
HAL Id: hal-00381913
https://hal.science/hal-00381913

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of Early Error Detection for Handling
Degraded Modes of Operation

Thomas Robert, Jean-Charles Fabre, Matthieu Roy

To cite this version:
Thomas Robert, Jean-Charles Fabre, Matthieu Roy. Application of Early Error Detection for Handling
Degraded Modes of Operation. 12th European Workshop on Dependable Computing, EWDC 2009,
May 2009, Toulouse, France. 3 p. �hal-00381913�

https://hal.science/hal-00381913
https://hal.archives-ouvertes.fr

Application of Early Error Detection for
Handling Degraded Modes of Operation

Thomas Robert1,2, Jean-Charles Fabre1,2, Matthieu Roy1,2

1
LAAS-CNRS; Université de Toulouse

7 avenue du colonel Roche,

F-31077 Toulouse, France
2
Université de Toulouse; UPS, INSA, INP, ISAE ; LAAS ;

F-31077 Toulouse, France
{trobert, fabre, mroy}@laas.fr

Keywords: timed automata, monitoring for early detection, fault tolerance design pattern.

1. Introduction

Real-time software applications are in charge of maintain-

ing a timely and predictable interaction with their environ-

ment, being it hardware devices, or other software entities.

In this paper, we illustrate the use of early error detectors

(that we previously described in [1]), generated from timed

automata based specifications, in a recovery block-like

design pattern. This design pattern is enhanced with our

Early Error Detection service that allows triggering as soon

as possible error recovery mechanisms*.

2. The design pattern

We propose an extension of classical design pattern for

error detection and recovery in the context of real time sys-

tems. The recovery block design pattern, [2], consists of

one fault-tolerant component that can carry out a real time

service. The design pattern is defined as follows:

- The service is implemented in a recovery block con-

taining several sub-blocks called alternates in the

seminal paper. Each one delivers a service considered

as satisfactory. Each block execution is time bounded.

- A block is executed as long as no error is detected.

When an error is detected in a block, it triggers the

execution of a different sub-block.

- In addition to internal error detection services nested

in each block, the recovery block contains an accep-

tance test and alarms. Alarms are used to ensure

bounds on block execution time. The acceptance test

is the last barrier to prevent error propagation. It

checks if the blocks outputs are valid. This test is a

sort of oracle that each block should be able to pass.

In practice, the sub-blocks are degraded operational modes

corresponding to simpler activity with a degradation of the

service quality. This degradation is accepted as such de-

graded operational modes are easier to schedule as they can

* This work has been partially supported by RESIST, Resil-

ience in IST, the Network of Excellence n°026764

be executed faster. The faults that caused the errors already

observed in a mode should not be activated in any other

degraded mode. Thus, the acceptance test may be difficult

to implement as block behaviors may be very different.

We propose to extend this conventional design pattern with

behavioral models attached to each block. These models

will be used to generate detectors that raise error signals as

soon as the behavior of blocks do not correspond to their

specification, i.e., implementing Early Error Detection

(EED). Then block execution is interrupted and the next

block is activated. The figure below represents the structure

of such a fault tolerant component.

Figure 1 Design pattern for execution of degraded

 operational modes

As said in [2], the efficiency of such a design pattern highly

depends on the quality of the error detection services. We

will first provide a motivating example of the application of

Early Error Detection and then explain how it is integrated

in the design pattern.

3. Specification of real-time behaviors

The allowed behavior of each block is described via a

timed automaton [3]. Such automaton defines allowed exe-

cutions as a set of traces. These traces describe the se-

quences of allowed events with their timing constraints.

Liveness constraints are defined as conditions on the final

states in which the block is allowed to stop in the automa-

ton. A trace is valid if and only if a final state can be

reached when this trace is executed on the automaton. An

example of such timed automaton is provided in Figure 2.

By definition, the specification of this component is the set

of timed traces that are recognized by this automaton.

Intuitively, such an automaton has its transitions labeled

with events (e.g., release, end, etc.) and timing con-

straints. Timing aspects are handled using clocks. The

above example uses two clocks, x and y. Each transition has

three labels: an event, a guard, that is a logic formula on

clocks (e.g., x<20), and a set of clocks to be reset when the

transition is fired. A complete description of this formalism

can be found in [3].

4. Example specification

The automaton illustrated in Figure 2 corresponds to an

application that periodically checks if the position of a flap

should be changed given a value measured on a sensor.

Double circles represent final states, and the initial state is

marked with a disconnected arrow. Here, we consider a

periodic task that is constrained by a global deadline of 20

ms. The event release identifies the triggering of the task

within a period. It can only be accepted when the task is

already finished.

In the first step, the application reads a value on a sensor.

By design, this operation has been made time predictable at

the expense of locking the sensor for at least 10 ms. Thus,

the step 1 cannot be re-executed for the next 10 ms. The

second step consists of analyzing the sensed value to decide

whether the flap state should be changed. In these two

steps, the event chg identifies an important change in the

environment of the sensor, and triggers the re-execution of

these two steps.

