
HAL Id: hal-00381960
https://hal.science/hal-00381960

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standards-based Assessment of Development Toolchains
in Safety-Critical Systems

Zoltán Szatmári

To cite this version:
Zoltán Szatmári. Standards-based Assessment of Development Toolchains in Safety-Critical Systems.
12th European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 4
p. �hal-00381960�

https://hal.science/hal-00381960
https://hal.archives-ouvertes.fr


Standards-based Assessment of Development
Toolchains in Safety-Critical Systems

Zoltán Szatmári
Budapest University of Technology and Economics

Email: szatmari@mit.bme.hu

Abstract—To reduce the risks of software design failures,
the software development processes are more and more subject
to regulations fixed in (domain-specific) standards that define
criteria for the selection of techniques and measures. In this
paper we propose a method for the assessment of development
processes and toolchains. The tasks and tools in the development
process are modelled and then classified using an ontology that
is constructed on the basis of the standard, and a reasoning tool
is applied to check whether the criteria are satisfied.

I. INTRODUCTION

Our everyday life depends on software to a considerable
extent, this way the reduction of the risks of design and
implementation failures is of utmost importance. The software
development processes are more and more subject to regula-
tions fixed in (domain-specific) standards that define criteria
for the selection of proper development methods and measures.
Accordingly, if software is deployed in a critical environment
then an independent assessment is needed to certify that its
development process is compliant to the criteria stated in
the related standard. The goal of our work is to support the
assessment of development processes and toolchains by elabo-
rating a formal verification technique that allows the automated
checking of the compliance to standards. On the analogy of
classical model checking (that is applied to examine whether
a formal design model satisfies some temporal requirements)
we represent the development process and tools in a process
model and use a reasoning tool to check whether the criteria
originated from the standard are satisfied.

This vision necessitates the solution of the following tasks:
• Formalisation of the requirements (criteria) in standards

that concern the selection of methods and tools.
• Definition (or adaptation) of modeling techniques to

describe the relation of methods, the capabilities of tools,
and the construction of (domain-specific) development
processes.

• Elaboration of techniques that check the compliance of
concrete development processes (constructed by process
designers) to the requirements.

The formalisation of the requirements and the model-based
description of tools and methods open a way to support also
the synthesis of processes and toolchains that are compliant
to the standard. The process designer can be assisted by

• identifying missing methods and tools,
• proposing alternative solutions,
• offering a library of toolchain patterns,

• optimizing processes from the point of view of costs,
time, safety etc.

In the following we describe ideas and initial results related
to the implementation of the above mentioned tasks and
present a simple example.

II. FORMALISATION OF THE REQUIREMENTS

Formalisation is a prerequisite of both formal verifica-
tion and synthesis support. We focused on the development
processes for safety critical applications, and analyzed the
EN50128 standard for railway applications [1]. This standard
defines five safety integrity levels (SIL) for development
processes and describes methods that can be applied during the
process. For each development step the mandatory (M), highly
recommended (HR), recommended (R) and not recommended
(NR) methods are described in a tabular form.

The main challenges during the requirement formalisation
are the following:

• The development methods are refined hierarchically, i.e.,
several high level methods are decomposed into alterna-
tive combinations of lower level ones (see Fig. 1).

• For each SIL different requirements are described in the
standard. Accordingly, this introduces a new dimension
into the requirement formalisation.

• The sufficient conditions for every SIL are formulated in
the standard using various combinations of the applied
methods.

Technique/Method SIL1 SIL2 SIL3 SIL4
1. Formal Proof R R HR HR
2. Probabilistic Testing R R HR HR
3. Static Analysis HR HR HR HR
4. Dynamic Analysis and Testing HR HR HR HR
5. Metrics R R R R
6. Traceability Matrix R R HR HR
7. SW Error Effect Analysis R R HR HR

Fig. 2. The Verification and Testing methods (EN50128)

In the following, the Verification and Testing step of the
development process described in the EN50128 standard is
presented as a small example in order to demonstrate the
mentioned concepts.

In Fig. 2 the recommendation level of some methods is
shown and the hierarchy of the methods is depicted in Fig. 1.
The combination of the required methods are expressed as



Fig. 1. Verification and Testing methods for SIL4 (EN50128)

follows: ,,For Software Integrity Levels 3 and 4, the approved
combinations of techniques shall be (1 and 3) or (3 and 4) or
(4, 6 and 7)”

A formal representation of the hierarchical structure of
methods can be provided by defining an ontology [3] and
describing it using description logic. Here concepts refer
to the development methods and their relations include the
refinement.

An ontology definition consists of two types of statements:
• The T-Box (Terminology Box) statements are used to

describe the domain specific context in terms. Concepts
of the domain, those attributes and relations between them
are defined.

• The A-Box (Assertion Box) consists of T-Box-compliant
statements. These describe the individuals, i.e. the in-
stances of the concepts defined in the T-Box.

