
HAL Id: hal-00381949
https://hal.science/hal-00381949

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Making Formal Verification Amenable to Real-Time
UML Practitioners

Pierre de Saqui-Sannes, Ludovic Apvrille

To cite this version:
Pierre de Saqui-Sannes, Ludovic Apvrille. Making Formal Verification Amenable to Real-Time
UML Practitioners. 12th European Workshop on Dependable Computing, EWDC 2009, May 2009,
Toulouse, France. 3 p. �hal-00381949�

https://hal.science/hal-00381949
https://hal.archives-ouvertes.fr


Making Formal Verification Amenable to Real-Time
UML Practitioners

Pierre de Saqui-Sannes
CNRS ; LAAS ; 7 avenue du colonel Roche,

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS
F-31077 Toulouse, France

Email: pdss@isae.fr

Ludovic Apvrille
Institut Telecom / Telecom ParisTech / CNRS LTCI

2229, routes des Crêtes, B.P. 193
F-06904 Sophia-antipolis Cedex, France

Email: ludovic.apvrille@telecom-paristech.fr

Abstract—The TURTLE toolkit, or TTool for short, offers
a real-time UML front-end and a user-friendly interface to
simulation techniques and formal verification techniques such
as reachability analysis, observer-based analysis and traceability
matrices generation. TTool’s main strength is the total hiding
of formal languages to UML modelers, while offering formal
verification capabilities.

I. INTRODUCTION

Real-Time UML profiles extend the Unified Modeling Lan-
guage [1] with formal semantics, tools and methods that
answer real-time systems development needs. Real-time UML
tools designed as front-ends to formal verification tools, en-
able early checking of UML models against design errors.
The TURTLE Toolkit (TTool [2]) initially developed for the
TURTLE real-time UML profile [3] implements interfaces to
RTL [4], CADP [5] and UPPAAL [6] verification tools. TTool
additionally facilitates temporal requirement verification [7].
This paper presents the latest release of TTool - called TTool
version 0.91 - , discusses the way it hides formal languages and
verification tools to end users, and at last explains why formal
verification is made amenable to practitioners, in particular in
education context.
The paper is organized as follows. Section 2 introduces the
verification-centric method associated with the TURTLE UML
profile. Section 3 overviews TTool. Section 4 discusses how
the latest release of the tool offers user-friendly access to
formal verification. Section 5 concludes the paper.

II. TURTLE METHOD

TTool supports the seven-step, verification-centric method
that is recommended for the TURTLE modeling language.

1) Requirement capture. SysML requirement diagrams
[8] capture informal requirements as well as formal
temporal requirements. Timing diagrams are used to
formally express temporal requirements.

2) Use-case driven analysis. Use-cases expressed in use-
case diagrams are documented by scenarios (sequence
diagrams) structured by interaction overview diagrams.

3) Formal verification of analysis diagrams. In particular,
scenarios may be checked against temporal require-
ments.

4) Formal synthesis of design diagrams from analy-
sis ones. The system’s architecture is depicted by a
class/object diagram. Objects’ behaviors are described
by UML activity diagrams extended with temporal op-
erators: deterministic delay, non-deterministic delay, and
time-limited synchronization offer.

5) Object-oriented design. Class/objects and activity di-
agrams automatically generated in previous steps are
enriched.

6) Formal verification of design diagrams, particularly
against temporal requirements.

7) Rapid prototyping based on component and deploy-
ment diagrams. Objects defined at design step are first
organized into components which are themselves de-
ployed over execution nodes.

Note that step 4 is optional. Also, Step 7 is not addressed in
this paper. At last, we recommend implementing incremental
modeling, which assumes diagram enrichment loops from step
3 to step 2, and from step 6 to step 5, respectively.

III. TTOOL: THE TURTLE TOOLKIT

The open-source toolkit TTool supports several UML2 /
SysML profiles, in particular TURTLE [3] and DIPLODOCUS
[9]. The main idea behind TTool is that any model expressed
in a UML2 profile may be formally verified using RTL, CADP
or UPPAAL (see Figure 1). In practice, TTool translates UML
diagrams into an intermediate format expressed in a formal
language called TIF1, and invokes one of its code generators
to provide LOTOS, RT-LOTOS or UPPAAL code to CADP,
RTL or UPPAAL tool, respectively.

IV. FORMAL VERIFICATION

Unlike real-time UML tools that exclusively generate formal
code from design diagrams, TTool also enables formal verifi-
cation of analysis UML diagrams. Thus, someone unfamiliar
with object-oriented design may use TTool and apply formal
verification to use-case driven and scenario based analysis.
The rest of the section describes a verification approach that
indifferently apply to design or analysis diagrams of the
TURTLE profile. Those techniques also apply to other profiles
such as the DIPLODOCUS UML profile.

1TIF stands for TURTLE Intermediate Format



SysML
Requirements

Analysis Design Deployment CTTool Application

TURTLE Intermediate Format

Java / JMI UPPAAL RT-LOTOS LOTOS

 

TTool

 

Other UML profilesRequirements
(main contribution of 

the paper)

Formal 
verification

RTL CADPUPPAAL

Model-checking 
result (true, 

false).
Simulation 

trace

 

Minimization, 
bisimulation

(CADP)

Architecture 
and

Mapping

TURTLE UML Profile DIPLODOCUS

SystemC

Fig. 1. TTool: profiles and verification techniques

A. Reachability analysis

TTool has been interfaced to verification tools that
implement reachability analysis, a technique which computes
the set of stable states the system may reach from its initial
state. The rest of the paper assumes a reachability graph may
be computed in reasonable time.