Figure 2 Timed automaton based specification

The third step corresponds to the generation, if required, of

the state change of the flap.

Each step change is identified by an ending event, namely

CompleteS1, CompleteS2, and CompleteS3. A last

event, end, identifies the end of the processing.

5. Early Error Detection

In [1] we showed how to automatically derive from such an

automaton a detector that provides an early detection serv-

ice.

Definition: An error detector provides an early error de-

tection service for a specification S if and only if it pro-

duces an error event EEDS as soon as the observed trace

cannot be continued in a valid one, i.e., a final state can no

longer be reached, whatever happens next.

It is worth noticing that traditional simple greedy ap-

proaches that fire transitions when events occur cannot

provide early error detection service, i.e., are unable to de-

tect an error as soon as possible.

Such a service is implemented following the observer

worker architecture, [4], the detector being the observer,

and the block being the worker.

Figure 3 Illustration of Early Error Detection

To show why traditional algorithms cannot provide early

detection of errors, let us consider the execution scenario

depicted in Figure 3. Suppose that Step 1 has been delayed

and is completed 11 ms after the release event. By the

specification, the sensor cannot be reused for the next 10

ms. Now if a chg event is received, there is no way to ac-

commodate at the same time the deadline and the minimal

locking time of the sensor: Step 1 should be completed

within 20 time units from the release event whereas the

sensor cannot be reused before 21 time units from the same

release event. Thus, an error should be signaled. This ex-

ample shows why the timed automaton cannot be used as is

in the observer pattern, i.e., a basic lazy approach cannot

detect errors early. Notice that on the timed automaton the

transition chg is never explicitly disabled. Such a situation

often happens in complex models where the specification

aims at minimizing redundant constraints.

Our Early Error Detection framework pre-processes the

automaton off-line so that the observer used on-line cor-

rectly triggers an error as soon as possible, and in the exe-

cution scenario depicted above, just when Step 1 finishes

after 11ms.

6. Interest for handling degraded modes of op-

eration

To integrate Early Error Detection in the design pattern

described before, we use the special event EEDS to trigger

the “recovery transition” from one block to another, i.e.,

from one operational mode to another.

Following the example previously given, we show in

Figure 4 that the nominal mode of operation is triggered

first. According to the scenario explained in Figure 3, the

EEDnominal event is obtained at time 11ms. The event

triggers the execution of block B1 that is a weak

implementation of the flap control function. Several

degraded modes of operation can be defined, corresponding

to weaker and weaker implementations with stronger

timing constraints. The nesting of such degraded modes of

operation is possible when the remaining time allows it.

Thanks to the integration of the Early Error Detection ap-

proach in the design pattern, the remaining time for recov-

ery is optimal with respect to error situations.

The last block, here block B2 can thus be a stop of the sys-

tem in a pre-defined safety state, say placing the flap in

medium position in our example.

Finally, the implementation of the proposed approach im-

plies that all blocks in the pattern have a timed automaton

describing their expected behavior.

7. Concluding remarks

The main benefit of this approach is that tentative error

recovery can be triggered as early as possible. The EED

approach has been integrated into the Xenomai Real-Time

Programming Interface. In our current experiments, the

cost of early error detectors is reasonable, not in terms of

memory footprint, but in time overhead.

In the current state of the work, each block has independent

specification and thus timing constraints. It would be of

high interest to use hierarchical timed automata, [5], model-

ing the whole design pattern behavior. This means that the

whole set of possible blocks is part of a single model in

which global timing constraints can be defined. In this

model, one can easily identify the modeling of each block,

the transition between each block models being the EED
special event. The benefit here is that the block to be acti-

vated next can be selected according to the remaining time,

something that was not possible in the independent block

modeling approach.

Figure 4 Triggering degraded modes of operation

8. References

[1] Thomas Robert, Jean-Charles Fabre, Matthieu Roy,

"On-line Monitoring of Real Time Applications for

Early Error Detection", Pacific Rim International Sym-

posium on Dependable Computing, 2008, IEEE, pp.

24-31.

[2] B. Randel and J. Xu, "The Evolution of the Recovery

Block Concept," Software Fault Tolerance, M.R. Lyu,

ed., John Wiley & Sons, New York, 1995, chapter 1

[3] Alur, R. and D.L. Dill, "A theory of timed automata".

Theoretical Computer Science, 1994. 126: p. 183--235.

[4] M. Diaz, G. Juanole and J-P. Courtiat, "Observer-A

Concept for Formal On-Line Validation of Distributed

Systems", IEEE Transactions on Software Enginee-

ring, Volume 20 , Issue 12 (Dec’ 1994)

[5] Jin, X., Ma, H., and Gu, Z. "Real-Time Component

Composition Using Hierarchical Timed Automata". 7
th

international Conference on Quality Software, 2007,

p. 1-10.

