N
N

N

HAL

open science

Fault Tolerant Middleware for Agent Systems: A
Refinement Approach

Linas Laibinis, Elena Troubitsyna, Alexei Iliasov, Alexander B. Romanovsky

» To cite this version:

Linas Laibinis, Elena Troubitsyna, Alexei Iliasov, Alexander B. Romanovsky. Fault Tolerant Middle-
ware for Agent Systems: A Refinement Approach. 12th European Workshop on Dependable Comput-

ing, EWDC 2009, May 2009, Toulouse, France. 7 p. hal-00381724

HAL Id: hal-00381724
https://hal.science/hal-00381724
Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00381724
https://hal.archives-ouvertes.fr

Fault Tolerant Middleware for Agent Systems:
A Refinement Approach

Linas Laibinis, Elena Troubitsyna
Abo Akademi University, Finland
{Linas.Laibinis,Elena.Troubitsyna}@abo.fi

Alexei Iliasov, Alexander Romanovsky
University of Newcastle upon Tyne, UK
{Alexei.lliasov,Alexander.Romanovsky }@ncl.ac.uk

Abstract—Agent technology offers a number of advantages
over traditional distributed systems, such as asynchronous com-
munication, anonymity of individual agents and ability to change
operational context. However, it is notoriously difficult to ensure
dependability of agent systems. In this paper we present a
formal approach for the top-down development of fault tolerant
middleware for agent systems. We demonstrate how to develop
the middleware that besides providing agent coordination is also
able to cope with their failures. We focus on handling agent
crushes and transient faults caused by volatile communication
environment. We argue that formal development of middleware
with integrated fault tolerance mechanisms has potential to
enhance dependability of an agent system.

Index Terms—middleware, formal development, fault toler-
ance, refinement

I. INTRODUCTION

Mobile agent systems are complex decentralised distributed
systems composed of agents asynchronously communicating
with each other. Usually agents — computer programs acting
autonomously on behalf of a person or organisation [11]
and implementing autonomous communicating functionality
— are designed independently from each other by different
developers. The agent technology naturally solves the problem
of partitioning complex software into smaller parts that are
easier to analyse, design and maintain. Currently mobile agent
systems are rapidly spreading into business- and safety-critical
domains. However, complexity caused by openness, mobility,
dynamic and distributed nature of such systems poses a serious
challenge to ensuring system dependability. Therefore, there
is clear need for structured rigorous approaches for designing
dependable agent systems.

In this paper we present a formal approach to developing
fault tolerant middleware for agent system. We demonstrate
how to formally specify and develop by refinement middleware
that provides support not only to normal agent activities but
also handles agent crushes, temporal agent disconnections,
cooperative work of agents during error recovery etc. We
demonstrate that by developing system by refinement in Event
B [2] we can introduce fault tolerance mechanisms into the
system specification in a structured way. Formal verification
allows us to guarantee such essential properties, e.g., as
termination of error recovery. We argue that rigorous model-

driven development by refinement in Event B enables formal
verification of complex fault tolerant agent systems and hence
allows the developers to enhance system dependability.

II. CAMA SYSTEMS

In this paper we model middleware supporting CAMA (Con-
text Aware Mobile Agent) systems [3], [8]. The CAMA inter-
agent communication is based on the LINDA paradigm [7],
which provides a set of language-independent coordination
primitives that can be used for coordination of several inde-
pendent agents. These primitives allow agents to put tuples
(vectors of values) in a shared tuple space, remove them from
it, and test the shared space for tuple presence.

The major contribution of CAMA is a novel mechanism
to structure inter-agent communication, allowing groups of
communicating agents to work in isolated subspaces called
scopes. A scope is a dynamic container for tuples. The
tuples contained within a scope are visible only to the agents
participating in this particular scope. Hence, a scope provides
an isolated coordination space for its agents.