CADP, a tool developed for an untimed version of LOTOS,
enables quick generation of reachability graphs; nevertheless,
temporal information of the original model is lost. Conversely,
RTL and UPPAAL take the temporal operators - including
non-deterministic temporal operators - of TURTLE models
into account.

TTool not only invokes a verification tool it has catered
with appropriate formal code, it also offers user-friendly
interfaces to exploit the reachability graphs computed by
CADP or RTL. Thus, TTool computes statistics on states and
transitions. It also identifies deadlocks as well as shortest and
longest paths in the graph. Also, TTool uses dotty to display
graphs. The latter contain identifiers that may not coincide
with the identifiers used in the TURTLE model. Therefore,
TURTLE provides a conversion table which allows one to
trace identifiers from TURTLE models to formal code and
reachability graphs.

In practice, it does not suffice to display a reachability
graph to decide whether some property is met or not.
The reachability graph of real-size systems may indeed have
millions of states and transitions. Logic-based model checking
and minimization are two complementary techniques offered
by TTool and its companion tools.

B. Model checking
TTool offers a user-friendly interface to check for logic

formulae (e.g. with UPPAAL). For example, to decide whether
some UML action is reachable or not, or to study the liveness
of that action, it suffices to right click on the corresponding
action’s symbol: The UPPAAL’s verifier is invoked with
corresponding CTL formulae, and the result of reachability
/ liveness properties is displayed. Temporal logic formulae in
CTL may also be entered directly in TTool.

C. Minimization of labeled reachability graphs
A reachability graph may be transformed into a Labeled

Transition System, a structure for which CADP implements
minimization techniques based on trace or observational equiv-
alences just to mention a few. Graph’s transitions associated
with synchronization actions are labeled by action’s name.
Other transitions are labeled by ”nil”. The minimization pro-
cess discards as much ”nil” transitions as allowed by the
equivalence relation and outputs a quotient automaton which
gives an abstract view of the system’s behavior.
Minimization particularly applies to communication architec-
ture validation. Given a protocol layer modeled in TURTLE,
a labeled reachability graph is generated (RTL, CADP) and
minimized by considering service primitives exchanges as
observable events. The minimization thus outputs a quotient
automaton of the service rendered by the protocol layer.

D. Observer guided verification of temporal requirements
An observer is a TURTLE object manually or automatically

[7] included in the TURTLE model of the system in order
to drive formal verification. Given an observer O checking
a TURTLE model against requirement R, O must behave as
follows: each time R is violated, a transition label in the
reachability graph must unambiguously identify R’s violation.



Quick search of requirement violation labels thus enables
identification of unmet requirements.
Observer-guided verification particularly applies to temporal
requirements expressed by extended timing diagrams [7]. The
tool not only synthesizes observers from temporal require-
ments: It also creates a two-column (requirement, met/unmet)
traceability matrix.

V. CONCLUSIONS

TTool offers real-time UML practitioners a user-friendly
interface to formal verification techniques. It has been used
in various projects and for education purpose. Unlike model
transformation tools such as Topcased [10], TTool falls in the
category of UML tools based on profiles.
A stable and open-source version of the tool is available
from [2]. Next version of the tool will include methodological
assistants [11] based on patterns. Links between TTool and
other model-checking toolkits are also under study.

REFERENCES

[1] O. M. Group, “UML 2.0 Superstructure Specification,” in
http://www.omg.org/docs/ptc/03-08-02.pdf, Geneva, 2003.

[2] LabSoc, “The TURTLE Toolkit,” in
http://labsoc.comelec.enst.fr/turtle/ttool.html.

[3] L. Apvrille, C. Lohr, J.-P. Courtiat, and P. de Saqui-Sannes, “TURTLE:
A Real-Time UML Profile Supported by a Formal Validation Toolkit,”
in IEEE transactions on Software Engineering, vol. 30, no. 7, July 2004,
pp. 473–487.

[4] “The RTL toolkit,” http://www.laas.fr/RT-LOTOS/index.html.en.
[5] “The CADP toolkit,” http://www.inrialpes.fr/vasy/cadp.
[6] “The UPPAAL toolkit,” http://www.uppaal.com/.
[7] B. Fontan, “Mthodologie de conception de systmes temps rel et distribus

en contexte UML/SysML,” in Doctorat de l’Universit de Toulouse dlivr
par l’Universit Paul Sabatier, January 2008.

[8] O. M. Group, “UML Profile for Systems Engineering, SysML, Ver-
sion 1.0,” in http://www.omg.org/cgi-bin/apps/doc?formal/07-09-01.pdf,
Geneva, Sept. 2007.

[9] L. Apvrille, “TTool for DIPLODOCUS: An Environment for Design
Space Exploration,” in Proceedings of the 8th Annual International Con-
ference on New Technologies of Distributed Systems (NOTERE’2008),
Lyon, France, June 2008.

[10] “Topcased project,” http://topcased.gforge.enseeiht.fr/.
[11] L. Apvrille and P. de Saqui-Sannes, “Adding a Methodological Assistant

to a Protocol Modeling Environment,” in Proceedings of the 8th Annual
International Conference on New Technologies of Distributed Systems
(NOTERE’2008), Lyon, France, June 2008.


