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On Storage Operators

 have shown that storage operators play an important tool in classical logic. In this paper, we present a synthesis of various results on this subject.

Introduction

Lambda-calculus as such is not a computational model. A reduction strategy is needed. In this paper, we consider λ-calculus with the left reduction. This strategy has much advantages : it always terminates when applied to a normalizable λ-term and it seems more economic since we compute a λ-term only when we need it. But the major drawback of this strategy is that a function must compute its argument every time it uses it. This is the reason why this strategy is not really used. In 1990 Krivine (1990b) introduced the notion of storage operators in order to avoid this problem and to simulate call-by-value when necessary.

The AF 2 type system is a way of interpreting the proof rules for the second order intuitionistic logic plus equational reasoning as construction rules for terms. Krivine (1990b) has shown that, by using Gődel translation from classical to intuitionitic logic (denoted by g ), we can find in system AF 2 a very simple type for storage operators. Historically the type was discovered before the notion of storage operator itself. Krivine (1990a) proved that as far as totality of functions is concerned second order classical logic is conservative over second order intuitionistic logic. To prove this, Krivine introduced the following notions : A[x] is an input (resp. output) data type if one can prove intuitionistically

A[x] → A g [x] (reps. A g [x] → ¬¬A[x]). Then if A[x]
is an input data type and B[x] is an output data type, then if one prove A[x] → B[x] classically one can prove it intuitionistically. The notion of storage operator was discovered by investigating the property of all λ-terms of type N g [x] → ¬¬N [x] where N [x] 1 is the type of integers. [START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF] and [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF] have extended the system AF 2 to the classical logic. The method of Krivine is very simple : it consists of adding a new constant, denoted by C, with the declaration C : ∀X{¬¬X → X} which axiomatizes classical logic over intuitionistic logic. For the constant C, he adds a new reduction rule which is a particular case of a rule given by Felleisen (1987) for control operator. Parigot considerd a (second order) naturel deduction system with several conclusions which is more convenient that the usual naturel deduction system with the classical absurdity rule. Its computational interpretation is a natural extation of λ-calculus, called λµ-calculus, which preserves the main properties of λ-calculus and alows to model controle structures too. In these systems the property of the unicity of representation of data is lost, but Parigot (1993a) and [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF] have shown that storage operators typable in AF 2 can be used to find the values of classical integers. This paper studies some properties of storage operators in pure and typed λ-calculus. We present, in particular, the results of Krivine, Parigot and the author.

2 Pure and typed λ-calculus Let t, u 1 , ..., u n be λ-terms, the application of t to u 1 , ..., u n is denoted by (t)u 1 ...u n . F v(t) is the set of free variables of a λ-term t. The β-reduction (resp. β-equivalence) relation is denoted by u → β v (resp. u ≃ β v). If t is a normalizable λ-term, we denote by N (t), the number of steps used to go from t to its normal form. The notation σ(t) represents the result of the simultaneous substitution σ to the free variables of t after a suitable renaming of the bounded variables of t. We denote by (u) n v the λ-term (u)...(u)v where u occurs n times, and u the sequence of λ-terms u 1 , ..., u n (n ≥ 0). If u = u 1 , ..., u n , we denote by (t)u the λ-term (t)u 1 ...u n . Let us recall that a λ-term t either has a head redex [i.e. t = λx 1 ...λx n (λxu)vv, the head redex being (λxu)v], or is in head normal form [i.e. t = λx 1 ...λx n (x)v]. The notation u ≻ v means that v is obtained from u by some head reductions. A λ-term t is said to be solvable if and only if the head reduction of t terminates. If u ≻ v, we denote by n(u, v) the length of the head reduction between u and v. And if t is solvable, we denote by n(t) the number of steps used to go from t to its head normal form. Krivine (1990b) has shown that :

Lemma 2.1 1) If u ≻ v, then, for any substitution σ, σ(u) ≻ σ(v), and n(σ(u), σ(v))=n(u,v).
2) If u ≻ v, then, for every sequence of λ-terms w, there is a w, such that (u)w ≻ w, (v)w ≻ w, and n((u)w, w) = n((v)w, w) + n(u, v). Lemma 2.1 shows that to make the head reduction of σ(u) (resp. of (u)w) it is equivalent to make some steps in the head reduction of u, and after make the head reduction of σ(v) (resp. of (v)w). The types will be formulas of second order predicate logic over a given language. The logical connectives are ⊥ (a predicate symbol 0-air for absurde), →, and ∀. There are individual (or first order) variables denoted by x, y, z, ..., and predicate (or second order) variables denoted by X, Y, Z, .... We do not suppose that the language has a special constant for equality. Instead, we define the formula u = v (where u, v are terms) to be

∀Y (Y (u) → Y (v))
where Y is a unary predicate variable. Such a formula will be called an equation. We denote by a ≈ b the equivalence binary relation such that : if

a = b is an equation, then a[t 1 /x 1 , ..., t n /x n ] ≈ b[t 1 /x 1 , ..., t n /x n ]. The for- mula F 1 → (F 2 → (... → (F n → G)...)) is also denoted by F 1 , F 2 , ..., F n → G.
For every formula A, we denote by ¬A the formula A →⊥. Let t be a λ-term, A a type, Γ = x 1 : A 1 , ..., x n : A n a context, and E a set of equations. We define by means of the following rules the notion "t is of type A in Γ with respect to E" ; this notion is denoted by Γ ⊢ AF 2 t : A.

(8) Γ ⊢ AF 2 t : A[u/x] u ≈ v Γ ⊢ AF 2 t : A[v/x]
With the following conditions : (*) x,X have no free occurence in Γ and (**) u (resp. G) is a term (resp. formula). This typed λ-calculus system is called AF 2 (for Arithmétique Fonctionnelle du second ordre). It has the following properties (Krivine 1990a).

Theorem 2.1 1) Types are preserved during reduction. 2) Typable λ-terms are strongly normalizable.

