The symmetric λµ-calculus is the λµ-calculus introduced by Parigot in which the reduction rule µ ′ , which is the symmetric of µ, is added. We give arithmetical proofs of some strong normalization results for this calculus. We show (this is a new result) that the µµ ′ -reduction is strongly normalizing for the un-typed calculus. We also show the strong normalization of the βµµ ′ -reduction for the typed calculus: this was already known but the previous proofs use candidates of reducibility where the interpretation of a type was defined as the fix point of some increasing operator and thus, were highly non arithmetical.

Arithmetical proofs of strong normalization results

for the symmetric λµ-calculus René David and Karim Nour Laboratoire de Mathématiques Université de Savoie 73376 Le Bourget du Lac. France e-mail: {david,nour}@univ-savoie.fr

Introduction

Since it has been understood that the Curry-Howard isomorphism relating proofs and programs can be extended to classical logic, various systems have been introduced: the λ c -calculus (Krivine [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF]), the λ exn -calculus (de Groote [START_REF] De Groote | A simple calculus of exception handling[END_REF]), the λµ-calculus (Parigot [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF]), the λ Sym -calculus (Barbanera & Berardi [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]), the λ ∆calculus (Rehof & Sorensen [START_REF] Rehof | The λ∆-calculus[END_REF]), the λµμ-calculus (Curien & Herbelin [START_REF] Curien | The Duality of Computation[END_REF]), ... The first calculus which respects the intrinsic symmetry of classical logic is λ Sym . It is somehow different from the previous calculi since the main connector is not the arrow as usual but the connectors or and and. The symmetry of the calculus comes from the de Morgan laws.

The second calculus respecting this symmetry has been λµμ. The logical part is the (classical) sequent calculus instead of natural deduction.

Natural deduction is not, intrinsically, symmetric but Parigot has introduced the so called Free deduction [START_REF] Parigot | Free Deduction: An Analysis of "Computations[END_REF] which is completely symmetric. The λµ-calculus comes from there. To get a confluent calculus he had, in his terminology, to fix the inputs on the left. To keep the symmetry, it is enough to keep the same terms and to add a new reduction rule (called the µ ′ -reduction) which is the symmetric rule of the µ-reduction and also corresponds to the elimination of a cut. We get then a symmetric calculus that is called the symmetric λµ-calculus.

The µ ′ -reduction has been considered by Parigot for the following reasons. The λµ-calculus (with the β-reduction and the µ-reduction) has good properties : confluence in the un-typed version, subject reduction and strong normalization in the typed calculus. But this system has, from a computer science point of view, a drawback: the unicity of the representation of data is lost. It is known that, in the λ-calculus, any term of type N (the usual type for the integers) is β-equivalent to a Church integer. This no more true in the λµ-calculus and we can find normal terms of type N that are not Church integers. Parigot has remarked that by adding the µ ′ -reduction and some simplification rules the unicity of the representation of data is recovered and subject reduction is preserved, at least for the simply typed system, even though the confluence is lost.

Barbanera & Berardi proved the strong normalization of the λ Sym -calculus by using candidates of reducibility but, unlike the usual construction (for example for Girard's system F), the definition of the interpretation of a type needs a rather complex fix-point operation. Yamagata [START_REF] Yamagata | Strong Normalization of Second Order Symmetric Lambda-mu Calculus[END_REF] has used the same technic to prove the strong normalization of the symmetric λµ-calculus where the types are those of system F and Parigot, again using the same ideas, has extended Barbanera & Berardi's result to a logic with second order quantification. These proofs are thus highly non arithmetical.

We consider here the λµ-calculus with the rules β, µ and µ ′ . It was known that, for the un-typed calculus, the µ-reduction is strongly normalizing (see [START_REF] Py | Confluence en λµ-calcul[END_REF]) but the strong normalization of the µµ ′ -reduction for the un-typed calculus was an open problem raised long ago by Parigot. We give here a proof of this result. Studying this reduction by itself is interesting since a µ (or µ ′)-reduction can be seen as a way "to put the arguments of the µ where they are used" and it is useful to know that this is terminating. We also give an arithmetical proof of the strong normalization of the βµµ ′ -reduction for the simply typed calculus. We finally show (this is also a new result) that, in the un-typed calculus, if M 1 , ..., M n are strongly normalizing for the βµµ ′ -reduction, then so is (x M 1 ... M n).