Based on this standard the methods ontology can be con-
structed. The hierarchy of methods can be expressed using
concept hierarchy in the ontology T-Box (Terminology box).
In Fig. 3 part of the formal ontology description is shown for
the Verification and Testing step.

StaticAnalysis ! V erification And Testing
Checklists ! StaticAnalysis

Boundary V alue Analysis ! StaticAnalysis
Control F low Analysis ! StaticAnalysis

Fig. 3. Formal ontology description

In Fig. 4 part of the graphical representation of the ontology
is depicted that is constructed using the Protege ontology
modeling tool [6].

III. ASSEMBLING AN EXTENSIBLE TOOL REPOSITORY

The next step of the formalisation process is the construction
of the tool repository. This repository is a collection of tools
that can be used in a given company during the (construction
of the) development processes. Each available tool is classified
on the basis of the concepts defined in the ontology constructed
in the previous step, i.e., for each tool the supported methods
are given.

The following items can be found in this repository:
• Simple tools, that realize a specific method described in

the specification. For example, the SPIN model checker
[14] and the PVS theorem prover can be classified as tools

Fig. 4. Verification and Testing methods ontology

supporting Formal Proof. The PolySpace can be classified
as a tool supporting Symbolic Execution which is a Static
Analysis method.

• Toolchain patterns that are formed by tools that have to
be executed in a predefined sequence, to support a given
method. For example, Structure-Based Testing (which is a
Dynamic Analysis and Testing method) can be supported
by the following toolchain:

1) Model transformation from UML2 statechart model
to the input format of the SAL model checker.

2) Test generation for a given coverage criteria using
the SAL-ATG [13] tool.

3) Mapping abstract test cases to executable test cases.
4) Execution of test cases and measuring coverage by

Rational RealTime.

• Abstract development steps that are also allowed in order
to support high level design of development processes.
For example, ,,model checking of the reachability of
hazardous states” can be classified as Formal Proof. In
the next refinement steps tools like SPIN or SAL can be
assigned to this abstract step.

These tools are represented on the A-Box level of the
ontology, they are instances of the concepts defined using the
T-Box in the previous section. A sample tool classification
using the ontology description is depicted in Fig. 5.



Formal Proof(SAL), Formal Proof(SPIN),
Symbolic Execution(PolySpace)

Fig. 5. Verification and Testing tools classification

IV. MODELING THE DEVELOPMENT PROCESS

The (domain-specific) development process is formalised
using a process model which describes the tasks, input and
output artifacts, the roles and tools involved in the development
process.

The OMG’s Software Process Engineering Metamodel
(SPEM) specification defines a formal representation of busi-
ness processes (including development processes). The Eclipse
Process Framework [2] supports this specification and is
proposed in our environment to model the processes.

Using this framework the process designer
• can construct the specific development process, and can

assign the available tools to the tasks of the process,
• can choose from the available toolchain patterns.
The tasks of the process implement particular methods that

are classified using the ontology that describes the method
hierarchy.

In order to support the logical reasoning the process should
be represented using ontology. The constructed process model
can be transformed into process ontology based on the Busi-
ness Management Ontology (BMO) [4], that supports model-
ing business processes using mathematical formalisation.

The required model transformation will be implemented
using the VIATRA model transformation framework [10]
developed by our research group. Using this tool model
transformation can be designed and implemented between
two models according to their metamodels. The VIATRA
framework supports importing models from external source,
applying model transformations and exporting models into a
specific format.

To use VIATRA the metamodel of the SPEM language
and the metamodel of the SHIQ ontology language will
be constructed. After that the ,,SPEM to ontology” model-
transformation (based on these metamodels), an importer for
the SPEM models and an exporter for OWL ontology format
will be implemented.

There are two alternatives in the construction of the SHIQ
ontology metamodel:

• The Eclipse Ontology Definition Metamodel (EODM)
[11] can be used, which is available in the Eclipse
Modeling Framework (EMF) [12] and can be imported
into VIATRA.

• Constructing a metamodel based on the formal language
definition of the SHIQ language.

A simple example development process is shown in Fig. 6.
This development toolchain is compliant to the standard since
the combination of Formal Proof (implemented by the SAL
model checker) and the Symbolic Execution (which is a Static
Analysis method implemented by the PolySpace tool) is a
valid combination for SIL3 and SIL4.

The classification of the tools used in this example toolchain
are depicted in Fig. 5.

V. ASSESSMENT OF DOMAIN-SPECIFIC DEVELOPMENT
TOOLCHAINS

According to the approach described above, all of the tasks,
the tools and thus the development processes are characterized
using the concepts represented in the ontology.