Storage operators

For every n ∈ N, we define the Church integer n = λxλf (f ) n x. Let s = λnλxλf ((n)(f )x)f ; it is easy to check that s is a λ-term for the successor.

Let F be a λ-term (a function). During the computation, by left reduction, of (F )θ n (where θ n ≃ β n), θ n may be computed as many times as F uses it. We would like to transform (F )θ n to (F )n. We also want this transformation depends only on θ n (and not F ). In other words we look for some closed λ-terms T with the following properties : -For every λ-term F , n ∈ N, and θ n ≃ β n, we have (T )θ n F ≻ (F )n; -The computation time of (T )θ n F ≻ (F )n depends only on θ n . Definition (temporary) : A closed λ-term T is called storage operator for Church integers iff for every n ∈ N, and for every

θ n ≃ β n, (T )θ n f ≻ (f )n (where f is a new variable).
It is clear that a storage operator satisfies the required properties. Indeed, since we have (T )θ n f ≻ (f )n, then the variable f never comes in head position during the reduction, and we may then replace f by any λ-term. We will show (see Theorem 3.1) that it is not possible to get the normal form of θ n . We then change the definition. Definition (temporary) : A closed λ-term T is called storage operator for Church integers iff for every n ∈ N, there is a closed λ-term τ n ≃ β n, such that for every θ n ≃ β n, (T )θ n f ≻ (f )τ n (where f is a new variable). Krivine (1990b) has shown that, by using Gődel translation from classical to intuitionitic logic, we can find a very simple type for storage operators. But the λ-term τ n obtained may contain variables substituted by λ-terms u 1 , ..., u m depending on θ n . Since the λ-term τ n is β-equivalent to n, therefore, the left reduction of the τ n [u 1 /x 1 , ..., u m /x m ] is equivalent to the left reduction of τ n and the λ-terms u 1 , ..., u m will therefore never be evaluated during the reduction.

Definition (final)

: A closed λ-term T is called a storage operator for Church integers iff for every n ∈ N, there is a λ-term τ n ≃ β n, such that for every θ n ≃ β n, there is a substitution σ, such that (T )θ n f ≻ (f )σ(τ n ) (where f is a new variable).

Let F be any λ-term (for a function), and θ n a λ-term β-equivalent to n. During the computation of (F )θ n , θ n may be computed each time it comes in head position. Instead of computing (F )θ n , let us look at the head reduction of (T )θ n F . Since it is {(T )θ n f }[F/f ], by Lemma 2.1, we shall first reduce (T )θ n f to its head normal form, which is (f )σ(τ n ), and then compute (

F )σ ′ (τ n ) (σ ′ = γ • σ where γ(f ) = F an dγ(x) = x if x = f ).
The computation has been decomposed into two parts, the first being independent of F . This first part is essentially a computation of θ n , the result being τ n , which is a kind of normal form of θ n . The substitutions made in τ n have no computational significance, since n is closed. So, in the computation of (T )θ n F , θ n is computed first, and the result is given to F as an argument, T has stored the result, before giving it, as many times as needed, to any function.

If we take : (Krivine 1990a andNour 1993a). Therefore T 1 and T 2 are storage operators for Church integers.

T 1 = λn((n)δ)G where δ = λf (f )0 and G = λxλy(x)λz(y)(s)z ; T 2 = λnλf (((n)f )F )0 where F = λxλy(x)(s)y, then we can check that for ev- ery θ n ≃ β n, (T i )θ n f ≻ (f )(s) n 0 (i = 1 or 2)
The most effective storage operators for Church integers -found by Krivinegive as result (s) n 0. A question arises : Can we find storage operators for Church integers which give normal forms as result ? This kind of storage operators are called strong storage operators. We have shown (Nour 1995a) that : Theorem 3.1 Church integers do not have strong storage operators.

The nonexistence of strong storage operators for Church integers results from the following facts: -The infinity of integers : We can prove that every finite subset of Church integers has strong storage operators (Nour 1995a).

-The representation of integers : We can prove that we cannot create a Church integer n (n ≥ 1) during head reduction in the application. If we change the representation of integers, we can find strong storage operators. For every n ∈ N, we define the recursive integer n by induction : 0 = λf λxx and n + 1 = λf λx(f )n. Let s = λnλf λx(f )n ; it is easy to check that s is a λ-term for successor. If we take T ′ = λν(ν)ρτ ρ where τ = λf (f )0, ρ = λyλz(G)(y)zτ z, and G = λxλy(x)λz(y)λf λx(f )z, then, for every θ n ≃ β n, (T ′ )θ n f ≻ (f )n. Therefore T ′ is a strong storage operators for recursive integers (Nour 1995a).

Directed λ-calculus and storage operators

A closed λ-term T is a storage operator for Church integers iff for every n ∈ N, there is a λ-term τ n ≃ β n, such that for every θ n ≃ β n, there is a substitution σ, such that(T )θ n f ≻ (f )σ(τ n ). Let's analyse the head reduction (T )θ n f ≻ (f )σ(τ n ), by replacing each λ-term which comes from θ n by a new variable. This will help us to better understand the Krivine proof of his principal storage Theorem (Theorem 5.2) and also to justify the introduction of directed λ-calculus which allows to find similar results in the general case.

If θ n ≃ β n, then θ n ≻ λxλg(g)t n-1 , t n-k ≻ (g)t n-k-1 (1 ≤ k ≤ n -1), t 0 ≻ x, and t k ≃ β (g) k x (0 ≤ k ≤ n -1). Let x n be a new variable (x n rep- resents θ n ). (T )
x n f is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to some arguments. The free variables of (T )x n f are x n and f , we then have two possibilities for its head normal form : (f )δ (in this case we stop) or (x n )a 1 ...a m . Assume we obtain (x n )a 1 ...a m .

