 1993a).
Therefore T1 and T2 are storage operators for Church integers.

The most effective storage operators for Church integers - found by Krivine -
give as result (s)n0. A question arises : Can we find storage operators for Church
integers which give normal forms as result ? This kind of storage operators are
called strong storage operators. We have shown (Nour 1995a) that :

Theorem 3.1 Church integers do not have strong storage operators.

The nonexistence of strong storage operators for Church integers results from
the following facts:
- The infinity of integers : We can prove that every finite subset of Church
integers has strong storage operators (Nour 1995a).
- The representation of integers : We can prove that we cannot create a Church
integer n (n ≥ 1) during head reduction in the application. If we change the
representation of integers, we can find strong storage operators. For every n ∈
N, we define the recursive integer n by induction : 0 = λfλxx and n+ 1 =
λfλx(f)n. Let s = λnλfλx(f)n ; it is easy to check that s is a λ-term for
successor. If we take T ′ = λν(ν)ρτρ where τ = λf(f)0, ρ = λyλz(G)(y)zτz,
and G = λxλy(x)λz(y)λfλx(f)z, then, for every θn ≃β n, (T ′)θnf ≻ (f)n.
Therefore T ′ is a strong storage operators for recursive integers (Nour 1995a).

4 Directed λ-calculus and storage operators

A closed λ-term T is a storage operator for Church integers iff for every n ∈ N,
there is a λ-term τn ≃β n, such that for every θn ≃β n, there is a sub-
stitution σ, such that(T)θnf ≻ (f)σ(τn). Let’s analyse the head reduction
(T)θnf ≻ (f)σ(τn), by replacing each λ-term which comes from θn by a new
variable. This will help us to better understand the Krivine proof of his prin-
cipal storage Theorem (Theorem 5.2) and also to justify the introduction of
directed λ-calculus which allows to find similar results in the general case.

If θn ≃β n, then θn ≻ λxλg(g)tn−1, tn−k ≻ (g)tn−k−1 (1 ≤ k ≤ n − 1),
t0 ≻ x, and tk ≃β (g)kx (0 ≤ k ≤ n − 1). Let xn be a new variable (xn rep-
resents θn). (T)xnf is solvable, and its head normal form does not begin by
λ, therefore it is a variable applied to some arguments. The free variables of
(T)xnf are xn and f , we then have two possibilities for its head normal form
: (f)δ (in this case we stop) or (xn)a1...am. Assume we obtain (xn)a1...am.

5

The variable xn represents θn, and θn ≻ λxλg(g)tn−1, therefore (θn)a1...am

and ((a2)tn−1[a1/x, a2/g])a3...am have the same head normal form. The λ-term
tn−1[a1/x, a2/g] comes from θn. Let xn−1,a1,a2

be a new variable (xn−1,a1,a2
rep-

resents tn−1[a1/x, a2/g]). The λ-term ((a2)xn−1,a1,a2
)a3...am is solvable, and

its head normal form does not begin by λ, therefore it is a variable applied
to some arguments. The free variables of ((a2)xn−1,a1,a2

)a3...am are among
xn−1,a1,a2

, xn, and f , we then have three possibilities for its head normal form
: (f)δ (in this case we stop) or (xn)b1...br or (xn−1,a1,a2

)b1...br. Assume we ob-
tain (xn−1,a1,a2

)b1...br. The variable(xn−1,a1,a2
represents tn−1[a1/x, a2/g], and

tn−1 ≻ (g)tn−2, therefore (tn−1[a1/x, a2/g])b1...br and ((a2)tn−2[a1/x, a2/g])b1...br
have the same head normal form. The λ-term tn−2[a1/x, a2/g] comes from θn.
Let xn−2,a1,a2

be a new variable (xn−2,a1,a2
represents tn−2[a1/x, a2/g]). The

λ-term ((a2)xn−2,a1,a2
)b1...br is solvable, and its head normal form does not

begin by λ, therefore it is a variable applied to arguments. The free variables of
((a2)xn−2,a1,a2

)b1...br are among xn−2,a1,a2
, xn−1,a1,a2

, xn, and f , therefore we
have four possibilities for its head normal form : (f)δ (in this case we stop) or
(xn)c1...cs or (xn−1,a1,a2

)c1...cs or (xn−2,a1,a2
)c1...cs ... and so on... Assume we

obtain (x0,d1,d2
)e1...ek during the construction. The variable x0,d1,d2

represents
t0[d1/x, d2/g], and t0 ≻ x, therefore (t0[d1/x, d2/g])e1...ek and (d1)e1...ek have
the same head normal form ; we then follow the construction with the λ-term
(d1)e1...ek. The λ-term (T)θnf is solvable, and has (f)σ(τ) as head normal
form, so this construction always stops on (f)δ. We can prove by a simple ar-
gument that δ ≃β n.

According to the previous construction, the reduction (T)θnf ≻ (f)σ(τn)
can be divided into two parts : a reduction that does not depend on n and a
reduction that depends on n (and not on θn). If we allow some new reduction
rules to get the later reductions, (something as : (xn)a1a2 ≻ (a2)xn−1,a1,a2

;
xi+1,a1,a2

≻ (a2)ui,a1,a2
(i > 0) ; x0,a1,a2

≻ a1) we obtain an equivalent def-
inition for the storage operators for Church integers : a closed λ-term T is a
storage operator for Church integers iff for every n ∈ N, (T)xnf ≻ (f)δn where
δn ≃β n. To prove his storage Theorem (Theorem 5.2), Krivine used the suffi-
cient condition of the laste equivalence.

