
HAL Id: hal-00381925
https://hal.science/hal-00381925

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Challenges in Adaptive Fault Tolerant Computing
François Taïani, Jean-Charles Fabre

To cite this version:
François Taïani, Jean-Charles Fabre. Some Challenges in Adaptive Fault Tolerant Computing. 12th
European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 3 p.
�hal-00381925�

https://hal.science/hal-00381925
https://hal.archives-ouvertes.fr

Some Challenges in Adaptive Fault Tolerant Computing
*

François Taiani Jean-Charles Fabre

Computing Dept.

Lancaster University

Infolab21

Lancaster, UK

 LAAS-CNRS ;

Université de Toulouse

INP-INSA-UPS-ISAE

Toulouse, France
 f.taiani,@lancaster.ac.uk jean-charles.fabre@laas.fr

Contact author: François Taiani, Computing Dept., Lancaster University, Infolab2, Lancaster, UK

Keywords: adaptive systems, reflection, component based software engineering

*
 This work has been partially supported by RESIST, Resilience in IST, the Network of Excellence n°026764, through an internal

project called ASAP (ASAP: AsseSsment-based AdaPtable Software Architecture for Dependability), and by the FP7 IST Project

DiVA (Dynamic Variability in complex, adaptive systems) n°215412.

1. Problem statement

As mission-critical computer-based systems grow in

size, they must provide increasing levels of flexibility

to address evolving requirements and cater for rapidly

changing operational conditions. In this context, dy-

namic adaptation appears as a powerful enabler to al-

low these systems to change while maintaining their

services, a key requirement in large long-running ap-

plications. Because they are mission-critical, these sys-

tems must also adapt to evolving threats, and be able to

react to changes in service priorities, which naturally

leads to the need for adaptive fault tolerance, a notion

formulated a decade ago [1]. Unfortunately, and in

spite of a number of pioneering works [2, 3, 4], adap-

tive fault tolerance remains a challenging and poorly

understood area, with a number of technological road-

blocks preventing wide industrial adoption.

One of the key challenges of adaptive fault tolerance
arises from the additional coupling that adaptation in-
troduces between the functional and non-functional
parts of a system. Over the past decade, a number of
approaches have been proposed to provide a clean
separation of concerns between a system’s functional
implementation (base level) and its fault-tolerance
mechanisms. Unfortunately, dynamic adaptation, both
at the functional and non-functional level, introduces
new interdependencies that cannot be handled by these
approaches. A change in the system’s functional archi-
tecture might for instance modify underlying assump-
tions about diversity, and hence require the fault-
tolerance to evolve. Or a change of fault-tolerance
mechanisms in a real-time system might consume
more resources, and hence require a change at the func-
tional level to insure the overall system still meets its
deadline. These interdependencies influence the rest of
the adaptation cycle, and must be captured by the on-

line operational monitoring to trigger reconfigurations.

This coupling also impacts the traditional defini-
tions of fundamental notions of fault tolerance, which
might either no longer apply, or only partially capture
reality. Especially, dynamic adaptation introduces new
hazards that are not covered by conventional fault mod-
els: Mismatches between subsystems, bad interpreta-
tion of meta-descriptions, obsolescence of software
modules may have at least as much impact as com-

monly currently considered faults.

Functional and non-functional adaptations are there-
fore linked, and this coupling must be understood and
controlled to provide a principled and robust develop-
ment approach for fully adaptive systems. This requires
the development of appropriate programming abstrac-
tions, mechanisms, and architectural guidelines to
support adaptive fault-tolerance across a wide range of

areas in a controlled and repeatable manner.

2. Approach

We contend that a solution to the above challenges
should focus on three key aspects: (i) separation of

concerns, (ii) programmability, and (iii) scope control.

Separation of concerns We argue for a three-tiered
separation, between (i) the functional level, (ii) fault-
tolerance, and (iii) adaptation itself. Only so can adap-
tation become a first-class entity and be reasoned about
in a well-defined manner. By recursion, this separation
can be extended by considering the adaptation of the
adaptation software itself. For instance, such a plat-
form could support monitoring and triggering mecha-
nisms that are deployable on the fly, or could allow
inference mechanisms to adapt their accuracy and re-

source footprint according to evolving constraints.

Programmability To foster wider adoption, adap-
tive fault-tolerance should be supported by a set of

well-structured and clearly organized high-level abstrac-
tions. We argue here for a declarative approach, that
would allow developers and fault-tolerance experts to
express the dependencies and requirements we have
mentioned in an appropriate domain-specific language.
This language should cover fault-tolerance assumptions
and needs (fault-model, failure unit, level of confine-
ments), as well as channels of interdependency between
the functional and non-functional levels (timeliness
constrains, shared resources, operational constrains).
Besides simplicity and expressiveness, a key challenge
of this approach resides in the mapping of this lan-
guage to an underlying fault-tolerance middleware that

supports the three levels of concerns discussed above.