The variable x n represents θ n , and θ n ≻ λxλg(g)t n-1 , therefore (θ n )a 1 ...a m and ((a 2 )t n-1 [a 1 /x, a 2 /g])a 3 ...a m have the same head normal form. The λ-term t n-1 [a 1 /x, a 2 /g] comes from θ n . Let x n-1,a1,a2 be a new variable (x n-1,a1,a2 represents t n-1 [a 1 /x, a 2 /g]). The λ-term ((a 2 )x n-1,a1,a2 )a 3 ...a m is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to some arguments. The free variables of ((a 2 )x n-1,a1,a2 )a 3 ...a m are among x n-1,a1,a2 , x n , and f , we then have three possibilities for its head normal form : (f )δ (in this case we stop) or (

x n )b 1 ...b r or (x n-1,a1,a2 )b 1 ...b r . Assume we ob- tain (x n-1,a1,a2 )b 1 ...b r . The variable(x n-1,a1,a2 represents t n-1 [a 1 /x, a 2 /g], and t n-1 ≻ (g)t n-2 , therefore (t n-1 [a 1 /x, a 2 /g])b 1 ...b r and ((a 2 )t n-2 [a 1 /x, a 2 /g])b 1 ...b r have the same head normal form. The λ-term t n-2 [a 1 /x, a 2 /g] comes from θ n . Let x n-2,a1,a2 be a new variable (x n-2,a1,a2 represents t n-2 [a 1 /x, a 2 /g]). The λ-term ((a 2 )x n-2,a1,a2 )b 1 .
..b r is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to arguments. The free variables of ((a 2 )x n-2,a1,a2 )b 1 ...b r are among x n-2,a1,a2 , x n-1,a1,a2 , x n , and f , therefore we have four possibilities for its head normal form : (f )δ (in this case we stop) or (x n )c 1 ...c s or (x n-1,a1,a2 )c 1 ...c s or (x n-2,a1,a2 )c 1 ...c s ... and so on... Assume we obtain (x 0,d1,d2 )e 1 ...e k during the construction. The variable x 0,d1,d2 represents

t 0 [d 1 /x, d 2 /g], and t 0 ≻ x, therefore (t 0 [d 1 /x, d 2 /g])e 1 .
..e k and (d 1 )e 1 ...e k have the same head normal form ; we then follow the construction with the λ-term (d 1 )e 1 ...e k . The λ-term (T )θ n f is solvable, and has (f )σ(τ ) as head normal form, so this construction always stops on (f )δ. We can prove by a simple argument that δ ≃ β n.

According to the previous construction, the reduction (T )θ n f ≻ (f )σ(τ n ) can be divided into two parts : a reduction that does not depend on n and a reduction that depends on n (and not on θ n ). If we allow some new reduction rules to get the later reductions, (something as : (x n )a 1 a 2 ≻ (a 2 )x n-1,a1,a2 ; x i+1,a1,a2 ≻ (a 2 )u i,a1,a2 (i > 0) ; x 0,a1,a2 ≻ a 1 ) we obtain an equivalent definition for the storage operators for Church integers : a closed λ-term T is a storage operator for Church integers iff for every n ∈ N, (T )x n f ≻ (f )δ n where δ n ≃ β n. To prove his storage Theorem (Theorem 5.2), Krivine used the sufficient condition of the laste equivalence.

The notion of storage operators can be generalized for each set of closed normal λ-terms.

Let t be a closed normal λ-term and T a closed λ-term. We sad that T is a storage operator for t iff there is a λ-term τ t ≃ β t, such that for every λ-term θ t ≃ β t, there is a substitution σ, such that (T )θ t f ≻ (f )σ(τ t ) (where f is a new variable). Let D be set of closed normal λ-terms and T a closed λ-term. We sad that T is a storage operator for D iff it is a storage operator for every t in D.

The directed λ-calculus is an extension of the ordinary λ-calculus built for tracing a normal λ-term t during some head reduction. Assume u is some normal λ-term having t as a subterm. We wish to trace the places where we really have to know what t is during the reduction of u. We will present how the directed λ-calculus allows to find an equivalent -and easily expressed -definition for the storage operators.

Let V be a set of variables of pure λ-calculus. The set of terms of directed λ-calculus, denoted by Λ[], is defined in the following way :

-If x ∈ V , then x ∈ Λ[] ; -If x ∈ V , and u ∈ Λ[], then λxu ∈ Λ[] ; -If u, v ∈ Λ[], then (u)v ∈ Λ[] ; -If t ∈ Λ is a normal λ-term, such that F v(t) ⊆ {x 1 , ..., x n }, and a 1 , ..., a n ∈ Λ[], then [t] < a 1 /x 1 , ..., a n /x n >∈ Λ[]. A λ[]-term of the form [t] < a 1 /x 1 , .
.., a n /x n > is said to be a box directed by t. This notation represents, intuitively, the λ-term t where all free variables x 1 , ..., x n will be replaced by a 1 , .., a n . The substitution < a 1 /x 1 , ..., a n /x n > is denoted by

< a/x >. A λ[]-term of the form (λxu)v is called β-redex ; u[v/x] is called its contractum. A λ[]-term of the form [t] < a/x > is called []-redex ; its contractum R is defined by induction on t : -If t = x i (1 ≤ i ≤ n), then R = a i ; -If t = x = x i (1 ≤ i ≤ n), then R = x ; -If t = λxu, then R = λy[u] < a/x, y/x > where y ∈ F v(a) ; -If t = (u)v, then R = ([u] < a/x >)[v] < a/x >.
By interpreting the box [t] < a 1 /x 1 , ..., a n /x n > by t[[a 1 /x 1 , ..., a n /x n ]] (the λ-term t with an explicit substitution), the new reduction rules are those that allow to really do the substitution. This kind of λ-calculus has been studied by [START_REF] Curien | The λρ-calculi : an abstract framework for closures[END_REF] ; his λσ-calculus contain terms and substitutions and is intended to better control the substitution process created by β-reduction, and then the implementation of the λ-calculus. The main difference between the λσ-calculus and the directed λ-calculus is : The first one produces an explicit substitution after each β-reduction. The second only "executes" the substitutions given in advance. We can therefore consider the directed λ-calculus as a restriction (the interdiction of producing explicit substitutions) of λσ-calculus ; a well adapted way to the study of the head reduction.

