
HAL Id: hal-00382263
https://hal.science/hal-00382263

Submitted on 7 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An arithmetical proof of the strong normalization for
the λ-calculus with recursive equations on types

René David, Karim Nour

To cite this version:
René David, Karim Nour. An arithmetical proof of the strong normalization for the λ-calculus with
recursive equations on types. Typed Lambda Calculi and Applications, Jun 2007, Paris, France.
pp.84-101. �hal-00382263�

https://hal.science/hal-00382263
https://hal.archives-ouvertes.fr

An arithmetical proof of the strong normalization

for the λ-calculus

with recursive equations on types

René David & Karim Nour⋆

Université de Savoie

Abstract. We give an arithmetical proof of the strong normalization of the
λ-calculus (and also of the λµ-calculus) where the type system is the one of
simple types with recursive equations on types.

The proof using candidates of reducibility is an easy extension of the one
without equations but this proof cannot be formalized in Peano arithmetic.
The strength of the system needed for such a proof was not known. Our
proof shows that it is not more than Peano arithmetic.

1 Introduction

The λ-calculus is a powerful model for representing functions. In its un-typed ver-
sion, every recursive function can be represented. But, in this model, a term can
be applied to itself and a computation may not terminate. To avoid this problem,
types are used. In the simplest case, they are built from atomic types with the arrow
and the typing rules say that a function of type U → V may only be applied to
an argument of type U . This discipline ensures that every typed term is strongly
normalizing, i.e. a computation always terminate.

In this system (the simply typed λ-calculus), Church numerals, i.e. the terms of
the form λfλx(f (f ... (f x))), are codes for the integers. They are the only terms
(in normal form) of type (o → o) → (o → o). Thus, functions on the integers can be
represented but Schwichtenberg [38] has shown that very few functions are so. He
showed that the extended polynomials (i.e. polynomials with positive coefficients
together with a conditional operator) are the only functions that can be represented
there. Other type systems were then designed to allow the representation of more
functions. They are built in different ways.

The first one consists in extending the set of terms. For example, in Gödel
system T , the terms use the usual constructions of the λ-calculus, the constant 0,
the constructor S and an operator for recursion. The types are built from the atomic
type N with the arrow. This system represents exactly the functions whose totality
can be shown in Peano first order arithmetic.

The second one consists in keeping the same terms but extending the type
system. This is, for example, the case of Girard system F where the types can
use a second order universal quantifier. There, the type of the integers is given by
∀X ((X → X) → (X → X)). This system represents exactly the functions whose
totality can be shown in Peano second order arithmetic.

A third way consists in extending the logic. In the Curry-Howard correspondence,
the previous systems correspond to intuitionistic logic. Other systems correspond
to classical logic. There, again, new constructors for terms are introduced. This is,
for example, the case of Parigot’s λµ-calculus [35].

⋆ Université de Savoie, Campus Scientifique, 73376 Le Bourget du Lac, France.
Email : {david, nour}@univ-savoie.fr

Since the introduction of Girard system F for intuitionistic logic and Parigot’s
λµ-calculus for classical logic, many others, more and more powerful, type systems
were introduced. For example, the calculus of constructions (Coquand & Huet [7])
and, more generally, the Pure Type Systems.

It is also worth here to mention the system TTR of Parigot [33] where some types
are defined as the least fixed point of an operator. This system was introduced, not
to represent more functions, but to represent more algorithms. For example, to be
able to represent the integers in such a way that the predecessor can be computed
in constant time, which is not the case for the previous systems.

These systems all satisfy the subject reduction (i.e. the fact that the type is pre-
served by reduction), the strong normalization (i.e. every computation terminates)
and, for the systems based on simple types, the decidability of type assignment.

We study here other kinds of extension of the simply typed λ-calculus, i.e. sys-
tems where equations on types are allowed. These types are usually called recursive
types. For more details see, for example, [3]. They are present in many languages
and are intended to be able to be unfolded recursively to match other types. The
subject reduction and the decidability of type assignment are preserved but the
strong normalization may be lost. For example, with the equation X = X → T , the
term (δ δ) where δ = λx (xx) is typable but is not strongly normalizing. With the
equation X = X → X , every term can be typed.

By making some natural assumptions on the recursive equations the strong nor-
malization can be preserved. The simplest condition is to accept the equation X = F
(where F is a type containing the variable X) only when the variable X is positive
in F . For a set {Xi = Fi / i ∈ I} of mutually recursive equations, Mendler [29] has
given a very simple and natural condition that ensures the strong normalization
of the system. He also showed that the given condition is necessary to have the
strong normalization. His proof is based on the reducibility method. The condition
ensures enough monotonicity to have fixed point on the candidates. But this proof
(using candidates of reducibility) cannot be formalized in Peano arithmetic and
the strength of the system needed for a proof of the strong normalization of such
systems was not known.

In this paper, we give an arithmetical proof of the strong normalization of the
simply typed λ-calculus (and also of the λµ-calculus) with recursive equations on
types satisfying Mendler’s condition.

This proof is an extension of the one given by the first author for the simply
typed λ-calculus. It can be found either in [8] (where it appears among many other
things) or as a simple unpublished note on the web page of the first author [9].
Apparently, proof methods similar to that used here were independently invented
by several authors (Levy, van Daalen, Valentini and others). The proof for the
λµ-calculus is an extension of the ones given in [11] or [12].

The paper is organized as follows. In section 2 we define the simply typed λ-
calculus with recursive equations on types. To help the reader and show the main
ideas, we first give, in section 3, the proof of strong normalization for the λ-calculus.
We generalize this proof to the λµ-calculus in section 4. In section 5, we give two
examples of applications of systems with recursive types. We conclude in section 6
with some open questions.

2 The typed λ-calculus

Definition 1. Let V be an infinite set of variables.

1. The set M of λ-terms is defined by the following grammar

M ::= V | λV M | (M M)

2

2. The relation ⊲ on M is defined as the least relation (compatible with the context)
containing the rule (λx M N) ⊲ M [x := N]. As usual, ⊲∗ (resp. ⊲+) denotes
the reflexive and transitive (resp. transitive) closure of ⊲.

Definition 2. Let A be a set of atomic constants and X = {Xi / i ∈ I} be a set of
type variables.

1. The set T of types is defined by the following grammar

T ::= A | X | T → T

2. When E = {Fi / i ∈ I} is a set of types, the congruence ≈ generated by E is
the least congruence on T such that Xi ≈ Fi for each i ∈ I.

Definition 3. Let ≈ be a congruence on T . The typing rules of the typed system
are given below where Γ is a context, i.e. a set of declarations of the form x : U
where x ∈ V and U ∈ T .