The notion of storage operators can be generalized for each set of closed
normal λ-terms.

Let t be a closed normal λ-term and T a closed λ-term. We sad that T is a
storage operator for t iff there is a λ-term τt ≃β t, such that for every λ-term
θt ≃β t, there is a substitution σ, such that (T)θtf ≻ (f)σ(τt) (where f is a new
variable). Let D be set of closed normal λ-terms and T a closed λ-term. We
sad that T is a storage operator for D iff it is a storage operator for every t in D.

The directed λ-calculus is an extension of the ordinary λ-calculus built for

6

tracing a normal λ-term t during some head reduction. Assume u is some nor-
mal λ-term having t as a subterm. We wish to trace the places where we really
have to know what t is during the reduction of u. We will present how the di-
rected λ-calculus allows to find an equivalent -and easily expressed - definition
for the storage operators.

Let V be a set of variables of pure λ-calculus. The set of terms of directed
λ-calculus, denoted by Λ[], is defined in the following way :
- If x ∈ V , then x ∈ Λ[] ;
- If x ∈ V , and u ∈ Λ[], then λxu ∈ Λ[] ;
- If u, v ∈ Λ[], then (u)v ∈ Λ[] ;
- If t ∈ Λ is a normal λ-term, such that Fv(t) ⊆ {x1, ..., xn}, and a1, ..., an ∈ Λ[],
then [t] < a1/x1, ..., an/xn >∈ Λ[].
A λ[]-term of the form [t] < a1/x1, ..., an/xn > is said to be a box directed by
t. This notation represents, intuitively, the λ-term t where all free variables
x1, ..., xn will be replaced by a1, .., an. The substitution < a1/x1, ..., an/xn > is
denoted by < a/x >.
A λ[]-term of the form (λxu)v is called β-redex ; u[v/x] is called its contractum.
A λ[]-term of the form [t] < a/x > is called []-redex ; its contractum R is defined
by induction on t :
- If t = xi (1 ≤ i ≤ n), then R = ai ;
- If t = x 6= xi (1 ≤ i ≤ n), then R = x ;
- If t = λxu, then R = λy[u] < a/x, y/x > where y 6∈ Fv(a) ;
- If t = (u)v, then R = ([u] < a/x >)[v] < a/x >.

By interpreting the box [t] < a1/x1, ..., an/xn > by t[[a1/x1, ..., an/xn]] (the
λ-term t with an explicit substitution), the new reduction rules are those that
allow to really do the substitution. This kind of λ-calculus has been studied by
Curien (1988) ; his λσ-calculus contain terms and substitutions and is intended
to better control the substitution process created by β-reduction, and then the
implementation of the λ-calculus. The main difference between the λσ-calculus
and the directed λ-calculus is : The first one produces an explicit substitution
after each β-reduction. The second only “executes” the substitutions given in
advance. We can therefore consider the directed λ-calculus as a restriction (the
interdiction of producing explicit substitutions) of λσ-calculus ; a well adapted
way to the study of the head reduction.

Every λ[]-term t can be - uniquely - written as λx1...λxn(R)t1...tm n,m ≥ 0,
R being a variable or a redex. If R is a variable, we say that t is a β[]-head
normal form. If R is a redex, we say that R is the head redex of t. The notation
u ≻β[] v means that v is obtained from u by some head reductions.

Now, we can state the Theorem which gives an equivalent definition for
storage operators (Nour and David 1995).

7

Theorem 4.1 Let t be a closed normal λ-term, and T a closed λ-term. T is a
storage operator for t iff there is a λ-term τt ≃β t, such that
(T)[t]f ≻β[] (f)τt[[t1] < a1/x1 > /y1, ..., [tm] < am/xm > /ym].

To prove the necessary condition we associate to every θt ≃β t a special
substitution Sθ over the boxes directed by subterms of t such that Sθ([t]) = θt

and satisfying the following property : if u ≻β[] v then Sθ(u) ≻ Sθ(v). Then
(T)θtf ≻ (f)σ(τt). For the sufficient condition we use the idea given at the
begining of this paragraph. The only difficulty is to prove that τt ≃β t. For
that we use the fact that τt dos not depend on θt.

The laste result allows to find some important properties for storage opera-
tors (Nour and David 1995).

Theorem 4.2 1) Let D be a set of closed normal λ-terms, T and T ′ two closed
λ-terms. If T is a storage operator for D, and T ′ ≃β T , then T ′ also is a storage
operator for D.
2) The set of storage operators for a set of closed normal λ-terms is not recur-
sive. But the set of storage operators for a finite set of closed normal λ-terms
is recursively enumerable.
3) Each finite set of normal λ-terms having all distinct βη-normal forms has a
storage operator.
4) Let t be a closed normal λ-term, and T a closed λ-term. If T is a storage
operator for t, then there are two constants AT,t and BT,t, such that for every
θt ≃β t, n((T)θtf) ≤ AT,tN(θt) +BT,t.

5 Storage operators in typed λ-calculus

Each data type generated by free algebras can be defined by a second order
formula. The type of integers is the formula : N [x] = ∀X{X(0), ∀y(X(y) →
X(sy)) → X(x)} where X is a unary predicate variable, 0 is a constant symbol
for zero, and s is a unary function symbol for successor. The formulaN [x] means
semantically that x is an integer iff x belongs to each set X containing 0 and
closed under the successor function s. It is easy to check that, for every n ∈ N,
the Church integer n is of type N [sn(0)] and s is of type ∀y(N [y] → N [sy]).
A set of equations E is said to be adequate with the type of integers iff : s(a) 6≈ 0
and if s(a) ≈ s(b), then a ≈ b. In the rest of the paper, we assume that all sets
of equations are adequate with the type of integers.

