
HAL Id: hal-00381702
https://hal.science/hal-00381702

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiences in testing a Grid service in a production
environment

Flavia Donno, Andrea Domenici

To cite this version:
Flavia Donno, Andrea Domenici. Experiences in testing a Grid service in a production environment.
12th European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 8
p. �hal-00381702�

https://hal.science/hal-00381702
https://hal.archives-ouvertes.fr

Experiences in testing a Grid service in a
production environment
Flavia Donno

CERN, European Organization for Nuclear Research,
CH-1211 Geneva 23,

Switzerland.

Andrea Domenici
DIIEIT, University of Pisa,
v. Diotisalvi 2, I-56122 Pisa,

Italy.

Abstract—This paper reports on the problems and solutions
related to the testing of several implementations for conformance
to a standard storage management interface adopted in the
Worldwide LHC Computing Grid.
Index Terms—Grid, testing, Storage Resource Manager.

I. INTRODUCTION
The Worldwide LHC Computing Grid (WLCG) is one of

the largest Grid infrastructures dedicated to high-performance
scientific computation, with more than 200 sites all over the
world. Its data storage facilities, expected to sustain an amount
of data in the order of 10–15 Petabytes per year, are heteroge-
nous Mass Storage Systems (MSS), each based on different
technologies and with different capabilities and interfaces. In
spite of this diversity, Grid applications and Grid middleware
expect to handle all data in a uniform manner across the Grid.
It has then been necessary to develop a standard interface
for all MSSs, called the Storage Resource Manager (SRM)
Interface [1]. Existing MSSs have been adapted to SRM spec-
ification, and new ones have been developed anew according
to the specification.
Testing MSSs for compliance to the SRM specification has

been problematic. The specification defines an Application
Programming Interface (API) comprising a large set of oper-
ations that often have many parameters of complex type. The
semantics of this API are specified informally and subsume a
complex behavior that must be tested thoroughly. Given the
complexity of the specification, however, exhaustive testing
is very time-expensive, in a production environment where
storage resources are continually in use.
This paper reports on the various techniques used to test

implementations of the SRM service and shows how the
application of standard testing methodologies has been guided
by specific knowledge of the operational environment where
the systems under test are deployed.
In the following sections we introduce the basic concepts

of the SRM (Sec. II), then in Sec. III we illustrate the ideas
behind the testing of the SRM service, in Sec. IV we introduce
the S2 testing language, and in Sec. V we summarize the
results of the testing activity.

II. GRID STORAGE ELEMENTS
A Storage Element (SE) is a Grid Service implemented on

a mass storage system (MSS) that may be based on a pool

of disk servers, on more specialized high-performing disk-
based hardware, or on a disk cache front-end backed by a
tape system, or some other reliable, long-term storage medium.
Remote data access is provided by a GridFTP service [2] and
possibly by other data transfer services, while local (intra-
cluster) access is provided by POSIX-like input/output calls.
Authentication, authorization and audit/accounting facilities
are also part of a SE, that uses proxy certificates handled by
the Virtual Organization Management Service.
A Storage Element provides spaces where users create and

access files. Storage spaces may be of different qualities,
related to reliability and accessibility, and support different
data transfer protocols. Different users may have different
requirements on space quality and access protocol, therefore,
in addition to the basic data transfer and file access functions,
a SE must support more advanced resource management
services, including dynamic space allocation.
Each SE supports the SRM service specification, whose

main specification documents are The Storage Resource Man-
ager Interface Specification, Version 2.2 [1] and the Storage
Element Model for SRM 2.2 and GLUE schema descrip-
tion [3]. Other relevant documents are [4], [5], [6], [7], [8],
[9].