Using the concepts defined in the ontology, the necessary
and sufficient conditions for the selection of methods and the
dependency on the safety integrity level should be represented.
Two alternative solutions are discovered:

• The conditions can be described using some ontology
query language, for example the New RacerPro Query
Language (nRQL) [8] or the RDF Query Language [7].
The query should check whether the required combina-
tion of the methods are included in the process model.
Moreover, the ordering of the methods can also be
formulated using these query languages. [15]

• A new concept can be introduced in the T-Box of the
ontology. This concept (CompliantProcess) represents the
set of processes, which satisfy the requirements described
in the domain specific standard. So, the requirements
can be expressed during the concept definition phase
using the SHIQ ontology description language. The
CompliantProcess concept will be implemented as a
subset of the Process concept (which represents the
development processes) and restrictions will be defined
for it as logical expressions based on the requirements.
After such categorization a simple A-Box query can be
executed in order to find out whether the investigated
process is a member of this concept or not.
The ,,(retrieve (nil) (myprocess CompliantProcess))”
example nRQL query answers the following question: Is
the process named myprocess a member of the concept
CompliantProcess?

Accordingly, the standard conformance of the selection of
methods and their supporting tools in the development process
can be checked using an ontology reasoner. In our research
we used the Protege [6] ontology modeling tool and the Racer
Semantic Web Reasoning System [5]. This way the assessment
can be supported by reusing existing formal methods and
checker tools.

Fig. 7. The assessment process



Fig. 6. Sample development process

In Fig. 7 the assessment process is depicted. Based on
the domain specific standard the Methods Ontology and the
Requirements can be constructed. The development process
can be modelled using the SPEM Metamodel and this Process
Model should be transformed into a model that is based on the
BMO. Finally, the standard conformance of the development
process can be checked using the reasoner tool.

VI. FUTURE WORK

The used tools will be integrated into an assessment
toolchain in order to support automatic execution of the steps
starting with the SPEM model transformation into ontology
based models and finishing with the logical reasoning. A
graphical user interface (GUI) will be implemented.

During the standard based assessment of development
toolchains not only the used methods or the ordering of
the tools are important. The standard specifies that safety
arguments are required during the certification process. This
safety arguments communicate the relationship between the
evidence and objectives.

There is a model based representation of the safety argu-
ments based on the Goal Structuring Notation (GSN) [16].
This notation explicitly represents the individual elements of
the safety arguments and the relationships that exist between
these elements and the requirements.

The arguments can be ordered into a hierarchical break-
down structure. There could be some parts of these arguments
that are produced by tools in one step or by toolchains in
multiple steps.

The hierarchical breakdown structure can be modeled using
a logic description language and the produced arguments
can be included in the model of the development process.
SPEM supports this by allowing to include artefacts in the
development processes. Based on this structure, the reasoning
process should be extended in order to check the availability
of the expected safety arguments.

At this stage, the proposed assessment process is able to
check whether the constructed development process satisfies
the requirements described in the domain specific standards.
The assessment process will be extended to support the
construction of development precesses by identifying missing
tools, methods and safety arguments. Based on the process
model and the available tools in the repository missing meth-
ods could be identified and hints could be given about the
supporting tools as well.

VII. CONCLUSION

Formalisation of requirements is a wide research area. In
this work an approach is proposed to formalise the require-
ments of development processes. This approach forms the
basis for the assessment of the standard compliance of specific
toolchains and provides support for the process designers to
construct certifiable development processes. This work will be
used in our MOGENTES project [9], where a tool integration
framework is developed.

REFERENCES

[1] CENELEC EN 50128: Railway applications - Communication, signalling
and processing systems - Software for railway control and protection
systems. URL: http://www.cenelec.eu

[2] Eclipse Process Framework project, URL: http://www.eclipse.org/epf/
[3] Sean Bechhofer. OWL web ontology language reference. W3C recom-

mendation, February 2004.
[4] Dieter E. Jenz Defining a Private Business Process in a Knowledge Base

URL: www.bpiresearch.com
[5] Racer Semantic Web Reasoning System and Information Repository -

http://www.racer-systems.com/
[6] Protege ontology editor http://protege.stanford.edu/
[7] Gregory Karvounarakis and Sofia Alexaki and Vassilis Christophides

and Dimitris Plexousakis and Michel Scholl: RQL: A Declarative Query
Language for RDF - Proceedings of the eleventh international conference
on World Wide Web (592-603), 2002

[8] RacerPro Users Guide: The New RacerPro Query Language
[9] MOGENTES project, URL: http://www.mogentes.eu
[10] VIATRA model transformation framework,

URL: http://wiki.eclipse.org/VIATRA2
[11] Eclipse Ontology Definition Metamodel,

URL: http://wiki.eclipse.org/MDT-EODM
[12] Eclipse Modeling Framework,

URL: http://www.eclipse.org/modeling/emf/
[13] SAL model checker - URL: http://sal.csl.sri.com/
[14] SPIN model checker - URL: http://spinroot.com/
[15] Zhijung Zhang: Ontology Query Languages for the Semantic Web: A

Performance Evaluation - MsC Thesis
URL: http://www.cs.uga.edu/ jam/home/theses/

[16] Tim Kelly and Rob Weaver: The Goal Structuring Notation - A Safety
Argument Notation - in Proc. Dependable Systems and Networks 2004,
Workshop on Assurance Cases, July 2004