The system AF2 has the property of the unicity of integers representation
(Krivine 1990a).

Theorem 5.1 Let n ∈ N, if ⊢AF2 t : N [sn(0)], then t ≃β n.

8

A very important property of data type is the following (we express it for
the type of integers) : in order to get a program for a function f : N → N it is
sufficient to prove ⊢ ∀x(N [x] → N [f(x)]). For example a proof of ⊢ ∀x(N [x] →
N [p(x)]) from the equations p(0) = 0, p(s(x)) = x gives a λ-term for the prede-
cessor in Church intergers (Krivine 1990a).

If we try to type a storage operator T for Church integers in AF2 type
system, we naturally find the type ∀x{N [x] → ¬¬N [x]}. But this type does
not characterize the storage operators (take for example T = λνλf(f)ν). This
comes from the fact that the type ∀x{N [x] → ¬¬N [x]} does not take into ac-
count the independency of τn from θn. To solve this problem, we must prevent
the use of the first N [x] in ∀x{N [x] → ¬¬N [x]} as well as his subtypes to prove
the second N [x].

For each formula F of AF2, we indicate by F g the formula obtained by
putting ¬ in front of each atomic formulas of F (F g is called the Gődel trans-
lation of F). For example : Ng[x] = ∀X{¬X(0), ∀y(¬X(y) → ¬X(sy)) →
¬X(x)}. It is well known that, if F is provable in classical logic, then F g is
provable in intuitionistic logic (Krivine 1990a).

We can check that ⊢AF2 T1, T2 : ∀x{Ng[x] → ¬¬N [x]}. And, in general, we
have the following Theorem (Krivine 1990a, Nour 1994) :

Theorem 5.2 If ⊢AF2 T : ∀x{Ng[x] → ¬¬N [x]}, then T is a storage operator
for Church integers.

We will give some ideas for the proofs of this Theorem. Krivine (1990a)
introduced a semantic for his system and he proved that : if t is of type A
then t belongs A. Since T is of type ∀x{Ng[x] → ¬¬N [x]} then T belongs
Ng[sn(0)] → ¬¬N [sn(0)]. With the proper semantic interpretation of ⊥ we
check that xn belongs Ng[sn(0)] and f belongs ¬N [sn(0)]. This implies that
(T)xnf belongs to ⊥ which gives the theorem directly from the choice of the
interpretation of ⊥. We presented (Nour 1994) a syntactical proof of this result.
We prove by using only the syntactical properties of the system AF2 that the
λ-term T satisfies the properties which we need.

The storage operators given in this paper up to now give as results closed
λ-terms. This kind of storage operators is called proper storage operators. A
question arises : Can we find a typed non proper storage operator for Church
integers ? We have shown that (Nour 1993b) :

Theorem 5.3 There is a non proper storage operator for Church integers T
such that ⊢AF2 T : ∀x{Ng[x] → ¬¬N [x]}.

9

An example of a such operator is the following : T = λν(ν)γD where
D = λuλv(u)λw(((ν)λy(((y)w)u)v)λxx)λgλkλl(l)λnλm(n)((g)n)m,
γ = λf(((ν)λx(f)((((x)n)f)0)λxx)λxλyλzz.

6 Generalization

Some authors have been interested in the research of a most general type for
storage operators. For example, Danos and Regnier (1992) have given as type
for storage operators the formula ∀x{Ne[x] → ¬¬N [x]} where the operation e is
an elaborate Gődel translation which associates to every formula F the formula
F e obtained by replacing in F each atomic formulaX(t) byX1(t), ..., Xr(t) →⊥.
Krivine (1993) and the author (Nour 1996a) have given a more general type for
storage operators the formula ∀x{NG[x] → ¬¬N [x]} where the operation G is
the general Gődel translation which associates to every formula F the formula
FG obtained by replacing in F each atomic formula X(t) by a formula GX [t/x]
ending with ⊥. With the types cited before, we cannot type the simple stor-
age operator : T = λνλf((ν)λxx)(Ti)νf (i = 1 or 2). This is due to the fact
that the normal form of T contains a variable ν applied to two arguments and
another ν applied to three arguments. Therefore, we cannot type T because
the variable ν is assigned by Ng[x] (for example) and thus the number of the
ν-arguments is fixed once for all. To solve the problem, we replace Ng[x] in
the type of storage operators by another type N⊥[x] which does not limit the
number of ν-arguments and only enables to generate formulas ending with ⊥ in
order to find a general specification for storage operators.

We assume that for every integer n, there is a countable set of special n-
ary second order variables denoted by X⊥, Y⊥, Z⊥...., and called ⊥-variables. A
type A is called an ⊥-type iff A is obtained by the following rules :
- ⊥ is an ⊥-type ;
- X⊥(t1, ..., tn) is an ⊥-type ;
- If B is an ⊥-type, then A→ B is an ⊥-type for every type A ;
- If A is an ⊥-type, then ∀vA is an ⊥-type for every variable v.
We add to the AF2 type system the new following rules :

(6′)
Γ ⊢ t : A

Γ ⊢ t : ∀X⊥A
(*) (7′)

Γ ⊢ t : ∀X⊥A

Γ ⊢ t : A[G/X⊥]
(**)