Besides isolation of a communication space, scopes also
provide a basis for dynamic type-checking of multi-agent ap-
plications. More precisely, each agent carries special attributes
describing the functionality it implements. Such an abstract
description of agent functionality is called role. Each role is
associated with some abstract scope model and the scoping
mechanism permits collaboration between agents playing com-
patible roles. An agent might implement a set of roles and can
also take several roles within the same or different scopes.

In its turn, a location is a container for scopes. In addition
to supporting scopes as the means of agent communication,
locations may also offer support for logical mobility of agents,
hosting of an agent or an agent backup.

Finally, platform provides an execution environment for
agents. It is composed of a virtual machine for code execution,
networking support, and client middleware for interacting with
a location.

A typical behaviour of an agent can be described as follows:
an agent connects to a location and then joins an existing
scope. In a scope it can cooperate with agents participating in
the same scope. When an agent leaves the scope, it either joins

another scope or disconnects from the location. To support
this behaviour the CAMA middleware provides three categories
of operations: location engagement, scoping mechanism, and
communication. The communication operations implement
the standard LINDA [7] coordination paradigm. The location
engagement operations associate or disassociate an agent with
a location. The scoping mechanism operations allow an agent
to enquiry for available scopes, create new scopes, destroy
previously created scopes, join and leave existing scopes.
Agents systems operate in volatile error-prone communica-
tion environment. Hence CAMA middleware should be able
to handle not only normal agent activities but also deal with
agent failures. This includes tolerating transient faults caused
by temporal agent disconnections, agent crushes, maintaining
correct operation within scopes during error recovery etc.
Obviously, such a complex behaviour should be modelled and
verified in a structured and rigorous way. Next we briefly
present Event-B — our framework for formal modelling and
development of fault tolerant CAMA middleware.

III. FORMAL MODELLING AND REFINEMENT IN EVENT B

The Event B framework [2] extends the B Method [1]
to enable development of distributed, parallel and reactive
systems. Tool support available for Event B — Atelier B [4]
— provides us with the facilities to specify a system, verify
it and formally develop by stepwise refinement Atelier B
uses theorem proving as a main verification technique. It has
achieved a high degree of automation in generating proofs
and discharging them while verifying correctness of system
specification and refinement. This improves scalability of
formal modelling and speeds up development.

B adopts the top-down approach to system development.
The development starts from creating a formal system specifi-
cation. A formal specification is a mathematical model of the
required behaviour of a system, or a part of a system. In B, a
specification is represented by a collection of modules, called
Abstract Machines. The Abstract Machine Notation (AMN), is
used in constructing and verifying them. An abstract machine
encapsulates a state (the variables) of the machine and provides
operations on the state. A simple abstract machine has the
following general form:

MACHINE AM

SETS TYPES
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS

The machine is uniquely identified by its name AM. The
state variables of the machine, v, are declared in the VARI-
ABLES clause and initialised in INIT as defined in the
INITIALISATION clause. The variables in B are strongly
typed by constraining predicates of the machine invariant /
given in the INVARIANT clause. The invariant is usually
defined as a conjunction of the constraining predicates and

the predicates defining the properties of the system that
should be preserved during system execution. All types in
B are represented by non-empty sets. Local types can be
introduced by enumerating the elements of the type, e.g.,
TYPE = {elementl,element2,...}, or by defining them
as subsets of already existing types or sets.

The events specified in the EVENTS clause define the
dynamic behaviour of the system. The events are atomic
meaning that, once an event is chosen, its execution will run
until completion without interference. An event is defined as
follows:

E = WHEN g THEN S END

where the guard g is a predicate over the state variables v,
and the body S is a B statement specifying how v are affected
by execution of the event.

Several events can be grouped together in an array of events.

AE = ANY ¢ WHERE C(i) THEN S END

where i is a list of local distinct indices, C(i) is a list of array
conditions, and § is the body of the event.

The occurrence of events represents the observable be-
haviour of the system. The guard defines the conditions under
which the body can be executed, i.e., when the event is
enabled. If several events are enabled simultaneously then one
of them is non-deterministically chosen for execution. If no
event is enabled (the guard of each event evaluates to false)
then the system deadlocks, i.e., stops its execution.