A. The Storage Resource Manager service requests
The SRM Interface Specification lists the service requests

that a client application may issue, along with the data types
for their arguments and results.
Request signatures are given in an implementation-

independent language and grouped by functionality: Space
management requests allow the client to reserve, release, and
manage spaces, specifying or negotiating their qualitiy and
lifetime; Data transfer requests have the purpose of getting
files into SRM spaces either from the client’s space or from
other remote storage systems on the Grid, and to retrieve them;
Directory requests create, populate, list, or delete directories;
Permission requests set or list read and write permissions on
files and directories; and finally, Discovery functions allow
applications to query the availability and characteristics of the
storage system behind the SRM interface.
Most SRM requests have a number of optional input and

output parameters. The ‘optional’ qualification may have dif-
ferent meanings for different parameters and different requests:

for an input parameter, it may mean that the parameter has
an implementation-dependent default value, or that it may be
ignored by the implementation, possibly because the parameter
refers to an unsupported feature; for an output parameter, it
may mean that the implementation is allowed not to return
a value, or that the value is not needed for some choices of
input values.
Several requests accept or return one or more SURL’s as

parameters. A SURL (Site URL) is a string that identifies a
file, composed of the hostname of the Storage Element and of
the file’s name within the Storage Element.
All requests have a mandatory returnStatus output

parameter, that reports about success or cause of failure for
each request. It may also report on the state of advancement
in the execution of asynchronous requests. The SRM processes
asynchronous requests by queueing them and returning a
request token to the client. The client, by passing the request
token to other SRM calls, may subsequently query the system
about request completion, or abort the request. This usage is
common when a single request acts on several files or spaces.
In this case, a request may return not just one return status but
an overall request-level status plus a specific file-level status
for each file.

B. Storage space properties
The execution of most SRM operations depends on a few

properties of the involved files and of the spaces where their
copies (i.e., possibly replicated physical instances) reside.
In this paper we use as an example an SRM request that
involves spaces and not files, so we only need to consider
the property of storage class, that is defined in terms of two
other properties, retention policy and access latency, and the
properties of connection type and access pattern.
The properties of retention policy and access latency may

or must be specified for most SRM requests involving the
reservation or creation of spaces and files. Retention policy
describes the reliability of a storage medium, while access
latency says if data are immediately accessible or must be
staged from a slow medium (e.g., tape) to a faster one.
Retention policy is a qualitative indication of the likelihood

that a file copy may be lost in a given storage space. This
likelihood may be high, intermediate, or low. A space with a
high likelihood of file loss is said to have a Replica retention
policy, since it is satisfactory for replicated files that can be
accessed with a limited performance penalty if a single copy
is lost. A space with an intermediate likelihood of file loss has
an Output retention policy, since it is satisfactory for files that
are not replicated but can be recreated as the output of some
computation. Finally, the Custodial retention policy applies to
storage that has a low likelihood of file loss, and is therefore
appropriate for files whose recovery would be very costly or
even impossible.
Access latency is a classification of storage media according

to the timeliness of data access. A space where data are
immediately accessible is Online, otherwise it is Nearline. A
Nearline space is supported by a medium, such as tape or

DVD libraries, that uses mechanical operations to retrieve the
data, that are then staged to temporary disk storage.
In the WLCG only a few combinations, referred to as

storage classes, of the above properties are supported, and
they are called Tape0Disk1 (Replica, Online), Tape1Disk1
(Custodial, Online), and Tape1Disk0 (Custodial, Nearline).
The properties of connection type and access pattern are,

strictly speaking, properties of the client application and its
connection to the SRM. In fact, the connection type, with
values Wan and Lan, “indicates if the client is connected
through a local or wide area network” [1] while the access
pattern, with values Transfer mode and Processing mode,
indicates whether the client is going to transfer a whole
file in one operation (transfer mode) or access the file with
several distinct operations (processing mode). However, this
information is also passed to requests that reserve space before
data transfers take place, so that the reserved space may be
taken from a medium optimized for the specified connection
type and access pattern.

III. TESTING STORAGE RESOURCE MANAGER SERVICE
IMPLEMENTATIONS

To illustrate the problem of testing an SRM service, let
us consider one typical SRM request, srmReserveSpace,
whose behavior is described in details in [1]. Fig. 1 shows the
signature of the request, where the boldface parameters are
mandatory.