Every λ[]-term t can be -uniquely -written as λx 1 ...λx n (R)t 1 ...t m n, m ≥ 0, R being a variable or a redex. If R is a variable, we say that t is a β[]-head normal form. If R is a redex, we say that R is the head redex of t. The notation u ≻ β[] v means that v is obtained from u by some head reductions. Now, we can state the Theorem which gives an equivalent definition for storage operators [START_REF] Nour | Storage operators and directed λ-calculus[END_REF].

Theorem 4.1 Let t be a closed normal λ-term, and T a closed λ-term. T is a storage operator for t iff there is a λ-term τ t ≃ β t, such that

(T )[t]f ≻ β[] (f )τ t [[t 1 ] < a 1 /x 1 > /y 1 , ..., [t m ] < a m /x m > /y m ].
To prove the necessary condition we associate to every θ t ≃ β t a special substitution S θ over the boxes directed by subterms of t such that S θ ([t]) = θ t and satisfying the following property :

if u ≻ β[] v then S θ (u) ≻ S θ (v). Then (T )θ t f ≻ (f )σ(τ t ).
For the sufficient condition we use the idea given at the begining of this paragraph. The only difficulty is to prove that τ t ≃ β t. For that we use the fact that τ t dos not depend on θ t .

The laste result allows to find some important properties for storage operators (Nour and David 1995). Theorem 4.2 1) Let D be a set of closed normal λ-terms, T and T ′ two closed λ-terms. If T is a storage operator for D, and T ′ ≃ β T , then T ′ also is a storage operator for D.

2) The set of storage operators for a set of closed normal λ-terms is not recursive. But the set of storage operators for a finite set of closed normal λ-terms is recursively enumerable. 3) Each finite set of normal λ-terms having all distinct βη-normal forms has a storage operator. 4) Let t be a closed normal λ-term, and T a closed λ-term. If T is a storage operator for t, then there are two constants A T,t and B T,t , such that for every θ t ≃ β t, n((T )θ t f ) ≤ A T,t N (θ t ) + B T,t .

Storage operators in typed λ-calculus

Each data type generated by free algebras can be defined by a second order formula. The type of integers is the formula : N [x] = ∀X{X(0), ∀y(X(y) → X(sy)) → X(x)} where X is a unary predicate variable, 0 is a constant symbol for zero, and s is a unary function symbol for successor. The formula N [x] means semantically that x is an integer iff x belongs to each set X containing 0 and closed under the successor function s. It is easy to check that, for every n ∈ N, the Church integer n is of type N [s n (0)] and s is of type ∀y(N [y] → N [sy]). A set of equations E is said to be adequate with the type of integers iff : s(a) ≈ 0 and if s(a) ≈ s(b), then a ≈ b. In the rest of the paper, we assume that all sets of equations are adequate with the type of integers.

The system AF 2 has the property of the unicity of integers representation (Krivine 1990a).

Theorem 5.1 Let n ∈ N, if ⊢ AF 2 t : N [s n (0)], then t ≃ β n.
A very important property of data type is the following (we express it for the type of integers) : in order to get a program for a function f : N → N it is sufficient to prove ⊢ ∀x(N [x] → N [f (x)]). For example a proof of ⊢ ∀x(N [x] → N [p(x)]) from the equations p(0) = 0, p(s(x)) = x gives a λ-term for the predecessor in Church intergers (Krivine 1990a).

If we try to type a storage operator T for Church integers in AF 2 type system, we naturally find the type ∀x{N [x] → ¬¬N [x]}. But this type does not characterize the storage operators (take for example T = λνλf (f )ν). This comes from the fact that the type ∀x{N [x] → ¬¬N [x]} does not take into account the independency of τ n from θ n . To solve this problem, we must prevent the use of the first N [x] in ∀x{N [x] → ¬¬N [x]} as well as his subtypes to prove the second N [x].

For each formula F of AF 2, we indicate by F g the formula obtained by putting ¬ in front of each atomic formulas of F (F g is called the Gődel translation of F ). For example : N g [x] = ∀X{¬X(0), ∀y(¬X(y) → ¬X(sy)) → ¬X(x)}. It is well known that, if F is provable in classical logic, then F g is provable in intuitionistic logic (Krivine 1990a).

We can check that ⊢ AF 2 T 1 , T 2 : ∀x{N g [x] → ¬¬N [x]}. And, in general, we have the following Theorem (Krivine 1990a[START_REF] Nour | Une preuve syntaxique d'un théorème de J.L. Krivine sur les opérateurs de mise en mémoire[END_REF]) :

Theorem 5.2 If ⊢ AF 2 T : ∀x{N g [x] → ¬¬N [x]}, then T is a storage operator for Church integers.
We will give some ideas for the proofs of this Theorem. Krivine (1990a) introduced a semantic for his system and he proved that : if t is of type A then t belongs A. Since T is of type

∀x{N g [x] → ¬¬N [x]} then T belongs N g [s n (0)] → ¬¬N [s n (0)].
With the proper semantic interpretation of ⊥ we check that x n belongs N g [s n (0)] and f belongs ¬N [s n (0)]. This implies that (T )x n f belongs to ⊥ which gives the theorem directly from the choice of the interpretation of ⊥. We presented [START_REF] Nour | Une preuve syntaxique d'un théorème de J.L. Krivine sur les opérateurs de mise en mémoire[END_REF]) a syntactical proof of this result. We prove by using only the syntactical properties of the system AF 2 that the λ-term T satisfies the properties which we need.