With the following conditions : (*) X⊥ has no free occurence in Γ and (**)
G is an ⊥-type.
We call AF2⊥ the new type system, and we write Γ ⊢⊥ t : A if t is typable in
AF2⊥ of type A in the context Γ.
We define two sets of types of AF2 type system: Ω+ (set of ∀-positive types),
and Ω− (set of ∀-negative types) in the following way :
- If A is an atomic type, then A ∈ Ω+, and A ∈ Ω− ;

10

- If T ∈ Ω+, and T ′ ∈ Ω−, then, T ′ → T ∈ Ω+, and T → T ′ ∈ Ω− ;
- If T ∈ Ω+ (resp. T ∈ Ω−), then ∀xT ∈ Ω+ (resp. ∀xT ∈ Ω−);
- If T ∈ Ω+, then ∀XT ∈ Ω+ ;
- If T ∈ Ω−, and X has no free occurence in T , then ∀XT ∈ Ω−.
Therefore, T is a ∀-positive types iff the universal second order quantifier ap-
pears positively in T .
For each predicate variable X , we associate an ⊥- variable X⊥. For each for-
mula A of AF2 type system, we define the formula A⊥ as follows :
- If A = R(t1, ..., tn), where R is an n-ary predicate symbol, then A⊥ = A ;
- If A = X(t1, ..., tn), where X is an n-ary predicate variable, then A⊥ =
X⊥(t1, ..., tn);
- If A = B → C, then A⊥ = B⊥ → C⊥ ;
- If A = ∀xB, then A⊥ = ∀xB⊥ ;
- If A = ∀XB, then A⊥ = ∀X⊥B

⊥.
Let T be a closed λ-term, and D,E two closed types of AF2 type system. We
say that T is a storage operator for the pair of types (D,E) iff for every λ-term
⊢AF2 t : D, there are λ-terms τt and τ ′t , such that τ ′t ≃β τt, ⊢AF2 τ

′
t : E, and

for every θt ≃β t, there is a substitution σ, such that (T)θtf ≻ (f)σ(τt) (where
f is a new variable).

We have the following generalization (Nour 1995d).

Theorem 6.1 Let D,E be two ∀-positive closed types of AF2 type system, such
that E does not contain ⊥. If ⊢⊥ T : D⊥ → ¬¬E, then T is a storage operator
for the pair (D,E).

The condition “D,E are ∀-positive types” is necessary in order to obtain
Theorem 6.1. Indeed, let D = ∀X{∀Y (Y → X) → X}, t = λx(x)λyy, and
T = λν(ν)λxλf(f)λy(y)x. It is easy to check that D is not a ∀-positive type,
⊢AF2 t : D, ⊢⊥ T : D⊥ → ¬¬D, and T is not a storage operator for D (Nour
1993a). This counter example also works with the original Gődel translation
and with any general Gődel translation.

Theorem 6.1 allows also to generalize the result of Krivine (Theorem 5.2) to
every data type (booleans, lists, trees, product and sum of data types, ...).

7 Pure and typed λC-calculus

We add a constant C to the pure λ-calculus and we denote by λC the set of
new terms also called λC-terms. We consider the following rules of reduction,
called rules of head C-reduction.
(1) (λxu)tt1...tn → (u[t/x])t1...tn for every u, t, t1, ..., tn ∈ ΛC.
(2) (C)tt1...tn → (t)λx(x)t1...tn for every t, t1, ..., tn ∈ ΛC, x being a λ-variable
not appearing in t1, ..., tn.

11

The rule (2) is a particular case of a general law of reduction for control operators
given in (Felleisein 1987) which is E[Ct/x] → (t)λxE.
For any λC-terms t, t′, we shall write t ≻C t′ if t′ is obtained from t by applying
these rules finitely many times.
A λC-term t is said to be β-normal iff t does not contain a β-redex.
A λC-term t is said to be C-solvable iff t ≻C (f)t1, ..., tn where f is a variable.
We add to the AF2 type system the new following rule :

(0) Γ ⊢ C : ∀X{¬¬X → X}

This rule axiomatizes the classical over the intuitionistic logic. We call C2 the
new type system, and we write Γ ⊢C2 t : A if t is of type A in the context Γ. In
this system we have only the following weak properties (Krivine 1994).

Theorem 7.1 1) If Γ ⊢C2 t : A, and t→β t
′, then Γ ⊢C2 t

′ : A.
2) If Γ ⊢C2 t :⊥, and t ≻C t′, then Γ ⊢C2 t

′ :⊥.
3) If A is an atomic type, and Γ ⊢C2 t : A, then t is C-solvable.

In this system, the problem is : given a typed term in classical logic, what
kind of program is it ? We shall take the example of integers. Let us call a
λC-term θ a classical integer if ⊢C2 θ : N [sn0]. If ⊢AF2 θ : N [sn0], then we
know that θ ≃β n, and thus we know the operational behaviour of θ. But
when θ is a classical integers, it is no longer true that θ ≃β n. For example
⊢C2 θ1 = λxλf(C)λy(y)(f)(C)λz(y)(f)x : N [s0]. In order to recognize the
integer n hidden inside θ (the value of θ), we have make use of storage operators.
Krivine (1994) has shown that :

Theorem 7.2 If ⊢AF2 T : ∀x{Ng[x] → ¬¬N [x]}, then for every n ∈ N, there
is a λ-term τn ≃β n such that for every classical integer θn of value n, there is a
substitution σ such that (T)θnf ≻C (f)σ(τn) (then (T)θnλxx ≻C σ′(τn) →β n).

The difficulties to prove this theorem (by comparasion to the Theorem 5.1)
are : the operational characterization of classical integers and the fact that this
characterization corresponds to the behavior of typed storage operators.