Input parameters:
string authorizationID
string userSpaceTokenDescription
TRetentionPolicyInfo retentionPolicyInfo
unsigned long desiredSizeOfTotalSpace
unsigned long desiredSizeOfGuaranteedSpace
int desiredLifetimeOfReservedSpace
unsigned long[] arrayOfExpectedFileSizes
TExtraInfo[] storageSystemInfo
TTransferParameters transferParameters

Output parameters:
TReturnStatus returnStatus
string requestToken
int estimatedProcessingTime
TRetentionPolicyInfo retentionPolicyInfo
unsigned long sizeOfTotalReservedSpace
unsigned long sizeOfGuaranteedReservedSpace
int lifetimeOfReservedSpace
string spaceToken

Fig. 1. The signature of srmReserveSpace.

To assess, with some approximation, the number of test
cases that may be required, we start with a straightforward
application of equivalence partitioning.
With this technique, the tests must cover all the values

of the arguments with a finite domain. The values of such
arguments, in fact, represent distinct behaviors, policies, or
operating conditions of the system, while the arguments whose
values range over potentially infinite domains only represent
physical attributes of some entity, such as, for example, the

size or lifetime of a space. Such values do not affect the
system’s functionality, and need to be considered only for
stress testing (to find implementation-dependent limitations)
and performance testing. Therefore, we need consider only
one valid value for each argument with an infinite domain.
Similarly, one single value is representative of a class of invalid
values.
Further, we must take into account the fact that the domain

of some arguments may be the union of a theoretically infinite
set (e.g., positive integers for space lifetime) and a finite set of
special values, such as −1 to signify an unbounded lifetime.
Finally, we must consider the absence of an argument from
a request, either because the argument is optional, or because
the request is ill-formed. Special arguments and the absence
of an argument, denoted as NULL, are considered as extra
values.
A test case for a request with N arguments is therefore an

N -tuple of values, i.e., an element of the Cartesian product
of the sets of values that each element may take, where
these values are drawn from the union of the equivalence
classes described above. We adopt the strategy of separating
clean tests, expected to produce valid results, from dirty
tests, expected to produce (correct) error codes. For the latter
group of tests, we consider only tuples of invalid values,
since valid arguments would not affect the test reults. In this
way we rule out a large number of “mixed” test cases, i.e.,
containing both valid and invalid argument values. Such test
cases are only useful when certain valid values for an argument
are incompatible with values of other arguments, but these
situations are rare and they can be ignored when extimating
the needed number of test cases.
We may now define four equivalence classes for the values

of each argument: (1) valid values; (2) well-formed invalid
values (e.g, values not supported by an implementation); (3)
ill-formed invalid values; and (4) the class consisting of the
NULL value for mandatory arguments.
We observe that class 1 includes the NULL value, unless

an argument is mandatory. Class 4 covers the cases where a
mandatory argument is absent.
Let us consider class 1. Let Di denote the domain of the

i-th argument, and let Vi = |Di| (the cardinality of Di) if Di

is finite, or Vi = 1 otherwise. Vi is the number of valid values
that must be tested for the i-th argument. In order to consider
the absence of an optional argument, we introduce V ∗

i
, that is

equal to Vi +1 for optional arguments, or to Vi otherwise. The
number of possible test cases for class 1 is then

∏N

i=1
V ∗

i
.

Then we consider classes 2, 3, and 4. These classes are used
for dirty testing, so their elements will not be combined with
values of class 1 to form test cases. Since the range of each
argument is reduced to three distinct values, one from each of
the three classes, the number of these test cases is 3N .
Adding the two terms we obtain

N∏

i=1

V
∗

i + 3N
. (1)

For the srmReserveSpace request, we study its signa-
ture as defined in the SRM specification, and by the criteria
introduced above we find that V ∗

i for its nine arguments ranges
from 1 to 6, giving a number of test cases above twenty
thousand. Considering that the SRM interface lists thirty-
nine requests with an average of six input parameters, to a
maximum of ten, it is clearly necessary to find a way to reduce
the test case space to a manageable size without reducing its
efficacy. In the rest of this section we discuss how to select a
manageable number of test cases by a careful analysis of the
actual operating conditions of the SRM service.