The proofs of strong normalization that are given here are extensions of the ones given by the first author for the simply typed λ-calculus. This proof can be found either in [START_REF] David | Normalization without reducibility[END_REF] (where it appears among many other things) or as a simple unpublished note on the web page of the first author (www.lama.univ-savoie.fr/~david).

The same proofs can be done for the λµμ-calculus and these proofs are, in fact, much simpler for this calculus since some difficult problems that appear in the λµ-calculus do not appear in the λµμ-calculus: this is mainly due to the fact that, in the latter, there is a right-hand side and a left-hand side (the terms and the environments) whereas, in the λµ-calculus, this distinction is impossible since a term on the right of an application can go on the left of an application after some reductions. The proof of the strong normalization of the µμ-reduction can be found in [START_REF] Polonovsky | Substitutions explicites, logique et normalisation[END_REF]. The proof is done (by using candidates of reducibility and a fix point operator) for a typed calculus but, in fact, since the type system is such that every term is typable, the result is valid for every term. A proof of the strong normalization of the λµμ-typed calculus (again using candidates of reducibility and a fix point operator) can also be found there. Due to the lack of space, we do not give our proofs of these results here but they will appear in [START_REF] David | Arithmetical proofs of the strong normalization of the λµμcalculus[END_REF].

The paper is organized as follows. In section 2 we give the syntax of the terms and the reduction rules. An arithmetical proof of strong normalization is given in section 3 for the µµ ′ -reduction of the un-typed calculus and, in section 4, for the βµµ ′ -reduction of the simply typed calculus. In section 5, we give an example showing that the proofs of strong normalization using candidates of reducibility must somehow be different from the usual ones and we show that, in the un-typed calculus, if M 1 , ..., M n are strongly normalizing for the βµµ ′ -reduction, then so is (x M 1 ... M n). We conclude with some future work.

2 The symmetric λµ-calculus

The un-typed calculus

The set (denoted as T) of λµ-terms or simply terms is defined by the following grammar where x, y, ... are λ-variables and α, β, ... are µ-variables:

T ::= x | λxT | (T T) | µαT | (α T)
Note that we adopt here a more liberal syntax (also called de Groote's calculus) than in the original calculus since we do not ask that a µα is immediately followed by a (β M) (denoted [β]M in Parigot's notation). Definition 1. Let M be a term. [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]. cxty(M) is the number of symbols occurring in M . 2. We denote by N ≤ M (resp. N < M) the fact that N is a sub-term (resp. a strict sub-term) of M .

If

-→ P is a sequence P 1 , ..., P n of terms, (M -→ P) will denote (M P 1 ... P n).

The typed calculus

The types are those of the simply typed λµ-calculus i.e. are built from atomic formulas and the constant symbol ⊥ with the connector →. As usual ¬A is an abbreviation for A →⊥.

The typing rules are given by figure 1 below where Γ is a context, i.e. a set of declarations of the form x : A and α : ¬A where x is a λ (or intuitionistic) variable, α is a µ (or classical) variable and A is a formula.

Γ, x : A ⊢ x : A ax Γ, x : A ⊢ M : B Γ ⊢ λxM : A → B → i Γ ⊢ M : A → B Γ ⊢ N : A Γ ⊢ (M N) : B → e Γ, α : ¬A ⊢ M : ⊥ Γ ⊢ µαM : A ⊥ e Γ, α : ¬A ⊢ M : A Γ, α : ¬A ⊢ (α M) : ⊥ ⊥ i Figure 1.
Note that, here, we also have changed Parigot's notation but these typing rules are those of his classical natural deduction. Instead of writing

M : (A x1 1 , ..., A xn n ⊢ B, C α1 1 , ..., C αm m)
we have written

x 1 : A 1 , ..., x n : A n , α 1 : ¬C 1 , ..., α m : ¬C m ⊢ M : B Definition 2.
Let A be a type. We denote by lg(A) the number of arrows in A.

The reduction rules

The cut-elimination procedure (on the logical side) corresponds to the reduction rules (on the terms) given below. There are three kinds of cuts.

-A logical cut occurs when the introduction of the connective → is immediately followed by its elimination. The corresponding reduction rule (denoted by β) is:

(λxM N) ⊲ M [x := N]
-A classical cut occurs when ⊥ e appears as the left premiss of a → e . The corresponding reduction rule (denoted by µ) is:

(µαM N) ⊲ µαM [α = r N]
where M [α = r N] is obtained by replacing each sub-term of M of the form (α U) by (α (U N)). This substitution is called a µ-substitution.