Γ, x : U ⊢ x : U
ax

Γ ⊢ M : U U ≈ V

Γ ⊢ M : V
≈

Γ, x : U ⊢ M : V

Γ ⊢ λx M : U → V
→i

Γ ⊢ M1 : U → V Γ ⊢ M2 : U

Γ ⊢ (M1 M2) : V
→e

Lemma 1. Let ≈ be a congruence generated by a set of types.

1. If U ≈ V1 → V2, then U ∈ X or U = U1 → U2.
2. If U1 → V1 ≈ U2 → V2, then U1 ≈ U2 and V1 ≈ V2.
3. If Γ ⊢ x : T , then x : U occurs in Γ for some U ≈ T .
4. If Γ ⊢ λx M : T , then Γ, x : U ⊢ M : V for some U, V such that U → V ≈ T .
5. If Γ ⊢ (M N) : T , then Γ ⊢ M : U → V , Γ ⊢ N : U for some V ≈ T and U .
6. If Γ, x : U ⊢ M : T and U ≈ V , then Γ, x : V ⊢ M : T .
7. If Γ, x : U ⊢ M : T and Γ ⊢ N : U , then Γ ⊢ M [x := N] : T .

Proof Easy. �

Theorem 1. If Γ ⊢ M : T and M ⊲∗ M ′, then Γ ⊢ M ′ : T .

Proof It is enough to show that if Γ ⊢ (λx M N) : T , then Γ ⊢ M [x := N] : T .
Assume Γ ⊢ (λx M N) : T . By lemma 1, Γ ⊢ λx M : U → V , Γ ⊢ N : U and
V ≈ T . Thus, Γ, x : U ′ ⊢ M : V ′ and U ′ → V ′ ≈ U → V . By lemma 1, we have
U ′ ≈ U and V ′ ≈ V . Thus, Γ, x : U ⊢ M : V . Since Γ ⊢ N : U and V ≈ T , the
result follows immediately. �

Definition 4. Let X ∈ X . We define the subsets T +(X) and T −(X) of T as
follows.

– X ∈ T +(X)
– If U ∈ (X − {X}) ∪ A, then U ∈ T +(X) ∩ T −(X).
– If U ∈ T −(X) and V ∈ T +(X), then U → V ∈ T +(X) and V → U ∈ T −(X).

Definition 5. We say that a congruence ≈ is good if the following property holds:
for each X ∈ X , if X ≈ T , then T ∈ T +(X).

Examples

In each of the following cases, the congruence generated by the given equations
is good.

1. X1 ≈ (X1 → X2 → Y) → Y and X2 ≈ (X2 → X1 → Y) → Y .
2. X1 ≈ X2 → X1 and X2 ≈ X1 → X2.

3

3. The same equations as in case 2 and X3 ≈ F (X1, X2) → X3 where F is any
type using only the variables X1, X2.

4. The same equations as in case 3 and X4 ≈ X5 → G(X1, X2, X3) → X4, X5 ≈
X4 → H(X1, X2, X3) → X5 where G, H are any types using only the variables
X1, X2, X3.

In the rest of the paper, we fix a finite set E = {Fi / i ∈ I} of types and we
denote by ≈ the congruence generated by E. We assume that ≈ is good.

Notations and remarks

– We have assumed that the set of equations that we consider is finite. This is
to ensure that the order on I given by definition 6 below is well founded. It
should be clear that this is not a real constraint. Since to type a term, only a
finite number of equations is used, we may consider that the other variables are
constant and thus the general result follows immediately from the finite case.

– If M is a term, cxty(M) will denote the structural complexity of M .
– We denote by SN the set of strongly normalizing terms. If M ∈ SN , we de-

note by η(M) the length of the longest reduction of M and by ηc(M) the pair
〈η(M), cxty(M)〉.

– We denote by M � N the fact that M is a sub-term of a reduct of N .
– As usual, some parentheses are omitted and, for example, we write (M P Q)

instead of ((M P) Q). More generally, if
−→
O is a finite sequence O1, ..., On of

terms, we denote by (M
−→
O) the term ((...(M O1)... On−1) On) and by

−→
O ∈ SN

the fact that O1, ..., On ∈ SN .
– If σ is the substitution [x1 := N1, ..., xn := Nn], we denote by dom(σ) the

set {x1, ..., xn}, by Im(σ) the set {N1, ..., Nn} and by σ ∈ SN the fact that
Im(σ) ⊂ SN .

– If σ is a substitution, z 6∈ dom(σ) and M is a term, we denote by [σ + z := M]
the substitution σ′ defined by σ′(x) = σ(x) for x ∈ dom(σ) and σ′(z) = M .

– In a proof by induction, IH will denote the induction hypothesis. When the
induction is done on a tuple of integers, the order always is the lexicographic
order.

3 Proof of the strong normalization

3.1 The idea of the proof

We give the idea for one equation X ≈ F . The extension for the general case is
given at the beginning of section 3.4.

It is enough to show that, if M, N are in SN , then M [x := N] ∈ SN . Assuming
it is not the case, the interesting case is M = (x P) with (N P1) 6∈ SN where
P1 = P [x := N] ∈ SN . This implies that N ⊲∗ λyN1 and N1[y = P1] 6∈ SN . If
we know that the type of N is an arrow type, we get a similar situation to the
one we started with, but where the type of the substituted variable has decreased.
Repeating the same argument, we get the desired result, at least for N whose type
does not contain X . If it is not the case, since, by repeating the same argument,
we cannot come to a constant type (because such a term cannot be applied to
something), we come to X . Thus, it remains to show that, if M, N are in SN and
the type of x is X , then M [x := N] ∈ SN .

To prove this, we prove something a bit more general. We prove that, if M, σ ∈
SN where σ is a substitution such that the types of its image are in T +(X), then
M [σ] ∈ SN . The proof is done, by induction on ηc(M) as follows. As before,
the interesting case is M = (x P), σ(x) = N ⊲∗ λyN1, P1 = P [σ] ∈ SN and

4

N1[y = P1] 6∈ SN . Thus, there is a sub-term of a reduct of N1 of the form (y N2)
such that (P1 N2[y := P1]) 6∈ SN but N2[y := P1] ∈ SN . Thus P1 must reduce to
a λ.

This λ cannot come from some x′ ∈ dom(σ), i.e. P ⊲∗ (x′ −→Q). Otherwise, the

type of P would be both positive (since P ⊲∗ (x′ −→Q) and the type of x′ is positive)
and negative (since, in M , P is an argument of x whose type also is positive). Thus
the type of P1 (the same as the one of P) does not contain X . But since N1, P1 are
in SN , we already know that N1[y = P1] must be in SN . A contradiction. Thus,
P ⊲∗ λx1M1 and we get a contradiction from the induction hypothesis since we have
M1[σ

′] 6∈ SN for M1 strictly less than M . The case when y has more than one
argument is intuitively treated by “repeat the same argument” or, more formally,
by lemma 8 below.

