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Abstract. We propose an exact method which combines the resolutiocrsead branch & bound
algorithms for solving the 0-1 Multidimensional Knapsaadiotitem. This algorithm is able to prove
large—scale strong correlated instances. The optimaesadtithel0 constraint,500 variable instances
of theOR- Li br ar y are exposed. These values were previously unknown.

1 Introduction

In this article, we present a new exact method which hybeslithe resolution search of
Chvatal(1997 and a branch & bound algorithm inspired by a previous woskfi/imont et al.
(2009 for the 0—1 Multidimensional Knapsack Problem (01MKP).eTBLMKP is a well—-
known opitmization problem which can be viewed as a resoalloeation model and can be
stated as follows:

n

(P) Maximize > e (1)
j=1
subjectto Y “ayw; <b  i=1,..m 2)
j=1
z; € {0,1} j=1,..n (3)

wheren is the number of itemsy: is the number of knapsack constraints with capactijes
(i=1,2,...,m),ce N',; A e N™™ andb € N". Each itemy (j = 1,2, ..., n) yieldsc; units of
profit and consumes a given amount of resourgéor each knapsack

The proposed approach is centered on two main 01MKP reg{ijtthe consideration of
a reduced costs constraint based on the reduced costs gttiimaldty of the problem’s LP—
relaxation (se@alas and Martin(1980; Oliva et al.(2001) and (ii) the decomposition of the
search space in several hyperplane where the number oftitechsose is fixed at a given inte-
ger value (se&asquez and Ha(2001); Vimont et al.(2008). Our algorithm is self-sufficient
and does not require any lower bound as starting value. We gfai the structure of resolution
search enables to explore partially and iteratively défersubproblemshfperplanes with a
fixed number of itemsvhile keeping completeness. This way of exploration egbharthe di-
versification of the search and permits to improve the loveainial rapidly. For each hyperplane,
this lower bound, associated with the upper bourgh{er than the classical one given by the



LP—relaxatior), enforces the strength of the so—calledluced costs constraimidely used in
the algorithm. Roughly speaking, if we consider that thealdes are sorted in decreasing or-
der of their reduced costbdsic variables at the bottom of the isthe enumeration of the first
variables is carried out by resolution search where the enaitmon of the remaining variables
is tackled by our specific branch & bound. Our approach prabetthe optimality of all thel0
constraint500 variable instances. These optimal solutions were prelyaugknown.

2 Resolution search

Resolution search was proposed®ygvatal(1997) as an alternative to branch & bound for
mixed 0-1 linear programming problems. This approach, dasean original exploration of
the search space, uses the information brought by the lfatdyave occurred during the search
to progressively shrink the search tree. Each time a tetmotde is reached, a minimal partial
instantiation of the variables responsible for the faildentified. This partial instantiation,
which corresponds also to a terminal node, is then recordadpecific way in order to discard
the corresponding subtree from the search space and talpriing next node in the exploration.
The specificity of the recording mechanism allows the atharito preserve space memory
while keeping completeness.

Globally, resolution search is composed of two main elesiefif a set of partial instanti-
ations (denoted path-like family) corresponding to fails encountered during the search and
recorded as boolean clauses and (ii) an function caltest acl e which uses the information
brought by the family% to explore promising parts of the search space. From a partia
stantiationu(.%#) derived from.%, which is not an already explored instantiatiofst acl e
performs two different phases:

1. The waxing phashich replaces step by step the free componeq8); = = by 0 or 1
until a terminal node (denoted) is reached (a terminal node is a partial instantiation of
the variables which does not lead to any improvement of tisé koewn lower bound).

2. The waning phasehich tries to find a minimal elemestof {0, 1, x}" such thatS C u*
andS is a terminal node (formally, let andv be two vectors of0, 1, «}", we callu an
extensiorof v and we writew C v, if v; = u; whenevem; # x).

Once the minimal elemerst is identified, it is recorded in a specific way as a claus&inThe
structure of.%# enables both to guide the search toward prosimising paitiseo$earch space
and to guaranteed the completeness using the resolutidatatien principle. Indeed, if the
minimal elementS correspond to the instantiatidm, x, ..., %) then the best known solution is
an optimal soltion ofP. The algorithml. represents the functioResol uti on_Sear ch
which takes as parameter a lower bound (LB) of the problem.

3 General approach

The 01MKP is tackled by decomposing the problem in seveltgbsablems where the num-
ber of items to choose is fixed at a given integer value. Cenisig that.B is a lower bound
of the problem, we can defin€ = {z | A-x < b,c-x > LB+ 1,2 € {0,1}"} as the set of
feasible solutions strictly better than3 and consider the following problems:

P*: maximize{l -z |x € X} and P~ : minimize{l -z |z € X}

wherel is the vector of dimension with all its components equal to one afd= {z | A-x <
bc-x > LB+ 1,z € [0,1]"}. In what follows, we note)(P) the optimal value of a given



Figure 1: Resolution Search Algorithm
Resol uti on_Sear ch(LB)

try obst acl e(u,LB,S);
if(try > LB) LB =try;
add St o .7 and update7;
u=u(F),
i f((x%,..,%)€.%) Break;
}
}

problemP. Let ki, = [v(P7)] andk,e. = [v(P1)], then we have(P) = maz{v(Fy) |
kmin S k S kmam} where

Py : maximize{czx |z € X,1 -z = k}.