-A symmetric classical cut occurs when ⊥ e appears as the right premiss of a → e . The corresponding reduction rule (denoted by µ ′) is:

(M µαN) ⊲ µαN [α = l M]
where N [α = l M] is obtained by replacing each sub-term of N of the form (α U) by (α (M U)). This substitution is called a µ ′ -substitution.

Remarks

1.
It is shown in [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF] that the βµ-reduction is confluent but neither µµ ′ nor βµ ′ is.

For example (µαx µβy) reduces both to µαx and to µβy. Similarly (λzx µβy) reduces both to x and to µβy. 2. The reductions on terms correspond to the elimination of cuts on the proofs.

-The β-reduction is the usual one.

-The µ-reduction is as follows. If M corresponds to a proof of ⊥ assuming α : ¬(A → B) and N corresponds to a proof of A, then M [α = r N] corresponds to the proof M of ⊥ assuming α : ¬B but where, each time we used the hypothesis α : ¬(A → B) with a proof U of A → B to get ⊥, we replace this by the following proof of ⊥. Use U and N to get a proof of B and then α : ¬B to get a proof of ⊥. -Similarly, the µ ′ -reduction is as follows. If N corresponds to a proof of ⊥ assuming α : ¬A and M corresponds to a proof of A → B, then N [α = l M] corresponds to the proof N of ⊥ assuming α : ¬B but where, each time we used the hypothesis α : ¬A with a proof U of A to get ⊥, we replace this by the following proof of ⊥. Use U and M to get a proof of B and then α : ¬B to get a proof of ⊥. 3. Unlike for a β-substitution where, in M [x := N], the variable x has disappeared it is important to note that, in a µ or µ ′ -substitution, the variable α has not disappeared. Moreover its type has changed. If the type of N is A and, in M , the type of α is

¬(A → B) it becomes ¬B in M [α = r N]. If the type of M is A → B and, in N , the type of α is ¬A it becomes ¬B in N [α = l M].
In the next sections we will study various reductions : the µµ ′ -reduction in section 3 and the βµµ ′ -reduction in sections 4, 5. The following notions will correspond to these reductions. Definition 3. Let ⊲ be a notion of reduction and M be a term.

1. The transitive (resp. reflexive and transitive) closure of ⊲ is denoted by ⊲ + (resp.

⊲ *). 2. If M is in SN i.e. M has no infinite reduction, η(M) will denote the length of the longest reduction starting from M and ηc(M) will denote (η(M), cxty(M)). 3. We denote by N ≺ M the fact that N ≤ M ′ for some M ′ such that M ⊲ * M ′ and either M ⊲ + M ′ or N < M ′ . We denote by the reflexive closure of ≺.

Remarks

-It is easy to check that the relation is transitive and that N M iff N ≤ M ′ for some M ′ such that M ⊲ * M ′ .

-If M ∈ SN and N ≺ M , then N ∈ SN and ηc(N) < ηc(M). It follows that the relation is an order on the set SN .

-Many proofs will be done by induction on some k-uplet of integers. In this case the order we consider is the lexicographic order.

In this section we consider the µµ ′ -reduction, i.e. M ⊲ M ′ means M ′ is obtained from M by one step of the µµ ′ -reduction. The main points of the proof of the strong normalization of µµ ′ are the following.

-We first show (cf. lemma 6) that a µ or µ ′ -substitution cannot create a µ.

-It is easy to show (see lemma 8) that if M ∈ SN but M [σ] ∈ SN where σ is a µ or µ ′ -substitution, there are an α in the domain of σ and some M ′ ≺ M such that M ′ [σ] ∈ SN and (say σ is a µ-substitution) (M ′ [σ] σ(α)) ∈ SN . This is sufficient to give a simple proof of the strongly normalization of the µ-reduction. But this is not enough to do a proof of the strongly normalization of the µµ ′ -reduction. We need a stronger (and more difficult) version of this: lemma 9 ensure that, if