As a final remark, note that many lemmas are stated in a negative style and
thus may seem to hold only classically. This has been done in this way because we
believe that this presentation is closer to the intuition. However, it is not difficult
to check that the whole proof can be presented and done in a constructive way.

3.2 Some useful lemmas on the un-typed calculus

Lemma 2. Assume M, N,
−→
O ∈ SN and (M N

−→
O) 6∈ SN . Then, for some term

M ′, M ⊲∗ λx M ′ and (M ′[x := N]
−→
O) 6∈ SN .

Proof Since M, N,
−→
O ∈ SN , an infinite reduction of P = (M N

−→
O) looks like

P ⊲
∗ (λx M ′ N ′

−→
O′) ⊲ (M ′[x := N ′]

−→
O′) ⊲ . . . and the result immediately follows

from the fact that (M ′[x := N]
−→
O) ⊲∗ (M ′[x := N ′]

−→
O′). �

Lemma 3. Let M be a term and σ be a substitution. Assume M, σ ∈ SN and

M [σ] 6∈ SN . Then (σ(x)
−−→
P [σ]) 6∈ SN for some (x

−→
P) � M such that

−−→
P [σ] ∈ SN .

Proof A sub-term M ′ of a reduct of M such that ηc(M ′) is minimum and
M ′[σ] 6∈ SN has the desired form. �

Lemma 4. Let M be a term and σ be a substitution such that M [σ]⊲∗λzM1. Then
- either M ⊲∗ λzM2 and M2[σ] ⊲∗ M1

- or M ⊲∗ (x
−→
N) for some x ∈ dom(σ) and (σ(x)

−−→
N [σ]) ⊲∗ λzM1.

Proof This is a classical (though not completely trivial) result in λ-calculus. Note
that, in case M ∈ SN (and we will only use the lemma in this case), it becomes
easier. The proof can be done by induction on ηc(M) by considering the possibility

for M : either λyM1 or (λyM1 P
−→
Q) or (x

−→
N) (for x in dom(σ) or not). �

3.3 Some useful lemmas on the congruence

Definition 6. We define on I the following relations

– i ≤ j iff Xi ∈ var(T) for some T such that Xj ≈ T .
– i ∼ j iff i ≤ j and j ≤ i.
– i < j iff i ≤ j and j 6∼ i

It is clear that ∼ is an equivalence on I.

Definition 7. 1. Let Xi = {Xj / j ≤ i} and X ′

i = {Xj / j < i}.
2. For Y ⊆ X , let T (Y) = {T ∈ T / var(T) ⊆ Y} where var(T) is the set of type

variables occurring in T .
3. For i ∈ I, we will abbreviate by Ti the set T (Xi) and by T ′

i the set T (X ′

i).

5

4. If ε ∈ {+,−}, ε will denote the opposite of ε. The opposite of + is - and
conversely.

Lemma 5. Let i ∈ I. The class of i can be partitioned into two disjoint sets i+ and
i− satisfying the following properties.

1. If ε ∈ {+,−}, j ∈ iε and Xj ≈ T , then for each k ∈ iε, T ∈ T ε(Xk) and for
each k ∈ iε, T ∈ T ε(Xk).

2. Let j ∼ i. Then, if j ∈ i+, j+ = i+ and j− = i− and if j ∈ i−, j+ = i− and
j− = i+.

Proof This follows immediately from the following observation. Let i ∼ j and
Xi ≈ T ≈ U . Choose an occurrence of Xj in T and in U . Then, these occurrences
have the same polarity. This is because, otherwise, since i ≤ j, there is a V such
that Xj ≈ V and Xi occurs in V . But then, replacing the mentioned occurrences
of Xj by V in T and U will contradict the fact that ≈ is good. �

Definition 8. Let i ∈ I and ε ∈ {+,−}. We denote T ε
i = {T ∈ Ti / for each

j ∈ iε, T ∈ T ε(Xj) and for each j ∈ iε, T ∈ T ε(Xj)}.

Lemma 6. Let i ∈ I and ε ∈ {+,−}.

1. T ε
i ∩ T ε

i ⊆ T ′

i .
2. If U ∈ T ε

i and U ≈ V , then V ∈ T ε
i .

3. If U ∈ T ε
i and U ≈ U1 → U2, then U1 ∈ T ε

i and U2 ∈ T ε
i .

Proof Immediate. �

Notations, remarks and examples

– If the equations are those of the case 4 of the examples given above, we have
1 ∼ 2 < 3 < 4 ∼ 5 and, for example, 1+ = {1} and 1− = {2}, 3+ = {3}, 3− = ∅,
4+ = {4} and 4− = {5}.

– If T is a type, we denote by lg(T) the size of T . Note that the size of a type is,
of course, not preserved by the congruence. The size of a type will only be used
in lemma 7 and the only property that we will use is that lg(U1) and lg(U2) are
less than lg(U1 → U2).

– By the typing rules, the type of a term can be freely replaced by an equivalent
one. However, for i ∈ I and ε ∈ {+,−}, the fact that U ∈ T ε

i does not change
when U is replaced by V for some V ≈ U . This will be used extensively in the
proofs of the next sections.

3.4 Proof of the strong normalization

To give the idea of the proof, we first need a definition.

Definition 9. Let E be a set of types. Denote by H [E] the following property:
Let M, N ∈ SN . Assume Γ, x : U ⊢ M : V and Γ ⊢ N : U for some Γ, U, V

such that U ∈ E. Then M [x := N] ∈ SN .

To get the result, it is enough to show H [T]. The proof that any typed term
is in SN is then done by induction on cxty(M). The only non trivial case is M =
(M1 M2). But M = (x M2)[x := M1] and the result follows from H [T] and the IH.

We first show the following (see lemma 7). Let Y ⊆ X . To prove H [T (Y)], it is
enough to prove H [{X}] for each X ∈ Y.

It is thus enough to prove of H [{Xi}] for each i ∈ I. This is done by induction
on i. Assume H [{Xj}] for each j < i. Thus, by the previous property, we know

6

H [T ′

i]. We show H [{Xi}] essentially as we said in section 3.1. The only difference
is that, what was called there “ X is both positive and negative in T ” here means
T is both in T +

i and T −

i . There we deduced that X does not occur in T . Here we
deduce T ∈ T ′

i and we are done since we know the result for this set.