B statements that we will use to describe the body of the
events have the following syntax:

S == x :=e | IF cond THEN S1 ELSE S2 END |

z : T | ANY - WHERE Q THEN S END |
S1352]S1]82] ...

The first three constructs - an assignment, a conditional state-
ment and sequential composition have the standard meaning.
Sequential composition is disallowed in abstract specifications
but permitted in refinements. The remaining constructs allow
us to model non-deterministic or parallel behaviour in a
specification. Usually they are not implementable so they have
to be refined (replaced) with executable constructs at some
point of program development. We use two kinds of non-
deterministic statements - the non-deterministic assignment
and the non-deterministic block. The non-deterministic as-
sighment x T assigns the variable x an arbitrary value
from the given set (type) 7. The non-deterministic block
ANY z WHERE @ THEN S END introduces the new local
variable z which is initialised (possibly nondeterministically)
according to the predicate Q and then used in the statement
S. Finally, S1 || S2 models parallel (simultaneous) execution
of S1 and S2 provided S1 and S2 do not have a conflict on
state variables. The special case of the parallel execution is a
multiple assignment which is denoted as z,y := el,e2.
The B statements are formally defined using the weakest
precondition semantics [5]. The weakest precondition seman-
tics provides us with a foundation for establishing correctness

of specifications and verifying refinements between them. For
instance, we verify correctness of specification by proving that
initialization and all events establish the invariant.

The basic idea underlying formal stepwise development
by refinement is to design the system implementation grad-
ually, by a number of correctness preserving steps, called
refinements. The refinement process starts from creating an
abstract, albeit unimplementable, specification and finishes
with generating executable code. The intermediate stages yield
the specifications containing a mixture of abstract mathemati-
cal constructs and executable programming artifacts. At each
refinement step we define a gluing invariant that connects state
spaces of more abstract and more concrete models. We use a
gluing invariant to verify correctness of refinement, i.e., to
prove that each refined model adheres to the more abstract
one.

In general, a refinement process can be seen as a way
to reduce non-determinism of the abstract specification, to
replace abstract mathematical data structures by data structures
implementable on a computer, and, hence, gradually introduce
implementation decisions.

Next we discuss modelling and refinement of the CAMA
middleware using the Event B formalism.

IV. FORMAL SPECIFICATION OF AGENT SYSTEMS
A. The System Approach to Modelling Agent Systems

In this paper we demonstrate formal development of CAMA
middleware. We focus on developing a part of CAMA middle-
ware supporting activities of an agent in a location, though
the part of middleware supporting inter-location activities can
also be developed using our approach.

Our development starts from an abstract specification given
in the machine Cama, which models the entire agent system,
i.e., the agents and the location together. By adopting such a
systems approach we can define the essential properties of the
overall agent system, derive the properties to be satisfied by a
location and each agent, and ensure that they are preserved in
the agent and location development, i.e., we can address the
problem of ensuring interoperability of agents.

The variable agents represents the set of agents that joined
the location. The operations Engage and Disengage model
joining and leaving the location correspondingly. While an
agent is in the location, it performs some computations, as
modelled by the operation NormalActivity. To express that
these computations are performed locally within the agent
and hence do not affect the abstract state of the system, we
model them by the statement skip.

MACHINE Cama
SETS Agents
VARIABLES agents
INVARIANT agents C Agents
INITIALISATION agents:= ()
EVENTS
Engage = ANY aa WHERE aa € Agents N aa & agents
THEN agents := agents U {aa} END;
NormalActivity = ANY aa WHERE aa € Agents A\ aa € agents

THEN skip END ;
Disengage = ANY aa WHERE aa € Agents N\ aa € agents
THEN agents := agents - {aa} END
END

We aim at creating a methodology enabling systematic
integration of the fault tolerance mechanisms into the devel-
opment of CAMA systems. The most typical faults that these
systems encounter are temporal losses of connection, which
can cause failures of communication between cooperating
agents or between an agent and the location.