Solving the 01MKP by tackling separately each of the sublgrab P, for k = k,.in, ..., kmaz
appeared to be an interesting approaémsfuez and Ha(2001); Vasquez and Vimon{2005;
Vimont et al.(2009) particularly because the additional constraint £ = k) provides tighter
upper bounds than the classical LP—relaxation. This apprtakes also into consideration a
constraint based on the reduced costs of the non—basidblesialet us consider the upper
boundU B = ¢ - z, wherez is the optimal solution of the LP—relaxation. Lebe the vector of
the reduced costs and the indexes of the non—basic variables. If we know a lowenblduB

€ N of the problem, then each better solutiomust satisfy the following constraint:

> lglei+ D> gl —=;) <UB-LB 4)

JEN|Z;=0 JEN|Z;=1

(the reader is referred ®alas and Martir§1980); Oliva et al.(2001) andVimont et al.(2008
for more details on the subject). The use of the constréd)nt(so called theeduced costs con-
straint is twofold: (i) it enables us to identify the unfeasibilifyith respect to the constraint
c-x > LB + 1) of some partial solutions and (ji) it allows us to fix thoseiablesz; with
lc;/ > UB — LB at their optimal valuer;. Both the tight upper bound and the good lower
bound enhance the efficiency of the reduced costs constraint

To summarize, our approach consists of decomposing thelssaace in several hyperplanes
then solving the LP-relaxation for each one in order to gateethe reduced costs constraint.
The exploration is then carried out partially and iterdinfer each hyperplane with resolution
search until all the search space is explored.

Indeed, thanks to the structure of resolution seaftban be solved by progressively explor-
ing each of the hyperplanes (z = k£, £ € N). Let CFam | y[ k] be the family of clauses
associated to resolution search for the subproliferiit each step of the seardi-am | y[ £]
provides all the information about the state of the searbh:términal nodes recorded at this
stage and the next node to explore. It is possible to exeounte gerations of resolution search
at a givenP,, then continue to anothe?,, and go on with the subprobleid. again without
any loss of information. The algorithd detail thel t er at i ve_RS algorithm which corre-
sponds to resolution search limited to a given number chitens and the algorithi@ shows



the hyperplane exploration usihg er at i ve_RS. This way of exploration enforces the diver-
sification and the convergence of the search. Note thatgoriéhm 3, gr eedy is a simple
greedy function used for providing a first lower bound.

Iterative.RS(Nb_Iter, LB, .%) LB = greedy();
{ Conput e the bounds k. and knae;
iter = 0; Set K = {kminy ---» Kmaz: }
while(iter < No_lter) { for(k=rkmin;k < kmaz; k++)
try = obstacl e( u(%),LB,S); CFam ly[k] =0
if(try > LB) LB = try; While (K#0) do{
add St o .7 and update7; Choose k€ K;
i f((xx%,..,%) €F) Break; Choose No_lter k >1;
iter++; Iterative_RS(Nb.iter k, LB, CFam | y[ k]);
} if((kx,...,x)€ CFRam ly[k]) K=K -{k};
} }
Figure 2: Iterative resolution search Figure 3: Hyperplanes exploration

4 Resolution search and branch & bound combination

In this section, we detail the exploration functiobst acl e embedding the branch &
bound algorithm.

Starting with the nodex(.#) given by the path-like family#, obst acl e replaces step—
by-step the componentsof «(.%#) by 0 or 1 which constructs the nodeé. If «* is a terminal
node, the function provides a minimal claussuch thatS C «* andS is a terminal node. Our
implementation obbst acl e is based on the reduced—costs constrdijpfesented in section
3. At the beginning of the procedure, the LP-relaxation of pheblem is solved for each
available hyperplane in order to give us the informatiordeekfor the reduced costs constraint.
Thenobst acl e proceeds to the following steps:

e The first step, callectonsistency phaseonsists of checking the feasibility of.%).
Initially, we define a valugap = UB — LB. If a constraint is violated, the descent phase
stops and the corresponding partial instantiation is aEmbas the clausg in .%. At the
same time, the reduced costs constradhig checked and theap value is updated: for
each non—basic variable set at the opposite of its optimtaé\& — z,), its reduced costs
(¢;) is subtracted from the gap. If it happens thap < 0 then the current partial solution
is a terminal node. In this casg,is only composed of the variables set at the opposite of
their optimal value in:(.7).

o If u(.%) is feasible, we go to the next step which we aalplicit waning phase This
phase consists of branching on all the remaining free vimsakith a reduced cost greater
thangap. Those variables must be fixed at their optimal value fosgatig the reduced
costs constraint4). The branching decisions taken in this phase are just secoiesce
of the instantiated variables ir(.%). Consequently they can be removed frém

e Then the algorithm starts the so—calledxing phasavhich consists of assigning values
to free variables. The chosen strategy is to select the figable with the greater abso-
lute reduced cost value and to assign its optimal valu® it. Obviously, each time a
branching is done, the feasibility of the current partidusion is verified and in case of
fail, the waxing phase stops and the corresponding clausedded to#. Note that the
variables set in the implicit waning phase are still not talgo account inS.