Lemma 7. Let Y ⊆ X be such that H [{X}] holds for each X ∈ Y. Then H [T (Y)]
holds.

Proof Let M, N be terms in SN . Assume Γ, x : U ⊢ M : V and Γ ⊢ N : U and
U ∈ T (Y). We have to show M [x := N] ∈ SN .

This is done by induction on lg(U). Assume M [x := N] 6∈ SN . By lemma 3, let

(xP
−→
Q) � M be such that P1,

−→
Q1 ∈ SN and (N P1

−→
Q1) 6∈ SN where P1 = P [x :=

N] and
−→
Q1 =

−−−−−−−→
Q[x := N]. By lemma 2, N ⊲

∗ λx1N1 and (N1[x1 := P1]
−→
Q1) 6∈ SN .

If U is a variable (which is in Y since U ∈ T (Y)), we get a contradiction since
we have assumed that H [{X}] holds for each X ∈ Y.

The type U cannot be a constant since, otherwise x could not be applied to
some arguments.

Thus U = U1 → U2. In the typing of (N P1

−→
Q1), the congruence may have been

used and thus, by lemma 1, there are W1 ≈ U1, W2 ≈ U2, U ≈ W1 → W2 and
Γ, x1 : W1 ⊢ N1 : W2 and Γ ⊢ P1 : W1. But then, we also have Γ, x1 : U1 ⊢ N1 : U2

and Γ ⊢ P1 : U1. Now, by the IH, we have N1[x1 := P1] ∈ SN since lg(U1) < lg(U).

Since Γ, z : U2 ⊢ (z
−→
Q1) : V ′ for some V ′ and Γ ⊢ N1[x1 := P1] : U2, by the IH

since lg(U2) < lg(U), we have (N1[x1 := P1]
−→
Q1) = (z

−→
Q1)[z = N1[x1 := P1]] ∈ SN .

Contradiction. �

For now on, we fix some i and we assume H [{Xj}] for each j < i. Thus, by lemma
7, we know that H [T ′

i] holds. It remains to prove H [{Xi}] i.e. proposition 1.

Definition 10. Let M be a term, σ be a substitution, Γ be a context and U be a
type. Say that (σ, Γ, M, U) is adequate if the following holds.

– Γ ⊢ M [σ] : U and M, σ ∈ SN .
– For each x ∈ dom(σ), Γ ⊢ σ(x) : Vx and Vx ∈ T +

i .

Lemma 8. Let n, m be integers,
−→
S be a sequence of terms and (δ, ∆, P, B) be ad-

equate. Assume that

1. B ∈ T −

i − T ′

i and ∆ ⊢ (P [δ]
−→
S) : W for some W .

2.
−→
S ∈ SN , P ∈ SN and ηc(P) < 〈n, m〉.

3. M [σ] ∈ SN for every adequate (σ, Γ, M, U) such that ηc(M) < 〈n, m〉.

Then (P [δ]
−→
S) ∈ SN .

Proof By induction on the length of
−→
S . If

−→
S is empty, the result follows from

(3) since ηc(P) < 〈n, m〉. Otherwise, let
−→
S = S1

−→
S2 and assume that P [δ] ⊲∗ λz R.

By lemma 4, there are two cases to consider:

– P ⊲
∗ λz R′. We have to show that Q = (R′[δ + z := S1]

−→
S2) ∈ SN . Since

B ∈ T −

i , by lemmas 1 and 6, there are types B1, B2 such that B ≈ B1 → B2

and ∆, z : B1 ⊢ R′ : B2 and ∆ ⊢ S1 : B1 and B1 ∈ T +

i and B2 ∈ T −

i . Since
ηc(R′) < 〈n, m〉 and ([δ + z = S1], ∆ ∪ {z : B1}, R′, B2) is adequate, it follows
from (3) that R′[δ + z := S1]] ∈ SN .
- Assume first B2 ∈ T ′

i . Since (z′
−→
S2) ∈ SN and Q = (z′

−→
S2)[z

′ := R′[δ + z :=
S1]], the result follows from H [T ′

i].
- Otherwise, the result follows from the IH since ([δ + z = S1], ∆ ∪ {z :

B1}, R′, B2) is adequate and the length of
−→
S2 is less than the one of

−→
S .

– If P ⊲∗ (y
−→
T) for some y ∈ dom(δ). Then ∆ ⊢ (δ(y)

−−→
T [δ]) : B. By the definition

of adequacy, the type of y is in T +

i and B ∈ T −

i ∩ T +

i ⊆ T ′

i . Contradiction. �

7

Lemma 9. Assume (σ, Γ, M, A) is adequate. Then M [σ] ∈ SN .

Proof By induction on ηc(M). The only non trivial case is M = (x Q
−→
O) for

some x ∈ dom(σ). Let N = σ(x).

By the IH, Q[σ],
−−→
O[σ] ∈ SN . By lemma 1, we have Vx ≈ W1 → W2, Γ ⊢ Q[σ] :

W1 and Γ ⊢ (N Q[σ]) : W2. Moreover, by lemma 6, W1 ∈ T −

i and W2 ∈ T +

i .

Since M [σ] = (z
−→
O)[σ + z := (N Q[σ])], η((z

−→
O)) ≤ η(M), cxty((z

−→
O)) < cxty(M)

and W2 ∈ T +

i , it is enough, by the IH, to show that (N Q[σ]) ∈ SN . Assume that
N ⊲

∗ λy N ′. We have to show that N ′[y := Q[σ]] ∈ SN .
- Assume first W1 ∈ T ′

i . The result follows from H [T ′

i].
- Otherwise, assume N ′[y := Q[σ]] 6∈ SN . Since N ′, Q[σ] ∈ SN , by lemma 3,

(y
−→
L) � N ′ for some

−→
L such that

−−−−−−−−→
L[y := Q[σ]] ∈ SN and (Q[σ]

−−−−−−−−→
L[y := Q[σ]]) 6∈ SN .

But this contradicts lemma 8. Note that, by the IH, condition (3) of this lemma is
satisfied. �

Proposition 1. Assume Γ, x : Xi ⊢ M : U and Γ ⊢ N : Xi and M, N ∈ SN . Then
M [x := N] ∈ SN .

Proof This follows from lemma 9 since ([x := N], Γ, M, U) is adequate. �

4 The typed λµ-calculus

Definition 11. 1. Let W be an infinite set of variables such that V ∩W = ∅. An
element of V (resp. W) is said to be a λ-variable (resp. a µ-variable). We extend
the set of terms by the following rules

M ::= ... | µW M | (W M)

2. We add to the set A the constant symbol ⊥ and we denote by ¬U the type
U → ⊥.

3. We extend the typing rules by

Γ, α : ¬U ⊢ M : ⊥

Γ ⊢ µαM : U
⊥e

Γ, α : ¬U ⊢ M : U

Γ, α : ¬U ⊢ (α M) : ⊥
⊥i

where Γ is now a set of declarations of the form x : U and α : ¬U where x is a
λ-variable and α is a µ-variable.