A. Reducing the test set size by use-case analysis
In order to reduce the number of possible test cases to exe-

cute, we made a few assumptions justified by the requirements
of the WLCG users. These assumptions enable us to reduce
the number of parameters whose combined values make up
the input domain, with the remaining parameters set at fixed
values, thus lowering the dimensionality of the test case space.
In order to reduce the size of the input domain for

the srmReserveSpace request, we examine the require-
ments from the LHC experiments and determine the set
of input arguments that are commonly needed by users
and that most implementations do not ignore. First of
all, this function must guarantee a given amount of space
(desiredSizeOfGuaranteedSpace) of a certain qual-
ity (retentionPolicyInfo) for the required amount
of time (desiredLifetimeOfReservedSpace). These
three parameters are then the most relevant for testing.
As mentioned in Sec. II-B, only three storage classes are

required to be supported in WLCG, so that the structured
value retentionPolicyInfo can only be one of the
pairs (Replica, Online), (Custodial, Online), and (Custodial,
Nearline), plus the implementation-dependent system defaults
(Custodial, NULL) and (Replica, NULL).
We now consider the transferParameters input. This

parameter has a structured value that combines connection
type and access patterns (Sec. II-B), plus some additional
information on site connectivity. These parameters affect crit-
ically the performance of data transfers, therefore, even if
the SRM specification assumes that they may be negotiated
between clients and service, it is very unlikely that input and
output buffers and specific protocols are left to the users to
define and allocate during an srmReserveSpace call. Nor-
mally, Grid centers will statically configure space buffers with
predetermined characteristics (such as protocols, connectivity
type, etc.) that applications can reserve. Therefore, if users
request a certain combination of retentionPolicyInfo
and transferParameters for which no space buffer has
been allocated at a certain location, the SRM server will just
ignore the transferParamenters value.
The authorizationID is foreseen in order to specify

a user identity and allow the system to grant permission for
space reservation. However, in WLCG such a parameter is not
used by any of the implementations taken into consideration
since they all rely on the VOMS that handles authorization

without any need of passing credentials explicitly as argument
values, since the role or group of a user is derived from his
proxy. In WLCG only VO managers can reserve space and
make it available to users of a VO. Therefore, the VOMS
proxy is checked and appropriate privileges to reserve space
are guaranteed. We may re-interpret Formula 1, that had been
derived considering only explicit arguments, by representing
environmental conditions, such as the presence of a valid
proxy, as extra arguments.
For the user proxy we consider the following cases: (1)

the user has a valid proxy that allows him/her to reserve
space; (2) the user has a proxy that does not allow him/her to
reserve space; and (3) the user does not have a valid proxy.
Case 1 represents the equivalence class of valid values, while
in cases 2 and 3 the SRM server returns error status codes
for authorization and authentication failure, respectively. Since
both error responses must be tested, we have two classes of
invalid values. Therefore, in order to perform dirty testing we
must consider 34 combinations for the four explicit arguments,
times two possible invalid values for the user proxy pseudo-
argument.
By the above considerationse, the only input parameters and

conditions to be considered are retentionPolicyInfo,
desiredSizeOfGuaranteedSpace,
desiredLifetimeOfReservedSpace,
transferParameters, and the user proxy.
Then we re-examine the possible values of

retentionPolicyInfo. The Tape0Disk1 storage class
must be supported by all implementations and therefore it is a
case to be considered. Classes Tape1Disk0 or Tape1Disk1 are
equivalent since the implementation can either support them
or not. The cases (Custodial, NULL) or (Replica, NULL) are
also equivalent since the server can either provide a default
for the Access Latency or not. In the second case, the server
must return an error status. Taking these considerations into
account, we can limit ourselves to consider only four cases
for retentionPolicyInfo, namely (Replica, Online),
(Custodial, Nearline), (Replica, NULL), and NULL, i.e., the
absence of the parameter.
Argument desiredSizeOfGuaranteedSpace is

mandatory, therefore it cannot be NULL (invalid condition).
Its value must be greater than zero and can be as great as
allowed by the unsigned long type.
For the transferParameters input parameter, a simi-

lar analysis can be done.
As a result of the above consideration, we find out that

the number of test cases can be safely reduced to about two
hundred.