In our initial specification we abstracted away from explicit
modelling of the system behaviour in the presence of faults.
Although, the result of failure — disengagement of an agent
from the location — is implicitly modelled in the operation
Disengage. In our first refinement step we introduce an explicit
representation of the system behaviour in the presence of
temporal losses of connection.

Let us observe that in most cases an agent loses connection
only for a short period of time. After connection is restored,
the agent is willing to continue its activities virtually unin-
terrupted. Therefore, after detecting a connection loss, the
location should not immediately disengage the disconnected
agent but rather set a deadline before which the agent should
reconnect. If the disconnected agent restores its connection
before the deadline then it can continue its normal activity.
However, if the agent fails to do it, the location should
disengage the agent.

Such a behaviour can be adequately modelled by the time-
out mechanism. Upon detecting a disconnection the location
activates a timer. If the agent reconnects before the timeout
then the timer is stopped. Otherwise, the location forcefully
disengages the disconnected agent. To model this behaviour,
in the first refinement step we introduce the variable timers
representing the subset of agents that have disconnected but
for which the timeouts have not expired yet. Moreover, we
introduce the variable ex_agents to model the subset of
agents that missed their reconnection deadline and should be
disengaged from the location. Finally, we add the new events
Disconnect, Connect and Timer to model agent disconnection,
reconnection and timeout correspondingly.

To ensure that the refined system does not introduce ad-
ditional deadlocks, we define the variant, which constrains
the number of successive disconnections and reconnections.
The constant Disconn_limit defines the maximal number
of successive disconnections. The variable disconn_limit
obtains the value Disconn_limit in the initialisation. Each
newly introduced event decreases the value of the variant either
by decreasing the value of disconn_limit (when an agent
disconnects) or by removing elements from the set timers
(when a disconnected agent either reconnects or misses the
reconnection deadline). The value of the variant is restored by
executing the NormalActivity event.

In our specification we assume that an agent failure due to
the loss of connection is detected by the location. However,
an agent might by itself detect an error in its functioning and
leave the location. Therefore, the agent might get disengaged
from the location due to the following three reasons:

o because it has successfully completed its activities in the
location,

o due to the disconnection timeout,

« due to a spontaneous failure detected by the agent itself.

In the refined specification given in the machine Camal
below, we model all these different types of leaving by splitting
the operation Disengage into three corresponding operations:
NormalLeaving, TimerExpiration and AgentFailure.

REFINEMENT Camal
REFINES Cama
CONSTANTS Disconn_limit
PROPERTIES Disconn_limit € NAT A Disconn_limit > 1
INITIALISATION

agents := 0 || timers == ||

ex_agents = () || disconn_limit := Disconn_limit
VARIABLES agents, timers, ex_agents, disconn_limit
INVARIANT

timers C agents N\

ex_agents C agents A\

timers N ex_agents = () A

disconn_limit € NAT
VARIANT

card(timers) + 2*disconn_limit

EVENTS

Engage = ANY aa WHERE aa € Agents N aa ¢ agents
THEN agents := agents U {aa} END;

NormalActivity = ANY aa WHERE aa € agents
THEN disconn_limit := Disconn_limit END;

NormalLeaving ref Disengage = ANY aa WHERE
(aa € agents) N\ (aa & timers) N (aa & ex_agents)
THEN agents = agents - {aa} END;

TimerExpiration ref Disengage = ANY aa WHERE
(aa € agents) N (aa € ex_agents)
THEN agents := agents - {aa} ||
ex_agents = ex_agents - {aa} END;

AgentFailure ref Disengage = ANY aa WHERE
(aa € agents) A (aa & timers) N (aa & ex_agents)
THEN agents := agents - {aa} END;

Connect = ANY aa WHERE (aa € agents) N\ (aa € timers)
THEN timers := timers - {aa} END;

Disconnect = ANY aa WHERE
(aa € agents) N\ (aa & ex_agents) A (aa & timers) N\
disconn_limit > 1
THEN timers := timers U {aa} ||
disconn_limit := disconn_limit - 1 END;

Timer = ANY aa WHERE (aa € agents) N (aa € timers)
THEN ex_agents = ex_agents U {aa} ||

timers := timers - {aa} END
END

The refined specification Camal is a result of refinement of
the abstract specification Cama. This refinement step allowed
us to introduce both error detection and error recovery into
the system specification. Hence, already at a high level of
abstraction we specify fault tolerance as an intrinsic part of
the system behaviour.