4. We add to ⊲ the following reduction rule (µαM N)⊲µαM [α = N] where M [α =
N] is obtained by replacing each sub-term of M of the form (α P) by (α (P N)).
This substitution will be called a µ-substitution whereas the (usual) substitution
M [x := N] will be called a λ-substitution.

Remarks

– Note that we adopt here a more liberal syntax (also called de Groote’s calculus
[13]) than in the original calculus since we do not ask that a µα is immediately
followed by a (β M) (denoted [β]M in Parigot’s notation).

– We also have changed Parigot’s typing notations. Instead of writing M : (Ax1

1 , ...,
Axn

n ⊢ B, Cα1

1 , ..., Cαm

m) we have written x1 : A1, ..., xn : An, α1 : ¬C1, ..., αm :
¬Cm ⊢ M : B but, since the first introduction of the λµ-calculus, this is now
quite common.

– Unlike for a λ-substitution where, in M [x := N], the variable x has disappeared
it is important to note that, in a µ-substitution, the variable α has not disap-
peared. Moreover its type has changed. If the type of N is U and, in M , the
type of α is ¬(U → V) it becomes ¬V in M [α = N].

8

– The definition of good congruence is the same as before. As a consequence, we
now have the following facts. If U ≈ ⊥, then U = ⊥ and, if ¬U ≈ ¬V , then
U ≈ V .

– We also extend all the notations given in section 2. Finally note that lemma 1
remains valid. Moreover, they are easily extended by lemma 10 below.

Lemma 10. 1. If Γ ⊢ µα M : U , then Γ, α : ¬V ⊢ M : ⊥ for some V such that
U ≈ V .

2. If Γ, α : ¬U ⊢ (α M) : T , then Γ, α : ¬U ⊢ M : U and T = ⊥.
3. If Γ, α : ¬(U → V) ⊢ M : T and Γ ⊢ N : U , then Γ, α : ¬V ⊢ M [α = N] : T .

Theorem 2. If Γ ⊢ M : T and M ⊲
∗ M ′, then Γ ⊢ M ′ : T .

Proof It is enough to show that, if Γ ⊢ (µα M N) : T , then Γ ⊢ µα M [α =
N] : T . Assume Γ ⊢ (µα M N) : T . By lemma 1, Γ ⊢ µα M : U → V , Γ ⊢ N : U
and V ≈ T . Thus, Γ, α : ¬T ′ ⊢ M : ⊥ and T ′ ≈ U → V . By lemma 1, we have
Γ, α : ¬(U → V) ⊢ M : ⊥. Since Γ ⊢ N : U and V ≈ T , Γ, α : ¬V ⊢ M [α = N] : ⊥.
Then Γ ⊢ µα M [α = N] : V and Γ ⊢ µα M [α = N] : T . �

4.1 Some useful lemmas on the un-typed calculus

Lemma 11. Let M be a term and σ = σ1 ∪ σ2 where σ1 (resp. σ2) is λ (resp. µ)
substitution. Assume M [σ] ⊲∗ µαM1 (resp. λyM1). Then

- either M ⊲∗ µαM2 (resp. λyM2) and M2[σ] ⊲∗ M1

- or (M⊲∗(x
−→
N) for some x ∈ dom(σ1) and (σ(x)

−−→
N [σ])⊲∗µαM1 (resp. λyM1).

Proof A µ-substitution cannot create a λ or a µ (see, for example, [11]) and
thus, the proof is as in lemma 4. �

Lemma 12. Assume M, P,
−→
Q ∈ SN and (M P

−→
Q) 6∈ SN . Then either (M⊲∗λxM1

and (M1[x := P]
−→
Q) 6∈ SN) or (M ⊲∗ µαM1 and (µαM1[α = P]

−→
Q) 6∈ SN).

Proof As in lemma 2. �

Lemma 13. Let M be a term and σ be a λ-substitution. Assume M, σ ∈ SN and

M [σ] 6∈ SN . Then (σ(x)
−−→
P [σ]) 6∈ SN for some (x

−→
P) � M such that

−−→
P [σ] ∈ SN .

Proof As in lemma 3. �

Definition 12. A µ-substitution σ is said to be fair if, for each α ∈ dom(σ), α 6∈
Fv(σ) where x ∈ Fv(σ) (resp. β ∈ Fv(σ)) means that x ∈ Fv(N) (resp. β ∈
Fv(N)) for some N ∈ Im(σ).

Lemma 14. Let σ be is a fair µ-substitution, α ∈ dom(σ) and x 6∈ Fv(σ) (resp.
β 6∈ Fv(σ)), then M [σ][x := σ(α)] = M [x := σ(α)][σ] (resp. M [σ][β = σ(α)] =
M [β = σ(α)][σ]).

Proof Immediate. �

Lemma 15. Let M, N be terms and σ be a fair µ-substitution. Assume M [σ], N ∈
SN but (M [σ] N) 6∈ SN . Assume moreover that M [σ] ⊲∗ µαM1. Then, for some
(α M2) � M , we have (M2[σ

′] N) 6∈ SN and M2[σ
′] ∈ SN where σ′ = [σ +α = N].

Proof By lemma 11, we know that M⊲∗µαM ′

1 for some M ′

1 such that M ′

1[σ]⊲∗M1.
Let M ′ be a sub-term of a reduct of M such that 〈η(M ′[σ]), cxty(M ′)〉 is minimum
and M ′[σ′] 6∈ SN . We show that M ′ = (α M2) and has the desired properties. By
minimality, M ′ cannot be of the form λxP , µβP nor (β P) for β 6= α or β 6∈ dom(σ).

If M ′ = (P1 P2). By the minimality of M ′, P1[σ
′], P2[σ

′] ∈ SN . Thus, by lemma
11 and 12, P1 ⊲∗ λxQ (resp. P1 ⊲∗ µβQ) such that Q[σ′][x := P2[σ

′]] = Q[x :=

9

P2][σ
′] 6∈ SN (resp. Q[σ′][β = P2[σ

′]] = Q[β = P2][σ
′] 6∈ SN) and this contradicts

the minimality of M ′.
If M ′ = (β P) for some β ∈ dom(σ). Then (P [σ′] σ(β)) 6∈ SN and, by the

minimality of M ′, P [σ′] ∈ SN . Thus, by lemmas 11, 12 and 14, P ⊲∗ λxQ (resp.
P ⊲∗ µγQ) such that Q[σ′][x := σ(β)] = Q[x := σ(β)][σ′] 6∈ SN (resp. Q[σ′][γ =
σ(β)] = Q[γ = σ(β)][σ′] 6∈ SN) and this contradicts the minimality of M ′.