M [σ] ∈ SN but M [σ][α = r P] ∈ SN then the real cause of non SN is, in some sense, [α = r P].
-Having these results, we show, essentially by induction on ηc(M) + ηc(N), that if M, N ∈ SN then (M N) ∈ SN . The point is that there is, in fact, no deep interactions between M and N i.e. in a reduct of (M N) we always know what is coming from M and what is coming from N . Definition 4. -The set of simultaneous substitutions of the form [α 1 = s1 P 1 ..., α n = sn P n] where s i ∈ {l, r} will be denoted by Σ. -For s ∈ {l, r}, the set of simultaneous substitutions of the form [α 1 = s P 1 ...α n = s P n] will be denoted by

Σ s . -If σ = [α 1 = s1 P 1 ..., α n = sn P n], we denote by dom(σ) (resp. Im(σ)) the set {α 1 , ..., α n } (resp. {P 1 , ..., P n }). -Let σ ∈ Σ. We say that σ ∈ SN iff for every N ∈ Im(σ), N ∈ SN . Lemma 5. If (M N) ⊲ * µαP , then either M ⊲ * µαM 1 and M 1 [α = r N] ⊲ * P or N ⊲ * µαN 1 and N 1 [α = l M] ⊲ * P .
Proof By induction on the length of the reduction (M N) ⊲ * µαP . Lemma 6. Let M be a term and

σ ∈ Σ. If M [σ] ⊲ * µαP , then M ⊲ * µαQ for some Q such that Q[σ] ⊲ * P .
Proof By induction on M . M cannot be of the form (β M ′) or λx M ′ . If M begins with a µ, the result is trivial. Otherwise M = (M 1 M 2) and, by lemma 5, either

M 1 [σ]⊲ * µαR and R[α = r M 2 [σ]]⊲ * P or M 2 [σ]⊲ * µαR and R[α = l M 1 [σ]]⊲ * P .
Look at the first case (the other one is similar). By the induction hypothesis

M 1 ⊲ * µαQ for some Q such that Q[σ] ⊲ * R and thus M ⊲ * µαQ[α = r M 2]. Since Q[α = r M 2][σ] = Q[σ][α = r M 2 [σ]] ⊲ * R[α = r M 2 [σ]] ⊲ * P we are done.

Proof

We only prove the case s = l (the other one is similar). Let M 1 M be such that M 1 [σ] ∈ SN and ηc(M 1) is minimal. By the minimality, M 1 cannot be λxM 2 or µαM 2 . It cannot be either (N 1 N 2) because otherwise, by the minimality, the N i [σ] would be in SN and thus, by lemma 7 and 6, we would have, for example,

N 1 ⊲ * µαN ′ 1 and N ′ 1 [σ][α = r N 2 [σ]] = N ′ 1 [α = r N 2][σ] ∈ SN but this contradicts the minimality of M 1 since η(N ′ 1 [α = r N 2]) < η(M 1
). Then M 1 = (α P) and the the minimality of M 1 implies that P [σ] ∈ SN .

Remark

From these results it is easy to prove, by induction on the term, the strong normalization of the µ-reduction. It is enough to show that, if M, N ∈ SN , then (M N) ∈ SN . Otherwise, we construct below a sequence (M i) of terms and a sequence (σ i) of substitutions such that, for every i, σ i has the form [α

1 = r N, ..., α n = r N], M i [σ i] ∈ SN and M i+1 ≺ M i ≺ M . The sequence (M i) contra- dicts the fact that M ∈ SN . Since (M N) ∈ SN , by lemma 7, M ⊲ * µαM 1 and M 1 [α = r N] ∈ SN . Assume we have constructed M i and σ i . Since M i [σ i] ∈ SN , by lemma 8, there is M ′ i ≺ M i such that M ′ i [σ i] ∈ SN and (M ′ i [σ] N) ∈ SN .
By lemmas 6 and 7, M ′ i ⊲ * µαM i+1 and M i+1 [σ i + α = r N] ∈ SN . In the remark above, the fact that (M N) ∈ SN gives an infinite µ-reduction in M . This not the same for the the µµ ′ -reduction and, if we try to do the same, the substitutions we get are more complicated. In particular, it is not clear that we get an infinite sequence either of the form ... ≺ M 2 ≺ M 1 ≺ M or of the form ... ≺ N 2 ≺ N 1 ≺ N . Lemma 9 below will give the answer since it will ensure that, at each step, we may assume that the cause of non SN is the last substitution. Lemma 9. Let M be a term and σ ∈ Σ s . Assume δ is free in M but not free in

Im(σ). If M [σ] ∈ SN but M [σ][δ = s P] ∈ SN , there is M ′ ≺ M and σ ′ such that M ′ [σ ′] ∈ SN and, if s = r, (M ′ [σ ′] P) ∈ SN and, if s = l, (P M ′ [σ ′]) ∈ SN . Proof Assume s = r (the other case is similar). Let Im(σ) = {N 1 , ..., N k }. Assume M,

Lemma 7 .