The storage operators given in this paper up to now give as results closed λ-terms. This kind of storage operators is called proper storage operators. A question arises : Can we find a typed non proper storage operator for Church integers ? We have shown that [START_REF] Nour | Opérateurs propre de mise en mémoire[END_REF]) : Theorem 5.3 There is a non proper storage operator for Church integers T such that ⊢ AF 2 T :

∀x{N g [x] → ¬¬N [x]}.
An example of a such operator is the following : T = λν(ν)γD where D = λuλv(u)λw(((ν)λy(((y)w)u)v)λxx)λgλkλl(l)λnλm(n)((g)n)m, γ = λf (((ν)λx(f )((((x)n)f )0)λxx)λxλyλzz.

Generalization

Some authors have been interested in the research of a most general type for storage operators. For example, [START_REF] Danos | Notes sur la mise en mémoire[END_REF] have given as type for storage operators the formula ∀x{N e [x] → ¬¬N [x]} where the operation e is an elaborate Gődel translation which associates to every formula F the formula F e obtained by replacing in F each atomic formula X(t) by X 1 (t), ..., X r (t) →⊥. [START_REF] Krivine | Mise en mémoire (preuve générale)[END_REF] and the author (Nour 1996a) have given a more general type for storage operators the formula ∀x{N G [x] → ¬¬N [x]} where the operation G is the general Gődel translation which associates to every formula F the formula F G obtained by replacing in F each atomic formula X(t) by a formula G X [t/x] ending with ⊥. With the types cited before, we cannot type the simple storage operator : T = λνλf ((ν)λxx)(T i )νf (i = 1 or 2). This is due to the fact that the normal form of T contains a variable ν applied to two arguments and another ν applied to three arguments. Therefore, we cannot type T because the variable ν is assigned by N g [x] (for example) and thus the number of the ν-arguments is fixed once for all. To solve the problem, we replace N g [x] in the type of storage operators by another type N ⊥ [x] which does not limit the number of ν-arguments and only enables to generate formulas ending with ⊥ in order to find a general specification for storage operators.

We assume that for every integer n, there is a countable set of special nary second order variables denoted by X ⊥ , Y ⊥ , Z ⊥ ...., and called ⊥-variables. A type A is called an ⊥-type iff A is obtained by the following rules : -⊥ is an ⊥-type ; -X ⊥ (t 1 , ..., t n ) is an ⊥-type ; -If B is an ⊥-type, then A → B is an ⊥-type for every type A ; -If A is an ⊥-type, then ∀vA is an ⊥-type for every variable v. We add to the AF 2 type system the new following rules :

(6 ′ ) Γ ⊢ t : A Γ ⊢ t : ∀X ⊥ A (*) (7 ′ ) Γ ⊢ t : ∀X ⊥ A Γ ⊢ t : A[G/X ⊥ ] (**)
With the following conditions : (*) X ⊥ has no free occurence in Γ and (**) G is an ⊥-type. We call AF 2 ⊥ the new type system, and we write Γ ⊢ ⊥ t :

A if t is typable in AF 2 ⊥ of type A in the context Γ.
We define two sets of types of AF 2 type system: Ω + (set of ∀-positive types), and Ω -(set of ∀-negative types) in the following way : -If A is an atomic type, then A ∈ Ω + , and A ∈ Ω -; -If T ∈ Ω + , and T ′ ∈ Ω -, then, T ′ → T ∈ Ω + , and

T → T ′ ∈ Ω -; -If T ∈ Ω + (resp. T ∈ Ω -), then ∀xT ∈ Ω + (resp. ∀xT ∈ Ω -); -If T ∈ Ω + , then ∀XT ∈ Ω + ; -If T ∈ Ω -,
and X has no free occurence in T , then ∀XT ∈ Ω -. Therefore, T is a ∀-positive types iff the universal second order quantifier appears positively in T . For each predicate variable X, we associate an ⊥variable X ⊥ . For each formula A of AF 2 type system, we define the formula A ⊥ as follows :

-If A = R(t 1 , ..., t n ), where R is an n-ary predicate symbol, then A ⊥ = A ; -If A = X(t 1 , ..., t n ), where X is an n-ary predicate variable, then A ⊥ = X ⊥ (t 1 , ..., t n ); -If A = B → C, then A ⊥ = B ⊥ → C ⊥ ; -If A = ∀xB, then A ⊥ = ∀xB ⊥ ; -If A = ∀XB, then A ⊥ = ∀X ⊥ B ⊥ .
Let T be a closed λ-term, and D, E two closed types of AF 2 type system. We say that T is a storage operator for the pair of types (D, E) iff for every λ-term ⊢ AF 2 t : D, there are λ-terms τ t and τ ′ t , such that τ ′ t ≃ β τ t , ⊢ AF 2 τ ′ t : E, and for every θ t ≃ β t, there is a substitution σ, such that (T )θ t f ≻ (f )σ(τ t ) (where f is a new variable).

We have the following generalization [START_REF] Nour | Caractérisation opérationnelle des entiers classiques en λC-calcul[END_REF]). Theorem 6.1 Let D, E be two ∀-positive closed types of AF 2 type system, such that E does not contain ⊥. If ⊢ ⊥ T : D ⊥ → ¬¬E, then T is a storage operator for the pair (D, E).

The condition "D, E are ∀-positive types" is necessary in order to obtain Theorem 6.1. Indeed, let D = ∀X{∀Y (Y → X) → X}, t = λx(x)λyy, and T = λν(ν)λxλf (f )λy(y)x. It is easy to check that D is not a ∀-positive type, ⊢ AF 2 t : D, ⊢ ⊥ T : D ⊥ → ¬¬D, and T is not a storage operator for D (Nour 1993a). This counter example also works with the original Gődel translation and with any general Gődel translation. Theorem 6.1 allows also to generalize the result of Krivine (Theorem 5.2) to every data type (booleans, lists, trees, product and sum of data types, ...).

Pure and typed λC-calculus

We add a constant C to the pure λ-calculus and we denote by λC the set of new terms also called λC-terms. We consider the following rules of reduction, called rules of head C-reduction.