Thus M ′ = (α M2) and its minimality implies M2[σ
′] ∈ SN . �

4.2 Proof of the strong normalization

We use the same notations as in section 3.

Lemma 16. Let Y ⊆ X be such that H [{X}] holds for each X ∈ Y. Then H [T (Y)]
holds.

Proof Assume that H [{X}] holds for each X ∈ Y. The result is a special case
of the following claim.

Claim : Let M be a term, U, V be types such that U ∈ T (Y) and σ be a λ-
substitution such that, for each x, σ(x) = Nx[τx] where τx is a fair µ-substitution
such that dom(τx) ∩ Fv(M [σ]) = ∅. Assume Γ ⊢ M : V and for each x ∈ dom(σ),
x : U ∈ Γ . Assume finally that M and the Nx[τx] are in SN . Then, M [σ] ∈ SN .

Proof. By induction on 〈lg(U), ηc(M), ηc(σ)〉 where η(σ) =
∑

η(Nx) and cxty(σ) =∑
cxty(Nx) and, in the sums, each occurrence of a variable counts for one. For ex-

ample, if there are two occurrences of x1 and three occurrences of x2, cxty(σ) =
2 cxty(N1) + 3 cxty(N2). Note that we really mean cxty(Nx) and not cxty(Nx[τx])
and similarly for η.

The only non trivial case is when M = (x Q
−→
O) for x ∈ dom(σ). By the IH,

Q[σ],
−−→
O[σ] ∈ SN . It is enough to show that (Nx[τx] Q[σ]) ∈ SN since M [σ] can be

written as M ′[σ′] where M ′ = (z
−−→
O[σ]) and σ′(z) = (Nx[τx] Q[σ]) and (since the

size of the type of z is less than the one of U) the IH gives the result. By lemma
12, we have two cases to consider.

– Nx[τx] ⊲∗ λyN1. By lemma 11, Nx ⊲∗ λyN2 and the proof is exactly the same as
in lemma 7.

– Nx[τx] ⊲∗ µαN1. By lemma 15, let (α N2) � Nx be such that N2[τ
′] ∈ SN and

R = (N2[τ
′] Q[σ]) 6∈ SN where τ ′ = [τx + α = Q[σ]]. But R can be written as

(y Q)[σ′] where σ′ is the same as σ except that σ′(y) = N2[τ
′]. Note that (y Q)

is the same as (or less than) M but one occurrence of x has been replaced by
the fresh variable y. The substitution τ ′ is fair and dom(τ ′) ∩ Fv((y Q)) = ∅.
The IH gives a contradiction since ηc(σ′) < ηc(σ). Note that the type condition
on σ′ is satisfied since Nx has type U , thus α has type ¬U and thus N2 also has
type U . �

For now on, we fix some i and we assume H [{Xj}] for each j < i. Thus, by lemma
16, we know that H [T ′

i] holds. It remains to prove H [{Xi}] i.e. proposition 2.

Definition 13. Let M be a term, σ = σ1 ∪ σ2 where σ1 (resp. σ2) is a λ (resp. µ)
substitution, Γ be a context and U be a type. Say that (σ, Γ, M, U) is adequate if the
following holds:

– Γ ⊢ M [σ] : U and M, σ ∈ SN .
– For each x ∈ dom(σ1), Γ ⊢ σ(x) : Vx and Vx ∈ T +

i .

Note that nothing is asked on the types of the µ-variables.

10

Lemma 17. Let n, m be integers,
−→
S be a sequence of terms and (δ, ∆, P, B) be

adequate. Assume that

1. B ∈ T −

i − T ′

i and ∆ ⊢ (P [δ]
−→
S) : W for some W .

2.
−→
S ∈ SN , P ∈ SN and ηc(P) < 〈n, m〉.

3. M [σ] ∈ SN for every adequate (σ, Γ, M, U) such that ηc(M) < 〈n, m〉.

Then (P [δ]
−→
S) ∈ SN .

Proof By induction on the length of
−→
S . The proof is as in lemma 8. The new

case is P [δ]⊲∗µαR (when
−→
S = S1

−→
S2). By lemma 11, we have two cases to consider.

– P ⊲∗ µαR′. We have to show that Q = (µαR′[δ + α = S1]
−→
S2) ∈ SN . By

lemma 10, the properties of ≈ and since B ∈ T −

i , there are types B1, B2 such
that B ≈ B1 → B2 and ∆ ⊢ µαR′[δ + α = S1] : B2 and B2 ∈ T −

i . Since
ηc(R′) < 〈n, m〉 and ([δ + α = S1], ∆ ∪ {α : ¬B2}, µαR′, B2) is adequate, it
follows from (3) that R′[δ + α = S1] ∈ SN .

- Assume first B2 ∈ T ′

i . Since (z′
−→
S2) ∈ SN and Q = (z′

−→
S2)[z

′ := µαR′[δ + α =
S1]], the result follows from H [T ′

i].
- Otherwise, the result follows from the IH since ([δ + α = S1], ∆ ∪ {α :

¬B2}, µαR′, B2) is adequate and the length of
−→
S2 is less than the one of

−→
S .

– P ⊲∗ (y
−→
T) for some λ-variable y ∈ dom(δ). As in lemma 8. �

Lemma 18. Assume (σ, Γ, M, A) is adequate. Then M [σ] ∈ SN .

Proof As in the proof of the lemma 16, we prove a more general result. Assume
that, for each x ∈ dom(σ1), σ1(x) = Nx[τx] where τx is a fair µ-substitution such
that dom(τx) ∩ Fv(M [σ]) = ∅. We prove that M [σ] ∈ SN .

By induction on ηc(M) and, by secondary induction, on ηc(σ1) where η(σ1) and
cxty(σ1) are defined as in lemma 16. The proof is as in lemma 16. The interesting

case is M = (x Q
−→
O) for some x ∈ dom(σ1). The case when Nx[τx] ⊲∗ λyN ′ is as in

lemma 9. The new case is when Nx[τx]⊲∗ µαN ′. This is done as in lemma 16. Note
that, for this point, the type was not used. �

Proposition 2. Assume Γ, x : Xi ⊢ M : U and Γ ⊢ N : Xi and M, N ∈ SN . Then
M [x := N] ∈ SN .