B. Modeling constraints and boundary conditions
In Sec. III-A we have dealt with the selection of test cases

based on the signature of the service requests. However, we
still have not considered the restrictions imposed by the spec-
ifications and the semantics of the function to validate. For in-
stance, the srmReserveSpacemethod can be asynchronous
(Sec. II-A). In this case the returned request token can be used

as an input to the srmStatusOfReserveSpaceRequest
request to check the status of the operation. The specification
restrictions and the semantics of the request are expressed us-
ing cause-effect graphs. In Fig. 2 we list the causes and effects
identified. In particular, the causes taken in consideration are
numbered from 1 to 13, while the effects are numbered from
90 to 93.
As it can be noted, the list of causes does not include only

conditions on the input arguments, as it normally happens
in cause-effect analysis: Some environmental conditions (e.g.,
cause 2 in the table) are also taken into consideration in order
to represent the restrictions imposed by the protocol.
Fig. 3 represents the analysis of the semantic content of

the specification transformed into a Boolean graph linking
causes and effects. This is the cause-effect graph for the
srmReserveSpace function.

12

13

11

112

93

~
~

10

1

2

3

4

5

6

7

8

9

23

14

94

56

95

78

96

18
214

110

256

278

114

90

91

92

~

~
~~
~

~~

~

~
~

~

E

R

Fig. 3. Cause-effect graph for the srmReserveSpace request.

The graph nodes not listed in Fig. 2 (e.g., 56, 78, . . .) have
been created to facilitate the navigation of the graph. Nodes
94, 95, and 96 instead represent effects foreseen by the speci-
fication that must be checked explicitly by a specific test pro-
gram. For instance, if the desiredSizeOfTotalSpace is
NULL (negation of cause 5) and the SRM system supports a
default for desiredSizeOfTotalSpace (cause 6), then
the return value sizeOfTotalSpace must be checked to
be non-NULL and greater than 0. Causes 11, 12, and 13

are constrained by the E and R constraints: constraint E
(Exclusive) between nodes 11 and 12 expresses the fact that
causes 11 and 12 cannot be simultaneously true; constraint R
(Requires) between nodes 12 and 13 represents the fact that
if 12 is true then 13 must be true.
The study above has allowed us to find inconsisten-

cies in the specification. For instance, if the server did
not support the retentionPolicyInfo value, both
values for the returnStatus SRM NOT SUPPORTED
and SRM INVALID REQUEST were considered correct

1 retentionPolicyInfo is not NULL
2 retentionPolicyInfo is supported by server
3 invalid input parameters
4 desiredSizeOfGuaranteedSpace is not NULL
5 desiredSizeOfTotalSpace is not NULL
6 default for desiredSizeOfTotalSpace is supported
7 desiredLifetimeOfReservedSpace is not NULL
8 default for desiredLifetimeOfReservedSpace is supported
9 transferParameters is not NULL
10 transferParameters is compatible with retentionPolicyInfo
11 requestToken is returned
12 spaceToken is returned
13 sizeOfGuaranteedReservedSpace and lifetimeOfReservedSpace are returned

90 returnStatus is SRM NOT SUPPORTED
91 returnStatus is SRM INVALID REQUEST
92 returnStatus is SRM REQUEST QUEUED | SRM REQUEST INPROGRESS
93 returnStatus is SRM SUCCESS | SRM LOWER SPACE GRANTED

94 sizeOfGuaranteedReservedSpace = default
95 lifetimeOfReservedSpace = default
96 transferParameters is ignored

Fig. 2. List of causes (1–13) and effects (90–93) for the srmReserveSpace request. Effects 94–96 are intermediate effects that need to be checked in
test cases.

by some implementations, due to conflicting wordings
in the specifications. After this issue was discovered,
it was decided that the correct return code should be
SRM NOT SUPPORTED. Furthermore, the specification
only allowed for SRM REQUEST QUEUED to be re-
turned when the method is asynchronous, while also
SRM REQUEST INPROGRESS is possible for implementa-
tions that are fully parallel or threaded. Another example is the
default lifetime for the reserved space: The original specifica-
tion set it to infinite, while for practical implementation issues
it was decided to leave the default to be an implementation
choice, and the specification was changed accordingly.