e Once the number of remaining free variables is less than valeg a given number
spb_si ze, the waxing phase stops and the corresponding subproblsaivisd with a
branch & bound algorithm. This subproblem includes the fregables with the lowest
reduced cost and the basic variables. Obviously, since ridwech & bound algorithm
explores the whole subtree corresponding to these vasiahie clausé does not contain
any branching choices made during this phase. Only the bragdecisions taken during
the consistency phas#d/orthe waxing phase are considered.

e The algorithm used to enumerate the variables with the loreesiced cost, and the basic
variables, is widely inspired by a previous one publishedvbyont et al. (2008. As
it is represented in figuré (which summarizes the exploration process), this algarith
embeds a specific Depth First Search (dfs) procedure fomgpdmall subproblems with
the last20 variables.

resolution
search

b&b
] ¢ dfs

Figure 4: Global view of the exploration process of an hytarg

5 Computational results

Our algorithm has been experimented on the well known ORaljbset of 01LMKP instances
proposed byBeasley(1990. Each instance of this set is denotedrch_r wherem is the
number of constraints; the number of variables andthe instance’s number. The 01MKP
OR-Library benchmark is composed®f10 and30 constraint instances ard0, 250 and500
variables instances. There @eet 0f30 instances with each x m combination.

We obtained better proof time than the exact published smwes oflames and Nakagawa
(2009, Vimont et al. (200§ and the commercial software CPLEX 9.2, for th& constraint,
250 variable instances and thHeconstraint,500 variable instances. We observed also that
for the 5 constraint,500 variable instances, the times required for obtaining th&t Belu-
tions are clearly better than the ones provided by the beswkrheuristics on these instances
(Vasquez and Vimon2005 andWilbaut and Hanaff2008). Moreover, our algorithm proved
the optimality of all the cb10.500 instances. The corresjpomn optimal values, which were
previously unknown, are exposed in tallle The columnz°?t is the optimal value of the in-
stanceppt. (h)is the time in hours required for obtaining the optimal vedne proof (h) is the
time in hours for proving the optimality of the valug’’. The columnz°?* — 2 corresponds to
the gap between the optimal value and the previously bestksolution: (vv) indicates that
z was first found byasquez and Vimon2005 and (wh) indicates that was first found by
Wilbaut and Hanaf(2008.



Instance 2Pt opt. () proof () 2°P* —z || Instance PR opt. (s) proof (h) 2Pt — »
cb10.5000 117821 24,5 567,2 +10(w) cb10.50015 215086 0 43,9 0
cb10.5001 119249 68,4 272,9 +17(w) cb10.50Q16 217940 13,4 36,1 a
cb10.5002 119215 18,6 768,3 Q| cb10.50017 219990 150,8 348,8

cb10.5003 118829 47,4 89,6 +4l(wh) cb10.50018 214382 12,7 57,8 +7(w)
cb10.5004 116530 86,1 2530,3 +16(wh) cb10.50019 220899 0,2 21,3 q
cb10.5005 119504 2,3 188 0| cb10.50020 304387 6,6 8,2 q
cb10.5006 119827 2,7 128 0| cb10.50021 302379 0 8,4 0
cb10.50Q7 118344 161,7 179,6 +11(wh) cb10.50022 302417 67,2 105,5  +1(wv)
cb10.5008 117815 86,3 219,9 Q| cb10.50023 300784 0,9 3,8 q
cb10.5009 119251 3,1 354,9 Q| cb10.50024 304374 0,1 16,8 q
cb10.50010 217377 0 515,8 g| cb10.50025 301836 29,7 30,9 a
cb10.50011 219077 0,5 437,6 Q| cb10.50026 304952 0 18,5 0
cb10.50012 217847 0 55 0| cb10.50027 296478 1,1 9,3 q
cb10.50013 216868 0 104,4 Q| cb10.50028 301359 8,1 39,1 Qq
cb10.50014 213873 59,4 1382,1 +14(wv) cb10.50029 307089 1,2 4,4 q

Table 1: Results obtained on tihé constraint500 variable instance of théR- Li br ary

6 Conclusion

Although our implementation of resolution search is quateffom the original one proposed
by Chvatal, especially because we have exploited spetifictares of the 01MKP (hybridiza-
tion with branch & bound].z = k hyperplane decomposition, reduced cost constraint torgene
ate implicitly the partial instantiations responsible fioe fails, etc.), we showed that resolution
search is a promising framework for designing efficient atpms. Since the proof times are
long for the10 constraint,500 variable instances, we plan to improve again our algorithm i
order to accelerate the resolution process in the hope obenelpsing the OR-Library 01MKP
benchmark by solving the 60 last 30 constraint 250/500 k&iestances.
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