B. Introducing Scoping Mechanism

In the abstract specification and the first refinement step
we mainly focused on modelling interactions of agents with
the location. Our next refinement step introduces an abstract
representation of the scopes as an essential mechanism that
governs agent interactions while they are involved in cooper-
ative activities.

The creation of a scope is initiated by an agent, which
consequently becomes the scope owner. The other agents
might join the scope and become engaged into the scope
activities. The agents might also leave the scope at any instance
of time. The scope owner cannot leave the scope but might
close it (this action is not permitted for other agents). When the
scope owner closes the scope, it forces all agents participating
in the scope to leave.

The introduction of the scoping mechanism also enforces
certain actions to be executed when an agent decides to leave
a location. Namely, to leave the location an agent should first
leave or close (if it is the scope owner) all the scopes in which
it is active.

The scoping mechanism has deep impact on modelling error
recovery in agent systems. For instance, if the scope owner
irrecoverably fails, then, to recover the system from this error,
the location should close the affected scope and force all
agents in this scope to leave.

We refine the machine Camal to specify the scoping mech-
anism described above. In the refinement machine Cama2, we
introduce the variable scopes, which is defined as a relation
associating the active scopes with the agents participating in
them. Moreover, we add the variable sowner to model scope
owners. It is defined as a total function from the active scopes
to agents.

We define the new events Create, Join, Leave and Delete
to model creating a scope by the owner, joining and leaving
it by agents, as well as closing a scope. In the excerpt! from
the refinement machine Cama2, we demonstrate the newly
introduced variables and events as well as the effect of the
refinement on the events AgentFailure and TimerExpiration.
The guard of the event NormalLeaving is now strengthened to
disallow an agent to leave the location when it is still active
in some scopes.

REFINEMENT Cama?2
REFINES Camal

SETS ScopeName
CONSTANTS ScopeLimit

'In this paper we are not presenting the B specifications in full length. The
complete development can be found at [14].

PROPERTIES ScopeLimit € NAT1

DEFINITIONS activeAgent(aa) == (aa & ex_agents \ aa & timers)

VARIABLES ...

INVARIANT
scopes € ScopeName «— agents /\

, scopes, sowner, slimit

sowner € ScopeName —+ agents N\
dom(sowner) = dom(scopes) N\
sowner C scopes N\
slimit € NAT

VARIANT slimit

EVENTS

Create = ANY aa, nn WHERE
(aa € agents) N (activeAgent(aa)) N\
(nn € ScopeName) N (nn & dom(scopes)) N\
slimit > 0
THEN
CHOICE
scopes, sowner =
scopes U {nn — aa}, sowner U {nn — aa}

OR skip END ||
slimit := slimit - 1
END;

Join = ANY aa, nn WHERE
(aa € agents) N (activeAgent(aa) N\
(nn € dom(scopes)) N\ ((nn — aa) & scopes) N\
slimit > 0
THEN
CHOICE
scopes := scopes U {nn — aa}
OR skip END ||
slimit := slimit - 1
END;

Leave = ...
Delete ...
NormalLeaving = ...

TimerExpiration = ANY aa WHERE
aa € agents N\ aa € ex_agents
THEN
agents = agents - {aa};
scopes := scopes & {aa};
scopes := sowner ~* [{aa}] < scopes;
ex_agents = ex_agents - {aa};
sowner = sowner & {aa}
END;

AgentFailure = ANY aa WHERE
aa € agents N\ activeAgent(aa)
THEN
agents = agents - {aa};
scopes := scopes & {aa};
scopes = sowner ~' [{aa}] < scopes;
sowner := sowner & {aa}
END

END

Here R—! denotes relational inverse for a given relation R,
a +— b is mapping between elements a € Aand b€ B,U<R
is domain subtraction for a given relation R and a set U (i.e.,
all pairs in which the first element belongs to U are removed
from R), and R & U is range subtraction correspondingly.