C. Error guessing
We conclude our review of the methodologies employed

in the SRM service testing with the approach we call Error
guessing. This is simply the selection of test cases based on
the testers’ intuition and experience, especially the experience
gained in the actual operation and maintenance of the system
under test.
Some test cases were devised to clarify issues arisen during

the development of a semi-formal model of the SRM [5], [6].
Some of the issues concerned the behavior of the systems
when concurrent calls interfered with each other. For instance,
in the case of an asynchronous srmReserveSpace we
studied the effects of an srmAbortRequest issued before
srmReserveSpace is completed. We also checked the in-
formation returned by srmGetSpaceMetadata (a request
for information on space properties) and the effect of an
srmUpdateSpace (a request to change space properties)
once the srmReserveSpace is completed. We have used
the cause-effect graphing method also in this case, expressing
in a formal way the SRM protocol in case of interacting
functions.

Furthermore, the error guessing methodology was used in
order to find recurrent errors caused by diverging interpreta-
tions of the SRM interface. For instance, one implementation
for SRM v2.2 used to return generic error codes even when
more specific codes were clearly defined by the specification
for erroneous situations. This was due to a broad interpretation
of the SRM specification. For instance, in the case of SRM
transfer methods, the developers interpreted the file level return
status as a file characteristic that changed with the file state. In
the specification, the file level return status is always connected
to the request issued and can be different from request to
request, even if the file state does not change. Special test
cases were designed to discover situations of this kind. In
the case of another implementation a synchronization problem
between the SRM server and the backend storage system was
found. If an srmPrepareToPut (a request that must be
issued before a file transfer) was performed on a SURL after
an srmRm (request to remove a file) on the same SURL,
an srmStatusOfPutRequest returned first a failure and
then a success on the same request. This was due to the fact
that the remove operation was executed by the backend asyn-
chronously while for the SRM this operation is synchronous.
The SRM server was implemented not to consider the fact
that srmRm is executed asynchronously, keeping into account
the history of operations performed by the client on a specific
SURL, before proceeding with satisfying further request on
the same SURL.

IV. A TEST EXECUTION SCRIPTING LANGUAGE

Testing a service running on a production Grid composed
of a very large number of nodes distributed across the planet
requires appropriate tools. The S2 scripting language [10] has
been specifically devised to test the SRM service.

An S2 script consists of actions, called branches. Actions
have an execution value and an outcome. The execution value
is 0 for successful execution, or a positive integer related to the
severity of failure. The outcome is a logical value depending
on the execution value: normally, it is TRUE for success and
FALSE for failure, but it is possible to specify a threshold
for the execution value under which execution has a TRUE
outcome; in this way, testers may filter out less severe failures,
or force the execution of subsequent actions that would be
otherwise disabled by the failure of a previous action.
The fundamental kind of action is the execution of an SRM

command. The S2 interpreter recognizes a set of expressions
with a command-line syntax that exercise all the implemented
SRM calls. The outputs of the SRM commands are character
strings containing several fields whose contents can be ex-
tracted by means of Perl-style regular expressions and stored
in variables. Other kinds of actions include tests involving
the outputs of the SRM commands, and the execution of any
operating system call.
Actions can be composed by means of iterative structures

(similar to for and while), parallel execution, AND-sequential
execution, and OR-sequential execution. In the two latter
forms of composition, execution of each branch depends on
the outcome of the previously executed one: AND-sequential
execution terminates as soon as a branch has a FALSE
outcome, OR-sequential execution terminates as soon as a
branch has a TRUE outcome.
Fig. 4 shows a simple test example. In the example,

the first branch, made of four lines, is the execution of
the SRM request srmLS. The first line contains the name
of the request followed by environment variables (set by
the tester before executing the script) that specify the
request arguments. The next three lines contain patterns
against which the return values of the request are matched.
Pattern matching has the side effect of assigning the
matched string to variables. For example, consider the first
pattern, “requestToken=(?P<requestToken>.*)”,
that matches a string of characters following the
prefix “requestToken=” and stores them into the
requestToken variable. Similarly, other fields of the output
go into the variables pathDetails and returnStatus,
with the two fields explanation and statusCode.
The second branch, executed if the previous one is success-