Proof This follows from lemma 18 since ([x := N], Γ, M, U) is adequate. �

5 Some applications

5.1 Representing more functions

By using recursive types, some terms that cannot be typed in the simply typed λ-
calculus become typable. For example, by using the equation X ≈ (X → T) → T ,
it is possible to type terms containing both (x y) and (y x) as sub-terms. Just take
x : X and y : X → T . By using the equation X ≈ T → X , it is possible to apply
an unbounded number of arguments to a term.

It is thus natural to try to extend Schwichtenberg’s result and to determine the
class of functions that are represented in such systems and, in particular, to see
whether or not they allow to represent more functions. Note that Doyen [15] and
Fortune & all [16] have given extensions of Schwichtenberg’s result.

Here is an example of function that cannot be typed (of the good type) in the
simply typed λ-calculus.

Let Nat = (X → X) → (X → X) and Bool = Y → (Y → Y) where X, Y are
type variables. Let ñ = λfλx (f (f ... x) ...) be the church numeral representing n

11

and 0 = λxλy y, 1 = λxλy x be the terms representing false and true. Note that ñ
has type Nat and 0, 1 have type Bool .

The term Inf = λxλy (xM λz1 (y M λz0)) where M = λx λy (y x) has been
introduced by B.Maurey. It is easy to see that, for every n, m ∈ N, the term (Inf m̃ ñ)
reduces to 1 if m ≤ n and to 0 otherwise. Krivine has shown in [24] that the type
Nat → Nat → Bool cannot be given to Inf in system F but, by adding the equation
X ≈ (X → Bool) → Bool , it becomes typable. Our example uses the same ideas.

Let ≈ be the congruence generated by X ≈ (X → Bool) → Bool . For each
n ∈ IN∗, let Inf n = λx (xM λy1 (Mn−1 λy0)) where (Mk P) = (M (M ... (M P))).

Proposition 3. For each n ∈ IN∗ we have ⊢ Inf n : Nat → Bool .

Proof We have x : X → Bool , y : X ⊢ (y x) : Bool , then ⊢ M : (X → Bool) →
(X → Bool), thus ⊢ (ñ M) : (X → Bool) → (X → Bool). But ⊢ λy0 : X → Bool ,
therefore ⊢ (ñ M λy0) : X → Bool .

We have x : X, y : X → Bool ⊢ (y x) : Bool , then ⊢ M : X → X , thus
x : Nat ⊢ (xM) : X → X . But ⊢ λy1 : (X → Bool) → Bool , therefore x : Nat ⊢
(xM λy1) : X .

We deduce that x : Nat ⊢ ((ñ M λy0) (xM λy1)) : Bool , then x : Nat ⊢
(xM λy1 (Mn−1 λy0)) : Bool and thus ⊢ Inf n : Nat → Bool . �

Proposition 4. For each n ∈ IN∗ and m ∈ IN, (Inf n m̃) reduces to 1 if m ≤ n and
to 0 otherwise.

Proof

(Inf n m̃) ⊲∗ (Mm λy1 (Mn−1 λy0)) ⊲∗ (Mn−1 λy0 (Mm−1 λy1)) ⊲∗

(Mm−1 λy1 (Mn−2 λy0)) ⊲∗ (Mn−2 λy0 (Mm−2 λy1)) ⊲∗ ...
⊲∗1 if m ≤ n and 0 otherwise. �

Remarks

Note that for the (usual) simply typed λ-calculus we could have taken for X and
Y the same variable but, for propositions 3 and 4, we cannot assume that X = Y
because then the condition of positivity would not be satisfied. This example is thus
not completely satisfactory and it actually shows that the precise meaning of the
question “which functions can be represented in such systems” is not so clear.

5.2 A translation of the λµ-calculus into the λ-calculus

The strong normalization of a typed λµ-calculus can be deduced from the one of
the corresponding typed λ-calculus by using CPS translations. See, for example,
[14] for such a translation. There is another, somehow simpler, way of doing such a
translation. Add, for each atomic type X , a constant aX of type ¬¬X → X . Using
these constants, it is not difficult to get, for each type T , a λ-term MT (depending
on T) such that MT has type ¬¬T → T . This gives a translation of the λµ-calculus
into the λ-calculus from which the strong normalization of the λµ-calculus can be
deduced from the one of the λ-calculus. This translation, quite different from the
CPS translations, has been used by Krivine [26] to code the λµ-calculus with second
order types in the λC-calculus.

With recursive equations, we do not have to add the constant aX since we can
use the equation X ≈ ¬¬X . We give here, without proof, the translation. We denote
by S≈ the simply typed λ-calculus where ≈ is the congruence on T (where A = {⊥})
generated by X ≈ ¬¬X for each X and by Sλµ the usual (i.e. without recursive
types) λµ-calculus.

Definition 14. 1. We define, for each type T , a closed λ-term MT such that ⊢≈

MT : ¬¬T → T as follows. This is done by induction on T .

12

– M⊥ = λx (x I) where I = λx x.
– If X ∈ X , MX = I.
– MU→V = λxλy (MV λz(x λt(z (t y))))

2. We define a translation from Sλµ to S≈ as follows.

– x∗ = x.
– (λxM)∗ = λxM∗.
– (M N)∗ = (M∗ N∗).
– (µα M)∗ = (MU λα M∗) if α has the type ¬U .
– (α M)∗ = (α M∗).

For a better understanding, in the translation of µαM and (α M), we have kept
the same name to the variable α but it should be clear that the translated terms
are λ-terms with only on kind of variables.

Lemma 19. If Γ ⊢λµ M : U then Γ ⊢≈ M∗ : U .

Lemma 20. Let M, N be typed λµ-terms. If M ⊲ N , then M∗ ⊲+ N∗.

Proof It is enough to check that (µαM N)∗ ⊲+ (µαM [α = N])∗. �

Theorem 3. The strong normalization of S≈ implies the one of Sλµ.

Proof By lemmas 19 and 20. �

Remark

Note that the previous translation cannot be used to show that the λµ-calculus
with recursive types is strongly normalizing since having two equations (for example
X ≈ ¬¬X and X ≈ F) is problematic.

6 Remarks and open questions

1. The proof of the strong normalization of the system D of intersection types [6]
is exactly the same as the one for simple types. Is it possible to extend our proof
to such systems with equations ? Note that the sort of constraints that must
be given on the equations is not so clear. For example, what does that mean to
be positive in A ∧ B ? To be positive both in A and B ? in one of them ? It
will be interesting to check precisely because, for example, it is known that the
system1 given by system D and the equations X ≈ (Y → X) ∧ (X → X) and
Y ≈ X → Y is strongly normalizing (but the proof again is not formalized in
Peano arithmetic) though the positivity condition is violated.