Let us observe that an agent does not always successfully
create or join a scope. This is modelled by the skip statements
in bodies of operations Create and Join. This might be caused
by an attempt to join the scope with an incorrect role, as will
be elaborated at the later refinement steps.

Termination of the added new events Create, Join, Leave
and Delete is guaranteed by introducing the new variable
slimit, which serves as the variant expression for the new event
operations. As in the previous refinement step, the value of the
variant expression is reset in the NormalActivity event.

This refinement step resulted in introduction of the general
representation of the scoping mechanism in the system speci-
fication.

C. Introducing Error Recovery by Refinement

In our current specification the event AgentFailure treats any
agent failure as an irrecoverable error. Indeed, upon detecting
an error, the failed agent is removed from the scopes in which
it participates and then disengaged from the location. However,
usually upon detecting an error the agent at first tries to recover
from it (possibly involving some other agents in the error
recovery). If the error recovery eventually succeeds, then the
normal operational state of the agent is restored. Otherwise,
the error is treated as irrecoverable.

In our next refinement step, we introduce error recovery
into our specification. We define the the variable astate to
model the current state of the agent. The variable astate can
have one of three values: OK, RE or KO, designating a fault
free agent state, a recovery state, and an irrecoverable error
correspondingly. We introduce the event AgentRecoveryStart,
which is triggered when an agent becomes involved in the
error recovery procedure. Observe that AgentRecoveryStart
implicitly models two situations:

o when an agent itself detects an error and subsequently
initiates its own error recovery,

« when an agent decides to become involved into cooper-
ative recovery from another agent failure.

In both cases the state of the agent is changed from OK to
RE.

The event AgentRecovery abstractly models the error recov-
ery procedure. Error recovery might succeed and restore the
fault free agent state OK, or continue by leaving an agent
in the recovery state RE. Finally, error recovery might fail,
as modelled by the event AgentRecoveryFailure. The event
AgentRecoveryFailure enables the event AgentFailure, which
removes the irrecoverably failed agent from the corresponding
scopes and disengages it from the location.

The introduction of agent states affects most of the events
— their guards become strengthened to ensure that only fault
free agents can perform normal activities, engage into a

location and disengage from it, as well as create and close
scopes. In the excerpt from the refinement machine C'ama3,
we present only the newly introduced events and the refined
event AgentFailure.

REFINEMENT Cama3

REFINES Cama?

SETS STATE = {OK, KO, RE}

DEFINITIONS activeAgent(xx) == (xx ¢ ex_agents N\ xx ¢ timers)
VARIABLES ..., astate, recovery_limit

INVARIANT

astate € agents — STATE N
recovery_limit € agents — NAT
VARIANT > aa.(aa € agents | recovery_limit(aa))

EVENTS

AgentFailure = ANY aa WHERE
aa € agents N\ activeAgent(aa) N\ astate(aa) = KO
THEN
agents = agents - {aa};
scopes := scopes & {aa};
scopes = sowner ~' [{aa}] < scopes;
sowner := sowner & {aa};
astate := aa 4 astate;
recovery_limit := aa < recovery_limit
END;

AgentRecovery = ANY aa WHERE
aa € agents N activeAgent(aa) N
astate(aa) = RE A recovery_limit(aa) > 0
THEN
recovery_limit(aa) := recovery_limit(aa) - 1 ||
ANY vw WHERE w € {OK, RE}
THEN astate(aa) := vv END
END;

AgentRecoveryStart = ANY aa WHERE
aa € agents N\ activeAgent(aa) N\
astate(aa) = OK A recovery_limit(aa) > 0
THEN
recovery_limit(aa) := recovery_limit(aa) - 1 ||
astate(aa) := RE
END;