Theorem 7.2 cannot be generalized for the system C2. Indeed, let T =
λνλf(f)(C)(Ti)ν (i = 1 or 2). We have ⊢C2 T : ∀x{Ng[x] → ¬¬N [x]} and
there is not a λC-term τn ≃β n such that for every classical integer θn of value
n, there is a substitution σ, such that (T)θnf ≻C (f)σ(τn) (Nour 1997a).

The Theorem 7.2 suggests many questions :
- What is the relation between classical integers and the type Ng[x] ?
- Why do we need intuitionistic logic to modelize the storage operators and
classical logic to modelize the control operators ?

12

8 The M2 type system

In this section, we present a new classical type system based on a logical system
called mixed logic. This system allows essentially to distinguish between classi-
cal proofs and intuitionistic proofs. We assume that for every integer n, there is
a countable set of special n-ary second order variables denoted byXC , YC , ZC,
and called classical variables.

Let X be an n-ary predicate variable or predicate symbol. A type A is said
to be ending with X iff A is obtained by the following rules :
- X(t1, ..., tn) ends with X ;
- If B ends with X , then A→ B ends with X for every type A ;
- If A ends with X , then ∀vA ends with X for every variable v.
A type A is said to be a classical type iff A ends with ⊥ or a classical variable.
We add to the AF2 type system the new following rules :

(0′) Γ ⊢ C : ∀XC{¬¬XC → XC}

(6′′)
Γ ⊢ t : A

Γ ⊢ t : ∀XCA
(*) (7′′)

Γ ⊢ t : ∀XCA

Γ ⊢ t : A[G/XC]
(**)

With the following conditions : (*) XC has no free occurence in Γ and (**)
G is a classical type.
We call M2 the new type system, and we write Γ ⊢M2 t : A if t is of type A in
the context Γ.

8.1 Properties of M2

With each classical variable XC , we associate a special variable X• of AF2 hav-
ing the same arity as XC . For each formula A of M2, we define the formula A*
of AF2 in the following way :
- If A = D(t1, ..., tn) where D is a predicate symbol or a predicate variable, then
A*=A ;
- If A = XC(t1, ..., tn), then A*= ¬X•(t1, ..., tn) ;
- If A = B → C, then A*= B*→ C* ;
- If A = ∀xB (resp. A = ∀XB), then A*=∀xB* (resp. A*= ∀XB*) ;
- If A = ∀XCB, then A*=∀X•B*.

We have the following result (Nour 1997a).

Theorem 8.1 Let A be a ∀-positive type of AF2 and t a β-normal λC-term.
If ⊢M2 t : A, then t is a normal λ-term, and ⊢AF2 t : A.

With each predicate variable X of C2, we associate a classical variable XC

having the same arity as X . For each formula A of C2, we define the formula
AC of M2 in the following way :

13

- If A = D(t1, ..., tn) where D is a constant symbol, then AC = A ;
- If A = X(t1, ..., tn) where X is a predicate symbol, then AC = XC(t1, ..., tn) ;
- If A = B → C, then AC = BC → CC ;
- If A = ∀xB, then AC = ∀xBC ;
- If A = ∀XB, then AC = ∀XCB

C .

As for relation betwen the systems C2 and M2, we have (Nour 1997a) :

Theorem 8.2 Let A be a type of C2, and t a λC-term. ⊢C2 t : A iff ⊢M2 t : AC .

8.2 The integers in M2

According to the results of the subsection 8.1, we obtain some results concerning
integers in system M2 (Nour 1997a).

Theorem 8.3 Let n ∈ N, if ⊢M2 t : N [sn(0)], then, t ≃β n.

Let n ∈ N. By Theorem 8.1, a classical integer of value n is a closed λC-
term θn such that ⊢M2 θn : NC [sn(0)]. For the classical integers we have only
one operational characterization. In order to give this characterization, we shall
need some definitions.

Let V be the set of variables of λC-calculus. Let P be an infinite set of
constants called stack constants 1. We define a set of λC-terms ΛCP by :
- If x ∈ V , then x ∈ ΛCP ;
- If t ∈ ΛCP , and x ∈ V , then λxt ∈ ΛCP ;
- If t ∈ ΛCP , and u ∈ ΛCP

⋃
P , then (t)u ∈ ΛCP .

In other words, t ∈ ΛCP iff the stack constants are in argument positions in t.
We consider, on the set ΛCP , the following rules of reduction :
(1) (λxu)tt1...tn → (u[t/x])t1...tn for all u, t ∈ ΛCP and t1, ..., tn ∈ λCP

⋃
P ;

(2) (C)tt1...tn → (t)λx(x)t1 ...tn for all t ∈ ΛCP and t1, ..., tn ∈ λCP
⋃
P , and

x being λ-variable not appearing in t1, ..., tn.
For any t, t′ ∈ ΛCP , we shall write t�C t′, if t′ is obtained from t by applying
these rules finitely many times.

Let θ1 = λxλf(C)λy(y)(f)(C)λz(y)(f)x. We have ⊢M2 θ1 : NC [s0]
(θ1)xgp0 �C (g)t1p0 ; (t1)p1 �C (g)t2p0 and (t2)p2 �C (x)p2. In general we have
the following result (Nour 1997a).

Theorem 8.4 Let n ∈ N, θn a classical integer of value n, and x, g two distinct
variables.
- If n = 0, then, for every stack constant p, we have : (θn)xgp�C (x)p.
- If n 6= 0, then there is an m ∈ N*, and a mapping I : {0, ...,m} → N, such

1The notion of stack constants is taken from a manuscript of Krivine.