(1) (λxu)tt 1 ...t n → (u[t/x])t 1 ...t n for every u, t, t 1 , ..., t n ∈ ΛC.

(2) (C)tt 1 ...t n → (t)λx(x)t 1 ...t n for every t, t 1 , ..., t n ∈ ΛC, x being a λ-variable not appearing in t 1 , ..., t n .

The rule (2) is a particular case of a general law of reduction for control operators given in [START_REF] Felleisein | The Calculi of λ v -CS conversion: a syntactic theory of control and state in imperative higher order programming[END_REF] which is E[Ct/x] → (t)λxE. For any λC-terms t, t ′ , we shall write t ≻ C t ′ if t ′ is obtained from t by applying these rules finitely many times. A λC-term t is said to be β-normal iff t does not contain a β-redex. A λC-term t is said to be C-solvable iff t ≻ C (f )t 1 , ..., t n where f is a variable. We add to the AF 2 type system the new following rule :

(0) Γ ⊢ C : ∀X{¬¬X → X}
This rule axiomatizes the classical over the intuitionistic logic. We call C2 the new type system, and we write Γ ⊢ C2 t : A if t is of type A in the context Γ. In this system we have only the following weak properties [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF]).

Theorem 7.1 1) If Γ ⊢ C2 t : A, and t → β t ′ , then Γ ⊢ C2 t ′ : A. 2) If Γ ⊢ C2 t :⊥, and t ≻ C t ′ , then Γ ⊢ C2 t ′ :⊥.
3) If A is an atomic type, and Γ ⊢ C2 t : A, then t is C-solvable.

In this system, the problem is : given a typed term in classical logic, what kind of program is it ? We shall take the example of integers. Let us call a λC-term θ a classical integer if ⊢ C2 θ : N [s n 0]. If ⊢ AF 2 θ : N [s n 0], then we know that θ ≃ β n, and thus we know the operational behaviour of θ. But when θ is a classical integers, it is no longer true that θ ≃ β n. For example

⊢ C2 θ 1 = λxλf (C)λy(y)(f )(C)λz(y)(f )x : N [s0].
In order to recognize the integer n hidden inside θ (the value of θ), we have make use of storage operators. [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF] has shown that :

Theorem 7.2 If ⊢ AF 2 T : ∀x{N g [x]
→ ¬¬N [x]}, then for every n ∈ N, there is a λ-term τ n ≃ β n such that for every classical integer θ n of value n, there is a substitution σ such that (T )

θ n f ≻ C (f )σ(τ n ) (then (T )θ n λxx ≻ C σ ′ (τ n ) → β n).
The difficulties to prove this theorem (by comparasion to the Theorem 5.1) are : the operational characterization of classical integers and the fact that this characterization corresponds to the behavior of typed storage operators. Theorem 7.2 cannot be generalized for the system C2. Indeed, let T = λνλf (f )(C)(T i )ν (i = 1 or 2). We have ⊢ C2 T : ∀x{N g [x] → ¬¬N [x]} and there is not a λC-term τ n ≃ β n such that for every classical integer θ n of value n, there is a substitution σ, such that (T )θ n f ≻ C (f )σ(τ n ) (Nour 1997a). The Theorem 7.2 suggests many questions : -What is the relation between classical integers and the type N g [x] ? -Why do we need intuitionistic logic to modelize the storage operators and classical logic to modelize the control operators ?

8 The M2 type system

In this section, we present a new classical type system based on a logical system called mixed logic. This system allows essentially to distinguish between classical proofs and intuitionistic proofs. We assume that for every integer n, there is a countable set of special n-ary second order variables denoted by X C , Y C , Z C ...., and called classical variables.

Let X be an n-ary predicate variable or predicate symbol. A type A is said to be ending with X iff A is obtained by the following rules : -X(t 1 , ..., t n ) ends with X; -If B ends with X, then A → B ends with X for every type A ; -If A ends with X, then ∀vA ends with X for every variable v. A type A is said to be a classical type iff A ends with ⊥ or a classical variable. We add to the AF 2 type system the new following rules :

(0 ′ ) Γ ⊢ C : ∀X C {¬¬X C → X C } (6 ′′ ) Γ ⊢ t : A Γ ⊢ t : ∀X C A (*) (7 ′′ ) Γ ⊢ t : ∀X C A Γ ⊢ t : A[G/X C ] (**)
With the following conditions : (*) X C has no free occurence in Γ and (**) G is a classical type. We call M 2 the new type system, and we write Γ ⊢ M2 t : A if t is of type A in the context Γ.

Properties of M2

With each classical variable X C , we associate a special variable X • of AF 2 having the same arity as X C . For each formula A of M 2, we define the formula A* of AF 2 in the following way : -If A = D(t 1 , ..., t n ) where D is a predicate symbol or a predicate variable, then A*=A ;

-If A = X C (t 1 , ..., t n ), then A*= ¬X • (t 1 , ..., t n ) ; -If A = B → C, then A*= B*→ C* ; -If A = ∀xB (resp. A = ∀XB), then A*=∀xB* (resp. A*= ∀XB*) ; -If A = ∀X C B, then A*=∀X • B*.
We have the following result (Nour 1997a). Theorem 8.1 Let A be a ∀-positive type of AF 2 and t a β-normal λC-term. If ⊢ M2 t : A, then t is a normal λ-term, and ⊢ AF 2 t : A.

With each predicate variable X of C2, we associate a classical variable X C having the same arity as X. For each formula A of C2, we define the formula A C of M 2 in the following way :

-If A = D(t 1 , ..., t n ) where D is a constant symbol, then A C = A ; -If A = X(t 1 , ..., t n ) where X is a predicate symbol, then A C = X C (t 1 , ..., t n ) ; -If A = B → C, then A C = B C → C C ; -If A = ∀xB, then A C = ∀xB C ; -If A = ∀XB, then A C = ∀X C B C .
As for relation betwen the systems C2 and M 2, we have (Nour 1997a) : Theorem 8.2 Let A be a type of C2, and t a λC-term.