AgentRecoveryFailure = ANY aa WHERE
aa € agents N\ activeAgent(aa) N astate(aa) = RE
THEN
astate(aa) = KO
END
END

As before, in this refinement step we define the system variant
to ensure that the newly introduced events converge, i.e., do
not take the control forever. To guarantee this, we introduce
the variable recovery_limit, which limits the amount of
error recovery attempts for each agent. Each attempt of error

recovery decrements recovery_limit. As soon as for some
agent recovery_limit becomes zero, error recovery of this
agent terminates and the error is treated as irrecoverable. We
define the variant as the sum of recovery_limit of agents.

While specifying the error recovery procedure, it is crucial
to ensure that error recovery terminates, i.e., does not continue
forever. In this refinement step the variant also serves as the
means to express this essential property of the system.

In the subsequent refinement steps we can introduce repre-
sentation of agent roles as well as define conditions of agent
compatibility while creating and joining the scopes. Due to the
lack of space we omit the description of further development
here.

The final specification contains a sufficiently detailed model
of middleware for CAMA systems. It has been used as a basis
for producing the actual C code of CAMA middleware, which
can be found at [10]. The translation from Event B to C
was straightforward. In the implementation, the global state of
the middleware is distributed between agents and a location.
Namely, a location can access the state of an agent and an
agent can access the names of the available scopes hosted by
a location.

The presented formal development has been
completely verified with the automatic support of
AtelierB [4]. The use of AtelierB has significantly eased
verification of the refinement process, since the tool generated
all required proofs and discharged most of them automatically.
Approximately 250 non-trivial proofs were generated and
about 80 % of them were proved automatically by the tool.
The remaining proof obligations have been discharged using
the interactive prover provided by AtelierB. We observed that
the most difficult to prove were the properties relating the
scope status with the status of collaborating agents. Also the
later refinement steps required significant efforts for proving
that newly introduced events converge, i.e., do not introduce
additional deadlocks.

Stepwise development process allowed us to introduce the
implementation details gradually, which permitted exhaustive
verification of the complex final specification by proof. This
case study demonstrates that the refinement process is suitable
for development of complex agent systems.

V. CONCLUSIONS

In this paper we presented a rigorous approach to developing
fault tolerant middleware for agent systems. The top-down
development paradigm adopted by Event B allowed us to carry
out the system development from a highly abstract specifica-
tion till the specification directly translatable into C code. Such
an approach avoids a typical problem of many formal tech-
niques, which are unable to bridge the gap between an abstract
system model and its implementation. The developed formal
specification has significantly simplified the implementation
process, which is usually cumbersome and error-prone due to
a distributed nature of mobile agent systems.

Ensuring a high degree of dependability of mobile agent
systems is unfeasible without addressing one of the funda-
mental issues of distributed systems, the possibility of partial

failure. Therefore, integration of the means for fault tolerance
should be an intrinsic part of the development of such systems.
In our approach we proposed formal patterns for specifying the
fault tolerance mechanisms for mobile location-based agent
systems. We demonstrated how to formally define the mech-
anisms for tolerating agent disconnections, typical for mobile
systems, as well as agent crashes. We believe that formally
verified middleware has a potential to enhance dependability
of systems dynamically composed of independently developed
mobile agents.

A formalisation of mobile agent systems has been proposed
by Roman et al. [13]. In their approach agent systems are
specified and verified within the UNITY framework. The
latest extension, called ContextUNITY [12], also captures the
essential characteristics of context-awareness in mobile agent
systems. The approach proposed by Roman et al. is especially
suitable for treating context-awareness. However, it leaves a
gap between a formal specification and implementation. The
use of refinement in our approach allows us to overcome this
limitation.

Fisher and Ghidini have presented a formal logic for de-
scribing agent activities [6]. They proposed either to deduce
agent correctness from an agent specification via a number
of transformations or verify it using a model checker. In their
work, communication is modelled very abstractly by represent-
ing a list of external messages for each agent. This restricts
reasoning about agent inter-operability, which is supported in
our approach.