14

that for all distinct stack constants p0, p1, ..., pm, we have :
(θn)xgp0 �C (g)t1pr0

; (ti)pi �C (g)ti+1pri
(1 ≤ i ≤ m− 1) ; (tm)pm �C (x)prm

where I(0) = n, I(rm) = 0, and I(i+ 1) = I(ri) − 1 (0 ≤ i ≤ m− 1).

Theorem 8.4 allows to find the value of a classical integer. Let θn be a
classical integer of value n. Let p be a stack constant and g, x two distinct
variables. If (θn)xgp�C (x)p, then n = 0. If not there is an m ∈ N*, a sequence
(ri)1≤i≤m where (0 ≤ ri ≤ m) and a mapping J : {0, ...,m} → N such that
J(0) = 0, and J(i+ 1) = J(ri) + 1 (0 ≤ i ≤ m− 1). Therefore J(rm) = n.

8.3 Storage operators for classical integers

In system M2 we have a similar result to Theorem 5.2 (Nour 1997a).

Let T be a closed λC-term. We say that T is a storage operator for classical
integers iff for every n ∈ N, there is a λC-term τn ≃β n, such that for every
classical integers θn of value n, there is a substitution σ, such that (T)θnf ≻C

(f)σ(τn) (where f is a new variable).

Theorem 8.5 If ⊢M2 T : ∀x{NC [x] → ¬¬N [x]}, then T is a storage operator
for classical integers.

Theorem 8.5 means that if ⊢M2 T : ∀x{NC [x] → ¬¬N [x]}, then T takes a
classical integer as an argument and return the Church integer corresponding
to its value. It is enough to do the proof of this Theorem in the propositionnal
case.The type system M is the subsystem of M2 where we only have propo-
sitional variables and constants. We write Γ ⊢M t : A if t is typable in M of
type A in the context Γ. Let N = ∀X{X, (X → X) → X}. Theorem 8.5 is a
consequence of the following Theorem (Nour 1997a).

Theorem 8.6 If ⊢M T : NC → ¬¬N , then for every n ∈ N, there is an m ∈ N
and a λC-term τm ≃β m, such that for every classical integer θn of value n,
there is a substitution σ, such that (T)θnf ≻C (f)σ(τm).

Indeed, if ⊢M2 T : ∀x{NC [x] → ¬¬N [x]}, then ⊢M T : NC → ¬¬N . There-
fore for every n ∈ N, there is an m ∈ N and τm ≃β m, such that for every
classical integer θn of value n, there is a substitution σ, such that (T)θnf ≻C

(f)σ(τm). We have ⊢M2 n : NC [sn(0)], then f : ¬N [sn(0)] ⊢M2 (T)nf :⊥,
therefore f : ¬N [sn(0)] ⊢M2 (f)m :⊥ and ⊢M2 m : N [sn(0)]. Therefore n = m,
and T is a storage operator for classical integers.

The proof of Theorem 8.6 uses two independent Theorems : the first one
(Theorem 8.4) expresses a property of classical integers and the second one
(Theorem 8.7) expresses a property of a λC-terms of type NC → ¬¬N .

15

Let ν and f be two fixed variables. We denote by xn,a,b,c (where n is an
integer, a, b two λ-terms, and c a finite sequence of λ-terms) a variable which
does not appear in a, b, c. We have (Nour 1997a) :

Theorem 8.7 Let ⊢M T : NC → ¬¬N and n ∈ N. There is m ∈ N and a
finite sequence of head reductions {Ui ≻C Vi}1≤i≤r such that :
1) U1 = (T)νf and Vr = (f)τm where τm ≃β m ;
2) Vi = (ν)abc or Vi = (xl,a,b,c)d (0 ≤ l ≤ n− 1) ;
3) If Vi = (ν)abc, then Ui+1 = (a)c if n = 0 and Ui+1 = ((b)xn−1,a,b,c)c if n 6= 0
4) If Vi = (xl,a,b,c)d (0 ≤ l ≤ n − 1), then Ui+1 = (a)d if l = 0 and Ui+1 =
((b)x

l−1,a,b,d
)d if l 6= 0.

Let T be a closed λC-term, and D,E two closed types of AF2 type system.
We say that T is a storage operator for the pair of types (D,E) iff for every
λ-term ⊢AF2 t : D, there is λ-term τ ′t and λC-term τt, such that τ ′t ≃β τt,
⊢AF2 τ ′t : E, and for every ⊢C2 θt : D, there is a substitution σ, such that
(T)θtf ≻C (f)σ(τt) (where f is a new variable).

We can generalize Theorem 8.5 (Nour 1997a).

Theorem 8.8 Let D,E two ∀-positive closed types of AF2 type system, such
that E does not contain ⊥. If ⊢M2 T : DC → ¬¬E, then T is a storage operator
for the pair (D,E).

9 The λµ-calculus

9.1 Pure and typed λµ-calculus

λµ-calculus has two distinct alphabets of variables : the set of λ-variables
x, y, z, ..., and the set of µ-variables α, β, γ,.... Terms (also called λµ-terms)
are defined by the following grammar : t := x | λxt | (t)t | µα[β]t.
The reduction relation of λµ-calculus is induced by fives different notions of
reduction :
The computation rules
(C1) (λxu)v → u[v/x]
(C2) (µαu)v → µαu[v/*α] where u[v/*α] is obtained from u by replacing in-
ductively each subterm of the form [α]w by [α](w)v.
The simplification rules
(S1) [α]µβu → u[α/β]
(S2) µα[α]u → u, if α has no free occurence in u
(S3) µαu→ λxµαu[x/*α], if u contains a subterm of the form [α]λyw.