Scope control proposed by Kiczales and Lamping

[5], this refers to the ability to operate small changes

with a small effort. We argue here for fine-grained

adaptation units, to encourage reuse, and support re-

source-constrained environments (e.g. embedded proc-

essors in mass-products such as cars). A fine-grained

approach will also result in a smoother adaptation

process, as only the parts of a fault-tolerant mechanism

that need to be adapted will be impacted. This is cru-

cial for continuous long-running systems that can nei-

ther afford downtimes nor provide the resources for

monolithic switchovers between two configurations.

3. Technologies, challenges and outlook

Dynamic software engineering, especially compo-
nent-based software development (CBSE) and reflec-
tive architectures are ideal candidates the support the
above three-fold approach. Reflection in particular is a
core technological enabler, thanks to its ability to per-
form on-the-fly operational modifications. Meeting the
challenges of adaptive fault-tolerance require however
that we go beyond the current state of the art in this
area by considering simultaneously how dynamic adap-
tation can be provided both at functional and fault tol-
erance levels, without endangering the subsequent in-
tegrity and consistency of the resulting system.

CBSE allows a decomposition into small compo-
nents that can easily be assessed operationally [6].
This appears as a necessary first step to then progres-
sively take into account distributed adaptation, using
the notion of component federation to help organise
coordination and support reasoning about distributed

adaptive fault tolerance mechanisms.

To use these technologies, a number of key chal-
lenges will have to be met:

• Design for adaptation: fault tolerance mechanisms

should be decomposed into fine-grained Lego-like

components that can be assembled on-line to realize

a given fault tolerance strategy;

• Mastering distributed state: run-time state will need

to be captured and mapped to different software con-

figuration in a consistent manner;

• Synchronisation of modifications: the component

architecture should be modeled and monitored on-

line to perform component updates without endan-

gering consistency and dependability;

• On-line assessment of system configuration parame-

ters and of the dependability of the whole software

system, including both application and fault tolerance

mechanisms, to trigger adaptation;

• Development of a resilient adaptation process able to

guarantee dependability properties during the modifi-

cation of the fault tolerance software.

On a longer term, the kind of adaptive fault-tolerance
we advocate opens up the prospect of proactive de-
pendable systems, i.e. systems that can tailor their
strategies according to predicted changes in their envi-
ronments and internal conditions (see for instance [7]).
Although adaptive fault tolerance will obviously be a
key building block of these systems, proactivity raises
a number of much larger challenges in terms of model-
ing, evaluation, and reasoning, which will all need to

be reconsidered in this new light.

4. References

[1] J. Goldberg, R. J. Stroud, “Adaptive Fault-Tolerant

Systems and Reflective Architectures”, LNCS no. 1357,

Proc. of the Workshop on Object-Oriented Technology

(ECOOP'97), Jyväskylä, Finland, pp. 80-88, June 1997.

[2] Y. J. Ren, D. E. Bakken, T. Courtney, M. Cukier, D. A.

Karr, P. Rubel, C. Sabnis, W.H. Sanders, R. E. Schantz,

and M. Seri, "AQuA: An Adaptive Architecture that

Provides Dependable Distributed Objects," IEEE Trans.

on Computer, vol. 52, pp. 31-50, 2003.

[3] T. A. Dumitras, D. Srivastava, and P. Narasimhan,

"Architecting and Implementing Versatile Dependabili-

ty," in Architecting Dependable Systems III, WADS, pp.

212, 2005.

[4] T. Pareaud, J.-C. Fabre, and M.-O. Killijian. "Componen-

tization of Fault Tolerance Software for Fine-Grain

Adaptation," in Proc of the 14th Pacific Rim Inter. Symp.

on Dependable Computing (PRDC'08), Taipei, Taiwan,

pp. 248-255, 2008.

[5] G. Kiczales and J. Lamping. “Operating Systems: Why

Object-Oriented?”, Proc. of the Third International IEEE

Workshop on Object-Orientation in Operating Systems,

pp. 25-30, 1993.

[6] G. Coulson, G. Blair, P. Grace, F. Taïani, A. Joolia, K.

Lee, J. Ueyama, T. Sivaharan. "A generic component

model for building systems software" ACM Trans. on

Computer Systems (TOCS) 26(1), pp. 1-42. 2008.

[7] A. Casimiro, P. Lollini, M. Dixit, A. Bondavalli and P.

Verissimo. “A framework for dependable QoS adaptation

in probabilistic environments”, Proc. of the 23rd ACM

Symp. on Applied Computing, (SAC'08), Fortaleza,

Ceara, Brazil, pp. 2192-2196, 2008.