 7 Assume M, N ∈ SN and (M N) ∈ SN . Then either M ⊲ * µαM 1 and M 1 [α = r N] ∈ SN or N ⊲ * µβN 1 and N 1 [β = l M] ∈ SN . Proof By induction on η(M) + η(N). Since (M N) ∈ SN , (M N) ⊲ P for some P such that P ∈ SN . If P = (M ′ N) where M ⊲ M ′ we conclude by the induction hypothesis since η(M ′) + η(N) < η(M) + η(N). If P = (M N ′) where N ⊲ N ′ the proof is similar. If M = µαM 1 and P = µαM 1 [α = r N] or N = µβN 1 and P = µβN 1 [β = l M] the result is trivial. Lemma 8. Let M be term in SN and σ ∈ Σ s be in SN . Assume M [σ] ∈ SN . Then, for some (α P) M , P [σ] ∈ SN and, if s = l (resp. s = r), (σ(α) P [σ]) ∈ SN (resp. (P [σ] σ(α)) ∈ SN).

 δ, σ, P satisfy the hypothesis. Let U = {U / U M } and V = {V / V N i for some i}. Define inductively the sets Σ m and Σ n of substitutions by the following rules:ρ ∈ Σ m iff ρ = ∅ or ρ = ρ ′ + [β = r V [τ]] for some V ∈ V, τ ∈ Σ n and ρ ′ ∈ Σ m τ ∈ Σ n iff τ = ∅ or τ = τ ′ + [α = l U [ρ]] for some U ∈ U, ρ ∈ Σ m and τ ′ ∈ Σ n Denote by C the conclusion of the lemma, i.e. there isM ′ ≺ M and σ ′ such that M ′ [σ ′] ∈ SN , and (M ′ [σ ′] P) ∈ SN . We prove something more general. (1) Let U ∈ U and ρ ∈ Σ m . Assume U [ρ] ∈ SN and U [ρ][δ = r P] ∈ SN . Then, C holds. (2) Let V ∈ V and τ ∈ Σ n . Assume V [τ] ∈ SN and V [τ][δ = r P] ∈ SN . Then, C holds.The conclusion C follows from (1) with M and σ. The properties (1) and (2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and ηc(V [τ]) (for the second case).Look first at (1)-if U = λxU ′ or U = µαU ′ : the result follows from the induction hypothesis with U ′ and ρ.-if U = (U 1 U 2): if U i [ρ][δ = r P] ∈ SN for i = 1 or i = 2,the result follows from the induction hypothesis with U i and ρ. Otherwise, by lemma 6 and 7, sayU 1 ⊲ * µαU ′ 1 and, letting U ′ = U ′ 1 [α = r u 2], U ′ [ρ][δ = r P]∈ SN and the result follows from the induction hypothesis with U ′ and ρ.-if U = (δ U 1): if U 1 [ρ][δ = r P] ∈ SN , then M ′ = U1 and σ ′ = ρ[δ = r P] satisfy the desired conclusion. Otherwise, the result follows from the induction hypothesis with U 1 and ρ. -if U = (α U 1): if α ∈ dom(ρ) or U 1 [ρ][δ = r P] ∈ SN , the result follows from the induction hypothesis with U 1 and ρ. Otherwise, let ρ(α) = V [τ]. If V [τ][δ = r

P] ∈ SN , the result follows from the induction hypothesis with V and τ (with (2)). Otherwise, by lemma 6 and 7, there are two cases to consider.

-

]. The result follows from the induction hypothesis with U 2 and ρ ′ .

-

]. The result follows from the induction hypothesis with V 1 and τ ′ (with (2)).

The case [START_REF] Constable | Finding computational content in classical proofs[END_REF] is proved in the same way. Note that, since δ is not free in the N i , the case b = (δ V 1) does not appear.