⊢ C2 t : A iff ⊢ M2 t : A C .

The integers in M2

According to the results of the subsection 8.1, we obtain some results concerning integers in system M 2 (Nour 1997a).

Theorem 8.3 Let n ∈ N, if ⊢ M2 t : N [s n (0)], then, t ≃ β n.
Let n ∈ N. By Theorem 8.1, a classical integer of value n is a closed λCterm θ n such that ⊢ M2 θ n : N C [s n (0)]. For the classical integers we have only one operational characterization. In order to give this characterization, we shall need some definitions. Let V be the set of variables of λC-calculus. Let P be an infinite set of constants called stack constants1 . We define a set of λC-terms ΛCP by : -If x ∈ V , then x ∈ ΛCP ; -If t ∈ ΛCP , and x ∈ V , then λxt ∈ ΛCP ; -If t ∈ ΛCP , and u ∈ ΛCP P , then (t)u ∈ ΛCP . In other words, t ∈ ΛCP iff the stack constants are in argument positions in t. We consider, on the set ΛCP , the following rules of reduction :

(1) (λxu)tt 1 ...t n → (u[t/x])t 1 ...t n for all u, t ∈ ΛCP and t 1 , ..., t n ∈ λCP P ;

(2) (C)tt 1 ...t n → (t)λx(x)t 1 ...t n for all t ∈ ΛCP and t 1 , ..., t n ∈ λCP P , and x being λ-variable not appearing in t 1 , ..., t n . For any t, t ′ ∈ ΛCP , we shall write t £ C t ′ , if t ′ is obtained from t by applying these rules finitely many times.

Let θ 1 = λxλf (C)λy(y)(f )(C)λz(y)(f )x. We have ⊢ M2 θ 1 : N C [s0] (θ 1 )xgp 0 £ C (g)t 1 p 0 ; (t 1 )p 1 £ C (g)t 2 p 0 and (t 2 )p 2 £ C (x)p 2 . In general we have the following result (Nour 1997a). -If n = 0, then there is an m ∈ N*, and a mapping I : {0, ..., m} → N, such that for all distinct stack constants p 0 , p 1 , ..., p m , we have : (θ n )xgp 0 £ C (g)t 1 p r0 ; (t i )p i £ C (g)t i+1 p ri (1 ≤ i ≤ m -1) ; (t m )p m £ C (x)p rm where I(0) = n, I(r m ) = 0, and I(i + 1) = I(r i ) -1 (0 ≤ i ≤ m -1). Theorem 8.4 allows to find the value of a classical integer. Let θ n be a classical integer of value n. Let p be a stack constant and g, x two distinct variables. If (θ n )xgp £ C (x)p, then n = 0. If not there is an m ∈ N*, a sequence (r i ) 1≤i≤m where (0 ≤ r i ≤ m) and a mapping J : {0, ..., m} → N such that J(0) = 0, and J(i + 1) = J(r i ) + 1 (0 ≤ i ≤ m -1). Therefore J(r m ) = n.

Storage operators for classical integers

In system M 2 we have a similar result to Theorem 5.2 (Nour 1997a).

Let T be a closed λC-term. We say that T is a storage operator for classical integers iff for every n ∈ N, there is a λC-term τ n ≃ β n, such that for every classical integers θ n of value n, there is a substitution σ, such that (T )θ n f ≻ C (f )σ(τ n ) (where f is a new variable). 

Theorem 8 . 4

 84 Let n ∈ N, θ n a classical integer of value n, and x, g two distinct variables.-If n = 0, then, for every stack constant p, we have : (θ n )xgp £ C (x)p.

Theorem 8 . 5

 85 If ⊢ M2 T : ∀x{N C [x] → ¬¬N [x]}, then T is a storage operator for classical integers. Theorem 8.5 means that if ⊢ M2 T : ∀x{N C [x] → ¬¬N [x]},then T takes a classical integer as an argument and return the Church integer corresponding to its value. It is enough to do the proof of this Theorem in the propositionnal case.The type system M is the subsystem of M 2 where we only have propositional variables and constants. We write Γ ⊢ M t : A if t is typable in M of type A in the context Γ. Let N = ∀X{X, (X → X) → X}. Theorem 8.5 is a consequence of the following Theorem(Nour 1997a). Theorem 8.6 If ⊢ M T : N C → ¬¬N , then for every n ∈ N, there is an m ∈ N and a λC-term τ m ≃ β m, such that for every classical integer θ n of value n, there is a substitution σ, such that (T )θ n f ≻ C (f )σ(τ m ). Indeed, if ⊢ M2 T : ∀x{N C [x] → ¬¬N [x]}, then ⊢ M T : N C → ¬¬N .Therefore for every n ∈ N, there is an m ∈ N and τ m ≃ β m, such that for every classical integer θ n of value n, there is a substitution σ, such that (T )θ n f ≻ C (f )σ(τ m ). We have ⊢ M2 n : N C [s n (0)], then f : ¬N [s n (0)] ⊢ M2 (T )nf :⊥, therefore f : ¬N [s n (0)] ⊢ M2 (f )m :⊥ and ⊢ M2 m : N [s n (0)]. Therefore n = m,and T is a storage operator for classical integers.The proof of Theorem 8.6 uses two independent Theorems : the first one (Theorem 8.4) expresses a property of classical integers and the second one (Theorem 8.7) expresses a property of a λC-terms of type N C → ¬¬N .

(1) Γ ⊢ AF 2 x i :A i (1 ≤ i ≤ n) (2) Γ, x : A ⊢ AF 2 t : B Γ ⊢ AF 2 λxt : A → B (3) Γ ⊢ AF 2 u : A → B Γ ⊢ AF 2 v : A Γ ⊢ AF 2 (u)v : B (4) Γ ⊢ AF 2 t : A Γ ⊢ AF 2 t : ∀xA (*) (5) Γ ⊢ AF 2 t : ∀xA Γ ⊢ AF 2 t : A[u/x] (**)(6)Γ ⊢ AF 2 t : A Γ ⊢ AF 2 t : ∀XA (*) (7) Γ ⊢ AF 2 t : ∀XA Γ ⊢ AF 2 t : A[G/X] (**)

The notion of stack constants is taken from a manuscript of Krivine.