Parigot (1992) has shown that :

Theorem 9.1 In λµ-calculus, reduction is confluent.

16

The notation u ≻µ v means that v is obtained from u by some head reduc-
tions. The head equivalence relation is denoted by : u ∼µ v iff there is a w,
such that u ≻µ w and v ≻µ w.

Proofs are written in a natural deduction system with several conclusions,
presented with sequents. One deals with sequents such that :
- Formulas to the left of ⊢ are labelled with λ-variables ;
- Formulas to the right of ⊢ are labelled with µ-variables, except one formula
which is labelled with a λµ-term ;
- Distinct formulas never have the same label.

Let t be a λµ-term, A a type, Γ = x1 : A1, ..., xn : An, and ∆ = α1 :
B1, ..., αm : Bm. We define by means of the following rules the notion “t is of
type A in Γ and ∆”. This notion is denoted by Γ ⊢FD2 t : A,∆.
The rules (1),...,(8) of AF2 type system and the following rule :

(9)
Γ ⊢FD2 t : A, β : B,∆

Γ ⊢FD2 µβ[α]t : B,α : A,∆

Weakenings are included in the rules (2) and (9).

As in typed λ-calculus on can define ¬A as A→⊥ and use the previous rules
with the following special interpretation of naming for ⊥ : for α a µ-variable,
α :⊥ is not mentioned. This typed λ-calculus system is called FD2. It has the
following properties (Parigot 1992).

Theorem 9.2 1) Type is preserved during reduction.
2) Typable λµ-terms are strongly normalizable.

9.2 Classical integers

Let n be an integer. A classical integer of value n is a closed λµ-term θn such
that ⊢FD2 θn : N [sn(0)].
Let x and f fixed variables, and Nx,f be the set of λµ-terms defined by the
following grammar : u := x | (f)u | µα[β]x | µα[β]u.
We define, for each u ∈ Nx,f the set rep(u), which is intuitively the set of inte-
gers potentially repesented by u :
- rep(x) = {0} ;
- rep((f)u) = {n+ 1 if n ∈ rep(u)} ;
- rep(µα[β]u) =

⋂
rep(v) for each subterm [α]v of [β]u.

The following Theorem characterizes the classical integers (Parigot 1992).

Theorem 9.3 The normal classical integers of value n are the λµ-terms of the
form λxλfu with u ∈ Nx,f without free µ-variable and such that rep(u) = {n}.

17

Let θ = λxλfu where
u = (f)µα[α](f)µφ[α](f)µψ[α](f)(f)µβ[φ](f)µδ[β](f)µγ[α](f)µρ[β](f)x.
We can check that rep(u) = {4}. Then θ is a classical integer of value 4.

We will present now a simple method to find the value of a classical integer.
We define, for each u ∈ Nx,f the set val(u), which is intuitively the set of the
possible values of u :
- val(x) = {0} ;
- val((f)u) = {n+ 1 if n ∈ val(u)} ;
- val(µα[β]u) =

⋃
val(v) for each subterm [α]v of [β]u.

Let u ∈ Nx,f without free µ-variable and α1, ..., αn the µ-variables of u which
satisfy : α1 is the µ-variable such that [α1](f)i1x is a subterm of u, αj (2 ≤
j ≤ n) is the µ-variable such that [αj](f)ijµαj−1uj−1 is a subterm of u, and
u = (f)in+1µαnun. Let t0 = x and tj = µαjuj (1 ≤ j ≤ n).

We have (Nour 1997b).

Lemma 9.1 For every (1 ≤ j ≤ n+ 1) :

1) val(tj−1) = {
∑

1≤k≤j

ik}.

2) For each subterm t of uj, such that t 6= (f)rtk (0 ≤ k ≤ j − 1), val(t) = ∅.

In particular val(u) = {
∑

1≤k≤n+1

ik}.

Using Lemma 9.1 and the fact that for each u ∈ Nx,f , rep(u) ⊆ val(u) we
deduce the following result (Nour 1997b) :

Theorem 9.4 If θ is a normal classical integer of value n, then θ = λxλfu
with u ∈ Nx,f without free µ-variable and such that val(u) = {n}.

Then to find the value of a normal classical integer θ = λxλfu, we try the
µ-variables αj (1 ≤ j ≤ n+1) and the integers ij (1 ≤ j ≤ n+1) of the λµ-term

u. The value of θ is equal to
∑

1≤k≤n+1

ik.

9.3 Storage operators in λµ-calculus

Let T be a closed λ-term. We say that T is a storage operator for classi-
cal integers iff for every (n ≥ 0), there is λ-term τn ≃β n, such that for
every classical integers θn of value n, there is a substitution σ, such that
(T)θnf ∼µ µα[α](f)σ(τn) (where f is a new variable).

Parigot (1993a) has shown that :

Theorem 9.5 If ⊢AF2 T : ∀x{Ng[x] → ¬¬N [x]}, then T is a storage operator
for classical integers.

18

In order to define, in this framework, the equivalent of system M2, the
demonstration of ¬¬A→ A should not be allowed for all formulas A, and thus
we should prevent the occurrence of some formulas on the right. Thus the fol-
lowing definition.