2. We could add other typing rules and constructors to ensure that, intuitively,
X represents the least fixed point of the equation X ≈ F . This kind of thing is
done, for example, in TTR. What can be said for such systems?

3. There are many translations from, for example, the λµ-calculus into the λ-
calculus that allows to deduce the strong normalization of the former by the
one of the latter. These CPS transformations differ from the one given in section
5.2 by the fact that the translation of a term does not depend on its type. What
is the behavior of such translations with recursive equations ?

Acknowledgments

We would like to thank P Urzyczyn who has mentioned to us the question solved
here and has also indicated some errors appearing in previous versions of our proofs.
Thanks also to the referees and their valuable remarks.

1 This example appears in a list of open problems of the working group Gentzen, Utrecht
1993.

13

References

1. H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics. North-Holland,
1985.

2. H.P. Barendregt, Lambda Calculi with types. In Abramsky & al. pp. 117-309, 1992.
3. H.P. Barendregt, W. Dekkers and R. Statman Typed lambda calculus . To appear.
4. U. Berger and H. Schwichtenberg, An Inverse of the Evaluation Functional for Typed

lambda-calculus. LICS, pp. 203-211, 1991.
5. A. Church, A Formulation of the Simple Theory of Types. JSL 5, 1940.
6. M. Coppo and M. Dezani, A new type assignment for lambda terms Archiv. Math.

Logik (19) pp. 139-156, (1978).
7. T. Coquand and G. Huet, A calculus of constructions. Information and Computation

(76), pp. 95-120, 1988.
8. R. David, Normalization without reducibility. Annals of Pure and Applied Logic (107),

pp. 121-130, 2001.
9. R. David, A short proof of the strong normalization of the simply typed lambda calculus.

(www.lama.univ-savoie.fr/~david)

10. R. David and K. Nour, A short proof of the strong normalization of the simply typed

λµ-calculus. Schedae Informaticae (12), pp. 27-34, 2003.
11. R. David and K. Nour, Arithmetical proofs of strong normalization results for the

symmetric lambda-mu-calculus. TLCA’2005, LNCS 3461, pp. 162-178, 2005.
12. R. David and K. Nour, Arithmetical proofs of strong normalization results for sym-

metric λ-calculi. To appear in Fundamenta Informaticae.
13. P. de Groote, On the Relation between the Lambda-Mu-Calculus and the Syntactic

Theory of Sequential Control. LPAR, pp. 31-43, 1994.
14. P. de Groote, A CPS-Translation of the λµ-Calculus. Proceedings 19th Intl. Coll. on

Trees in Algebra and Programming, CAAP’94, Edinburgh, LNCS 787, pp. 85-99, 1994.

15. J. Doyen, Quelques propriétés du typage des fonctions des entiers dans les entiers.
C.R. Acad. Sci. Paris, t.321, Série I, pp. 663-665, 1995.

16. S. Fortune, D. Leivant and M.O’Donnell. Simple and Second order Types Structures.
JACM 30-1, pp. 151-185, 1983.

17. H. Friedman, Equality between functionals. Logic Coll’73, pp. 22-37, LNM 453, 1975.
18. J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types. Cambridge University Press,

1989.

19. Kurt Gödel, Über eine bisher noch nicht benütztz Erweiterung des finiten Standpunkts.
Dialectica 12, pp. 280-287, 1958.

20. W. D. Goldfarb, The undecidability of the 2nd order unification problem. TCS (13),
pp. 225- 230, 1981.

21. G.P. Huet, The Undecidability of Unification in Third Order Logic Information and
Control 22(3) pp. 257-267, 1973.

22. F. Joachimski and R. Matthes, Short proofs of normalization for the simply-typed

lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical
Logic, 42(1), pp. 59-87, 2003.

23. A. Jung and J. A. Tiuryn, A New Characterization of Lambda Definability.
TLCA’1993, LNCS 664 pp. 245-257. 1993.

24. J.-L. Krivine, Un algorithme non typable dans le système F. C. R. Acad. Sci. Paris
304 (5), 1987.

25. J.-L. Krivine, Lambda Calcul : types et modèles, Masson, Paris, 1990.
26. J.-L. Krivine, Classical Logic, Storage Operators and Second-Order lambda-Calculus.

Ann. Pure Appl. Logic 68(1), pp. 53-78, 1994.

27. J. Lambek, Cartesian Closed Categories and Typed Lambda-calculi. Combinators and
Functional Programming Languages, pp. 136-175, 1985.

28. R. Loader, The Undecidability of λ-definability. In “Essays in memory of A. Church”,
pp. 331-342, 2001.

29. N. P. Mendler, Recursive Types and Type Constraints in Second-Order Lambda Cal-

culus. LICS, pp. 30-36, 1987.
30. N. P. Mendler, Inductive Types and Type Constraints in the Second-Order Lambda

Calculus. Ann. Pure Appl. Logic 51(1-2), pp. 159-172, 1991.

14

31. M. Parigot, Programming with proofs: a second order type theory . ESOP’88, LNCS
300, (145-159), 1988.

32. M. Parigot, On representation of data in lambda calculus. CSL pp. 309-321, 1989.
33. M. Parigot, Recursive programming with proofs. Theoritical Computer Science, 94

(335-356), 1992.
34. M. Parigot, Strong Normalization for Second Order Classical Natural Deduction. LICS,

pp. 39-46, 1993.
35. M. Parigot, λµ-calculus: An algorithmic interpretation of classical natural deduction.

Journal of symbolic logic (62-4), pp 1461-1479, 1997.
36. M. Parigot, Proofs of Strong Normalisation for Second Order Classical Natural De-

duction. J. Symb. Log. 62(4), pp. 1461-1479, 1997.
37. G.D. Plotkin, Lambda-definability and logical relations. Technical report, 1973.
38. H. Schwichtenberg, Functions definable in the simply-typed lambda calculus. Arch.

Math Logik 17, pp. 113-114, 1976.
39. R. Statman, The Typed lambda-Calculus is not Elementary Recursive. FOCS, pp. 90-

94, 1977.
40. R. Statman, λ-definable functionals and βη-conversion. Arch. Math. Logik 23, pp.

21-26, 1983.
41. R. Statman, Recursive types and the subject reduction theorem. Technical report 94-

164, Carnegie Mellon University, March 1994.
42. W.W.Tait, Intensional Interpretations of Functionals of Finite Type I. JSL 32(2), 1967.
43. A. Weiermann, A proof of strongly uniform termination for Gödel’s T by methods from

local predicativity. Archive fot Mathematical Logic 36, pp. 445-460, 1997.

15