Let ν and f be two fixed variables. We denote by x n,a,b,c (where n is an integer, a, b two λ-terms, and c a finite sequence of λ-terms) a variable which does not appear in a, b, c. We have (Nour 1997a) : Theorem 8.7 Let ⊢ M T : N C → ¬¬N and n ∈ N. There is m ∈ N and a finite sequence of head reductions {U i ≻ C V i } 1≤i≤r such that : 1) U 1 = (T )νf and V r = (f )τ m where τ m ≃ β m ; 2)

Let T be a closed λC-term, and D, E two closed types of AF 2 type system. We say that T is a storage operator for the pair of types (D, E) iff for every λ-term ⊢ AF 2 t : D, there is λ-term τ ′ t and λC-term τ t , such that τ ′ t ≃ β τ t , ⊢ AF 2 τ ′ t : E, and for every ⊢ C2 θ t : D, there is a substitution σ, such that (T )θ t f ≻ C (f )σ(τ t ) (where f is a new variable).

We can generalize Theorem 8.5 (Nour 1997a).

9 The λµ-calculus 9.1 Pure and typed λµ-calculus λµ-calculus has two distinct alphabets of variables : the set of λ-variables x, y, z, ..., and the set of µ-variables α, β, γ,.... Terms (also called λµ-terms) are defined by the following grammar :

The reduction relation of λµ-calculus is induced by fives different notions of reduction :

The computation rules

Parigot (1992) has shown that :

The notation u ≻ µ v means that v is obtained from u by some head reductions. The head equivalence relation is denoted by : u ∼ µ v iff there is a w, such that u ≻ µ w and v ≻ µ w.

Proofs are written in a natural deduction system with several conclusions, presented with sequents. One deals with sequents such that : -Formulas to the left of ⊢ are labelled with λ-variables ; -Formulas to the right of ⊢ are labelled with µ-variables, except one formula which is labelled with a λµ-term ; -Distinct formulas never have the same label.

Let t be a λµ-term, A a type, Γ = x 1 : A 1 , ..., x n : A n , and ∆ = α 1 : B 1 , ..., α m : B m . We define by means of the following rules the notion "t is of type A in Γ and ∆". This notion is denoted by Γ ⊢ F D2 t : A, ∆. The rules (1),...,(8) of AF 2 type system and the following rule :

Weakenings are included in the rules (2) and [START_REF] Krivine | Mise en mémoire (preuve générale)[END_REF].

As in typed λ-calculus on can define ¬A as A →⊥ and use the previous rules with the following special interpretation of naming for ⊥ : for α a µ-variable, α :⊥ is not mentioned. This typed λ-calculus system is called F D2. It has the following properties [START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF]). Theorem 9.2 1) Type is preserved during reduction.

2) Typable λµ-terms are strongly normalizable.

Classical integers

Let n be an integer. A classical integer of value n is a closed λµ-term θ n such that ⊢ F D2 θ n : N [s n (0)]. Let x and f fixed variables, and N x,f be the set of λµ-terms defined by the following grammar :

We define, for each u ∈ N x,f the set rep(u), which is intuitively the set of integers potentially repesented by u :

The following Theorem characterizes the classical integers [START_REF] Parigot | λµ-calculus : an algorithm interpretation of classical natural deduction[END_REF]).

Theorem 9.3 The normal classical integers of value n are the λµ-terms of the form λxλf u with u ∈ N x,f without free µ-variable and such that rep(u) = {n}.

We can check that rep(u) = {4}. Then θ is a classical integer of value 4.

We will present now a simple method to find the value of a classical integer. We define, for each u ∈ N x,f the set val(u), which is intuitively the set of the possible values of u :

Let u ∈ N x,f without free µ-variable and α 1 , ..., α n the µ-variables of u which satisfy :

We have [START_REF] Nour | La valeur d'un entier classique en λµ-calcul[END_REF]).

Using Lemma 9.1 and the fact that for each u ∈ N x,f , rep(u) ⊆ val(u) we deduce the following result [START_REF] Nour | La valeur d'un entier classique en λµ-calcul[END_REF]) : Theorem 9.4 If θ is a normal classical integer of value n, then θ = λxλf u with u ∈ N x,f without free µ-variable and such that val(u) = {n}.

Then to find the value of a normal classical integer θ = λxλf u, we try the µ-variables α j (1 ≤ j ≤ n + 1) and the integers i j (1 ≤ j ≤ n + 1) of the λµ-term u. The value of θ is equal to 1≤k≤n+1 i k .

Storage operators in λµ-calculus

Let T be a closed λ-term. We say that T is a storage operator for classical integers iff for every (n ≥ 0), there is λ-term τ n ≃ β n, such that for every classical integers θ n of value n, there is a substitution σ, such that (T )

Parigot (1993a) has shown that :

In order to define, in this framework, the equivalent of system M 2, the demonstration of ¬¬A → A should not be allowed for all formulas A, and thus we should prevent the occurrence of some formulas on the right. Thus the following definition.

We add to the F D2 type system the new following rules :

With the following conditions : (*) X C has no free occurence in Γ and (**) G is a classical type. We call M 2 the new type system, and we write Γ ⊢ M2 t : A, ∆ if t is of type A in the Γ and ∆.

Let T be a closed λµ-term. We say that T is a storage operator for classical integers iff for every (n ≥ 0), there is λµ-term τ n ≃ β n, such that for every classical integers θ n of value n, there is a substitution σ, such that (T )θ n f ∼ µ µα[α](f )σ(τ n ) (where f is a new variable).

We have the following result :