There is a lot of work on using model checking for
verifying agent systems. However, model checking approaches
typically suffer from the state space explosion problem, which
is especially acute for large systems, such as mobile agent
systems. The major advantage of our approach that it avoids
this problem.

It is widely recognised that application of formal techniques
is desirable to obtain assurance in correctness of mobile agent
systems. However, complexity of such systems makes con-
struction of a formal model, adequately representing the whole
variety of middleware design principles and patterns, very
challenging. In our approach, the use of stepwise refinement
as a main development technique has alleviated this problem.
Indeed, by starting the development from a high level of
abstraction and progressively introducing representation of
implementation details, we gradually increased complexity of
a system model. Since each refinement step was formally
verified, the final system model was proved to be correct by
construction. Therefore, though the obtained model is complex
because it realistically represents middleware for mobile agent
systems, it is, nevertheless, exhaustively verified with the
automatic support provided by Atelier B.

In our future work we are planning to extend the proposed
approach in two directions. On the one hand, it would be
interesting to investigate the use of decomposition to derive
role-structured agent software from the overall system speci-
fication. On the other hand, it would be also useful to explore
the formal specification of cooperative recovery as a basic
mechanism for fault tolerance in agent systems.

ACKNOWLEDGEMENT

The work presented here is supported the EU research
project ICT 214158 DEPLOY (Industrial deployment of sys-
tem engineering methods providing high dependability and
productivity) — www.deploy-project.eu.

REFERENCES

[1] J.-R.Abrial. The B-Book. Cambridge University Press, 1996.

[2] J.-R.Abrial and L.Mussat. Introducing Dynamic Constraints in B. In Proc.
of Second International B Conference, LNCS 1393, Springer-Verlag,
1998.

[3] B.Arief, A.Iliasov and A.Romanovsky. On Using the CAMA Framework
for Developing Open Mobile Fault Tolerant Agent Systems. In Proc.
of the International Workshop on Software Engineering for Large-scale
Multi-agent Systems (SELMAS’06). International Conference of Software
Engineering (ICSE’06), Shanghai, China. ACM Press, 2006.

[4] Clearsy. AtelierB: User and Reference Manuals. Available at
http://www.atelierb.societe.com/index_uk.html.

[S] E.W.Dijkstra. A Discipline of Programming. Prentice-Hall International,
1976.

[6] M.Fisher and C.Ghidini. The ABC of Rational Agent Modelling. In Proc.
of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS02). Bologna, Italy, July 2002. ACM Press,
2002.

[71 D.Gelernter. Generative Communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1): 80-112, 1985.

[8] A.dliasov and A.Romanovsky. Exception Handling in Coordination-
based Mobile Environments. In Proc. of the 29th Annual International
Computer Software and Applications Conference (COMPSAC 2005),
pp.341-350, IEEE Computer Society Press, 2005.

[9] A. Iliasov and A. Romanovsky. CAMA: Structured Coordination Space
and Exception Propagation Mechanism for Mobile Agents. Proceedings
of ECOOP-EHWS 2005, Glasgow, UK, July 2005.

[10] A.Iliasov. Implementation of CAMA Middleware. Available online at
http://sourceforge.net/projects/cama.

[11] OMG MASIF. Available at www.omg.org

[12] G.-C.Roman, C.Julien and J.Payton. A Formal Treatment of Context-
Awareness. In Proc. of FASE’2004, pp.12-36, LNCS 2984, Springer-
Verlag, 2004.

[13] G.-C.Roman, P.McCann and J.Plun. Mobile UNITY: Reasoning and
Specification in Mobile Computing. ACM Transactions of Software
Engineering and Methodology, Vol.6(3), pp.250-282, 1997.

[14] The full B specifications of middleware development.
http://www.abo.fi/~Linas.Laibinis/MiddlewareSpecs.zip

Available at