Theorem 10. Every term is in SN . Proof By induction on the term. It is enough to show that, if M, N ∈ SN , then (M N) ∈ SN . We prove something more general: let σ (resp. τ) be in Σ r (resp. 4 The simply typed symmetric λµ-calculus is strongly normalizing

In this section, we consider the simply typed calculus with the βµµ ′ -reduction i.e. M ⊲ M ′ means M ′ is obtained from M by one step of the βµµ ′ -reduction. To prove the strong normalization of the βµµ ′ -reduction, it is enough to show that, if M, N ∈ SN , then M [x := N] also is in SN . This is done by induction on the type of N . The proof very much looks like the one for the µµ ′ -reduction and the induction on the type is used for the cases coming from a β-reduction. The two new difficulties are the following.

-A β-substitution may create a µ, i.e. the fact that M [x := N] ⊲ * µαP does not imply that M ⊲ * µαQ. Moreover the µ may come from a complicated interaction between M and N and, in particular, the alternation between M and N can be lost. Let e.g. M = (M 1 (x (λy

To deal with this situation, we need to consider some new kind of µµ ′ -substitutions (see definition 13). Lemma 16 gives the different ways in which a µ may appear. The difficult case in the proof (when a µ is created and the control between M and N is lost) will be solved by using a typing argument.

-The crucial lemma (lemma 18) is essentially the same as the one (lemma 9) for the µµ ′ -reduction but, in its proof, some cases cannot be proved "by themselves" and we need an argument using the types. For this reason, its proof is done using the additional fact that we already know that, if M, N ∈ SN and the type of N is small, then M [x := N] also is in SN . Since the proof of lemma 19 is done by induction on the type, when we will use lemma 18, the additional hypothesis will be available.

Proof (1) is trivial. (2) is as in lemma 5.

) and again we are done.

(-Let M be a term and a be an address such that M a is defined. Then M a = N is the term M where the sub-term M a has been replaced by N . -Let M, N be some terms and a be an address such that M a is defined. Then N [α = a M] is the term N in which each sub-term of the form (α U) is replaced by (α M a = U).

Remarks and examples

-Let M = (P ((R (x T)) Q)) and a = [r :: l ::

-Note that the sub-terms of a term having an address in the sense given above are those for which the path to the root consists only on applications (taking either the left or right son).

-Note that [α =

-Note that M a = N can be written as M ′ [x a := N] where M ′ is the term M in which M a has been replaced by the fresh variable x a and thus (this will be used in the

where M 1 is the term M in which the particular occurrence of x at the address a has been replaced by the fresh name y and the other occurrences of x remain unchanged. Proof By induction on η(M) + η(N).

In the rest of this section, we consider the typed calculus. To simplify the notations, we do not write explicitly the type information but, when needed, we denote by type(M) the type of the term M .

Proof By induction on ηc(M). The only non immediate case is M = (R S). Since M [σ] ⊲ * µαP , the application (R[σ] S[σ]) must be reduced. Thus there are three cases to consider.

-It is reduced by a µ ′ -reduction, i.e. there is a term

) and a = [] satisfy the desired conclusion since then lg(type(M)) < n. Definition 17. Let A be a type. We denote by Σ A the set of substitutions of the form [α 1 = a1 M 1 , ..., α n = an M n] where the type of the α i is ¬A.

Remark

Since in such substitutions the type of the variables changes, when we consider the term N [σ] where σ ∈ Σ A , we mean that the type of the α i is A in N i.e. before the substitution. Also note that considering N [α = a M] implies that the type of M a is A.

Lemma 18. Let n be an integer and A be a type such that lg(A) = n. Let N, P be terms and τ ∈ Σ A . Assume that,

δ is free and has type ¬A in N but δ is not free in Im(τ).

Then, there is

Proof Essentially as in lemma 9. Denote by (H) the first assumption i.e. for every

M i for some i}. Define inductively the sets Σ m and Σ n of substitutions by the following rules:

x has type A. Denote by C the conclusion of the lemma. We prove something more general.

The conclusion C follows from [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF] with N and τ . The properties (1) and (2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and ηc(V [τ]) (for the second case).

The proof is as in lemma 9. The new case to consider is, for

1 , the result follows from the induction hypothesis with

-Assume next the interaction between V 1 and V 2 is a µ or µ ′ -reduction. We consider only the case µ (the other one is similar

1 , the result follows from the induction hypothesis with

Otherwise, by lemma 16, there are two cases to consider.