We add to the FD2 type system the new following rules :

(6′)
Γ ⊢ t : A,∆

Γ ⊢ t : ∀XCA,∆
(*) (7′)

Γ ⊢ t : ∀XCA,∆

Γ ⊢ t : A[G/XC],∆
(**)

With the following conditions : (*) XC has no free occurence in Γ and (**) G
is a classical type.
We call M2 the new type system, and we write Γ ⊢M2 t : A,∆ if t is of type A
in the Γ and ∆.
Let T be a closed λµ-term. We say that T is a storage operator for clas-
sical integers iff for every (n ≥ 0), there is λµ-term τn ≃β n, such that
for every classical integers θn of value n, there is a substitution σ, such that
(T)θnf ∼µ µα[α](f)σ(τn) (where f is a new variable).

We have the following result :

Theorem 9.6 If ⊢M2 T : ∀x{NC [x] → ¬¬N [x]}, then T is a storage operator
for classical integers.

References

[1] Abali, M., Cardelli, L. , Curien, P.L. , and Levy, J.L. (1990). Explicit Sub-
stitutions . Technical report 1176, INRIA.

[2] Barendregt, H. (1984). The lambda calculus : Its Syntax and Semantics.
North Holland.

[3] Curien, P.L. (1988). The λρ-calculi : an abstract framework for closures.
Technical report, LIENS - Ecole Normale Supérieure.

[4] Danos, V. and Regnier, L. (1992). Notes sur la mise en mémoire. Manuscript .

[5] Felleisein, M. (1987). The Calculi of λv − CS conversion: a syntactic the-
ory of control and state in imperative higher order programming. Ph. D.
dissertation, Indiana University.

[6] Krivine, J.L. (1990a). Lambda-calcul, types et modèles. Masson, Paris.

[7] Krivine, J.L. (1990b). Opérateurs de mise en mémoire et traduction de
Gődel. Archive for Mathematical Logic 30, 241-267.

19

[8] Krivine, J.L. (1991). Lambda-calcul, évaluation paresseuse et mise en
mémoire. Theoretical Informatics and Applications 25-1, 67-84.

[9] Krivine, J.L. (1993). Mise en mémoire (preuve générale). Manuscript .

[10] Krivine, J.L. (1994). Classical logic, storage operators and 2nd order
lambda-calculus. Annals of Pure and Applied Logic 68, 53-78.

[11] Krivine, J.L. (1996) A general storage theorem for integers in call-by-name
λ-calculus. Theoretical Computer Science.

[12] Labib-Sami, R. (1986). Typer avec (ou sans) types auxilières Manuscript .

[13] Leivant, D. (1983). Reasonning about functional programs and complex-
ity classes associated with type disciplines. In 24th Annual Symposium on
Foundations of Computer Science 44, 460-469.

[14] Leivant, D. (1986). Typing and computation properties of lambda expres-
sions. Theoretical Computer Science 44, 51-68.

[15] Nour, K. (1993a). Opérateurs de mise en mémoire en lambda-calcul pur et
typé. Thèse de Doctorat, Université de Chambéry.

[16] Nour, K. (1993b). Opérateurs propre de mise en mémoire. C.R. Acad. Sci
Paris 317-I, 1-6.

[17] Nour, K. (1994). Une preuve syntaxique d’un théorème de J.L. Krivine sur
les opérateurs de mise en mémoire. C.R. Acad. Sci Paris 318-I, 201-204.

[18] Nour, K. and David, R. (1995). Storage operators and directed λ-calculus.
Journal of symbolic logic 60-4, 1054-1086.

[19] Nour, K. (1995a). Strong storage operators and data types. Archive for
Mathematical Logic 34, 65-78.

[20] Nour, K. (1995b). Quelques résultats sur le λC-calcul. C.R. Acad. Sci Paris
320-I, 259-262.

[21] Nour, K. (1995c). A general type for storage operators. Mathematical Logic
Quarterly 41, 505-514.

[22] Nour, K. (1995d). Caractérisation opérationnelle des entiers classiques en
λC-calcul. C.R. Acad. Sci Paris 320-I, 1431-1434.

[23] Nour, K. (1996a). Opérateurs de mise en mémoire et types ∀-positifs. The-
oretical Informatics and Applications 30-3, 261-293.

[24] Nour, K. (1996b). Storage operators and ∀-positive types in system TTR.
Mathematical Logic Quarterly 42, 349-368.

20

[25] Nour, K. (1996c). Entiers intuitionnistes et entiers classiques en λC-calcul.
Theoretical Informatics and Applications 29-4, 293-313.

[26] Nour, K. (1997a). Mixed logic and storage operators. Archive for Mathe-
matical Logic. to appear.

[27] Nour, K. (1997b). La valeur d’un entier classique en λµ-calcul. Archive for
Mathematical Logic. to appear.

[28] Parigot, M. (1992). λµ-calculus : an algorithm interpretation of classical
natural deduction. Lecture Notes in Artificial Intelligence, Springer Verlag
624, 190-201.

[29] Parigot, M. (1993a). Classical proofs as programs. Lectures Notes in Com-
puter Science, Springer Verlag 713, 263-276.

[30] Parigot, M. (1993b). Strong normalization for second order classical natural
deduction. Proceedings of the eighth annual IEEE symposium on logic in
computer science 39-46.

21

	Introduction
	Pure and typed -calculus
	Storage operators
	Directed -calculus and storage operators
	Storage operators in typed -calculus
	Generalization
	Pure and typed C-calculus
	The M2 type system
	Properties of M2
	The integers in M2
	Storage operators for classical integers

	The -calculus
	Pure and typed -calculus
	Classical integers
	Storage operators in -calculus