-

) and b = l :: c. The result follows then from the induction hypothesis with U 1 [ρ ′] where

where Q ′ is the same as Q but Q c has been replaced by a fresh variable y and b = l :: c.

we get the result by the induction hypothesis since ηc(V ′ [σ]) < ηc(V [σ]). Otherwise this contradicts the assumption (H) since

Proof We prove something a bit more general: let A be a type, M, N 1 , ..., N k be terms and τ 1 , ..., τ k be substitutions in Σ A . Assume that, for each i, N i has type A and

where, in Σ η(N i) and Σ cxty(N i), we count each occurrence of the substituted variable. For example if k = 1 and x 1 has n occurrences, Σ η(N i) = n.η(N 1).

If M is λyM 1 or (α M 1) or µαM 1 or a variable, the result is trivial. Assume then that

By lemma 14 there are 3 cases to consider.

-M 1 [σ] ⊲ * λyP and P [y := M 2 [σ]] ∈ SN . By lemma 12, there are two cases to consider.

] and, since η(Q[y := M 2]) < η(M), this contradicts the induction hypothesis.

Then, since the type of N i is A, lg(type(y)) < lg(A). But P, M 2 [σ] ∈ SN and P [y := M 2 [σ]] ∈ SN . This contradicts the induction hypothesis.

-M 1 [σ] ⊲ * µαP and P [α = r M 2 [σ]] ∈ SN . By lemma 16, there are three cases to consider.

where the variable x i at the address b has been replaced by the fresh variable y and let

Otherwise, M ′′ is the same as M up to the change of name of a variable and σ 1 differs from σ only at the address b. At this address,

and thus we get a contradiction from the induction hypothesis.

and

By lemma 18, there is an

where the variable x i at the address b has been replaced by the fresh variable y. 5 Why the usual candidates do not work ?

In [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF], the proof of the strong normalization of the λµ-calculus is done by using the usual (i.e. defined without a fix-point operation) candidates of reducibility. This proof could be easily extended to the symmetric λµ-calculus if we knew the following properties for the un-typed calculus:

1. If N and (M [x := N] -→ P) are in SN , then so is (λxM N -→ P).

If N and (M [α = r N]

-→ P) are in SN , then so is (µαM N -→ P).

If

-→ P are in SN , then so is (x -→ P).

These properties are easy to show for the βµ-reduction but they were not known for the βµµ ′ -reduction.

The properties (1) and (2) are false. Here is a counter-example. Let M 0 = λx(x P 0) and M 1 = λx(x P 1) where 0 = λxλyy, 1 = λxλyx, ∆ = λx(x x) and P = λxλyλz (y (z 1 0) (z 0 1) λd1 ∆ ∆). Let M = λf (f (x M 1) (x M 0)), M ′ = λf (f (β λx(x M 1)) (β λx(x M 0))) and N = (α λz(α z)). Then,

This comes from the fact that (M 0 M 0) and (M 1 M 1) are in SN but (M 1 M 0) and (M 0 M 1) are not in SN . More details can be found in [START_REF] David | Why the usual candidates of reducibility do not work for the symetric λµ-calculus[END_REF].

The third property is true and its proof is essentially the same as the one of the strong normalization of µµ ′ . This comes from the fact that, since (x M 1 ...M n) never reduces to a λ, there is no "dangerous" β-reduction. In particular, the β-reductions we have to consider in the proofs of the crucial lemmas, are uniquely those that appear in the reductions M M ′ . We give this proof below.

Remark

These substitutions are special cases of the one defined in section 4 (see definition 13). For example

Proof

Let k be the least such that (x M 1 ... M k-1) ∈ SN and (x M 1 ... M k) ∈ SN . By lemmas 14 and 21, -either It would be interesting to extend our proofs to these reductions. The rule θ causes no problem since it is strongly normalizing and it is easy to see that this rule can be postponed (i.e. if M → * βµµ ′ ρθ M 1 then M → * βµµ ′ ρ M 2 → * θ M 1 for some M 2). However it is not the same for the rule ρ which cannot be postponed. Moreover a basic property (if M [α = s N] ⊲ * µβP , then M ⊲ * µβQ for some Q such that Q[α = s N] ⊲ * P) used in the proofs is no more true if the ρ-rule is used. It seems that, in this case, the µ can only come either from M or from N i.e. without deep interaction between M and N and thus that our proofs can be extended to this case but, due to the lack of time, we have not been able to check the details.

-We believe that our technique, will allow to give explicit bounds for the length of the reductions of a typed term. This is a goal we will try to manage.