ful, makes some tests on the values of returnStatus and
requestToken, then it prints the results to a log file with
the echo system command. Finally, the last branch, executed
if any of the previous ones fails, prints an error message to
the log file and exits.
S2 has allowed us to build a testing framework that sup-

ports the parallel execution of tests where the interactions
among concurrent method invocations can be easily tested.
The S2 test suite has allowed the early discovery of memory
corruption problems by the CGSI security plug-ins in one
implementation. Authentication errors were reported randomly
when multiple concurrent requests were made to the server.
The coding of such a test case required very little time (few

minutes) with no errors made in the test program that exercised
this test case.

V. RESULTS OF SRM SERVICE TESTING

The SRM has currently been implemented for five different
Mass Storage Systems, namely CASTOR [11], dCache [7],
DPM [12], DRM/BeStMan [13], and StoRM [14].
All these systems are being tested for compliance with the

SRM Interface Specification. The analysis described in the
previous sections has been performed on the 39 SRM requests
defined in the specification, to design a set of test suites that
validate the correctness of the implementations. These suites
are called the Availability tests, that check the availability in
time of the SRM service end-points, the Basic tests, that verify
the basic functionality of the implemented SRM API, the Use
Case tests that check boundary conditions, request interac-
tions, and exceptions, the Exhaustion tests, that exercise all
possible syntactic variations for the input arguments, including
long strings, blank-padded strings, strings with non-printable
characters, or malformed URL’s, the Stress tests to identify
race conditions and observe the behavior of the system when
critical concurrent operations are performed, and finally the
Interoperability tests, that perform remote operations (servers
acting as clients) and cross-copy operations among several
implementations.
The tests are run automatically six times a day. The data of

the last run are stored together with the history of the results
and their details. Plots are produced every month on the entire
period of run to track the improvements and detect possible
problems.
Figure 5 shows the results of the basic tests for all imple-

mentations. In particular, the number of failures over the num-
ber of total tests executed is reported over time. It is possible to
observe that after a month of instability, the implementations
converged over a certain set of correctly implemented requests
(around the 11th of December 2006). In the week of the 15th
of December 2006, a new WSDL description of the SRM Web
service interface was introduced to comply with the decisions
made about the issues that the new SRM model. At the same
time the developers introduced new features and bug fixes
that produced oscillations in the plot. After the Christmas
break and the upgrade of the testing suite to the new WSDL
description, the implementations started to converge again
toward a correct behavior with respect to the specifications.
We can notice that toward the end of the testing period the
number of failures is almost zero for all implementations. That
is when testing for a given implementation and a given release
of the SRM interface could stop. However, both the interface
development and the deployment of implementations on new
sites continue, and so does the testing activity.

VI. CONCLUSIONS
Very large scale computational Grids, such as the WLCG,

by their very size and complexity pose new challenges to
the testing process. In the case of the SRM service, some
characteristics of this service further stimulate the testers’

srmLs $ENV{ENDPOINT} SURL[$ENV{SRM_ENDPOINT}] numOfLevels=0
requestToken=(?P<requestToken>.*) pathDetails=(?P<pathDetails>.*)
returnStatus.explanation=(?P<returnExplanation>.*)
returnStatus.statusCode=(?P<returnStatus>.*)

&& TEST
$MATCH{(SRM_SUCCESS | SRM_REQUEST_QUEUED

| SRM_PARTIAL_SUCCESS | SRM_INPROGRESS)
${returnStatus}}

SYSTEM echo "srmLs: OK: ${returnStatus}" >> $ENV{S2_LOG}
&& TEST !$DEFINED{requestToken}

SYSTEM echo "srmLs: Ls is synchronous" >> $ENV{S2_LOG}
|| SYSTEM echo "srmLs: Ls is asynchronous" >> $ENV{S2_LOG}

|| SYSTEM echo "srmLs: KO: ${-returnStatus}${-returnStatus_explanation}"
>> $ENV{S2_LOG} && exit ${!}

Fig. 4. An S2 test script.

Fig. 5. Results of basic tests.

creativity. The service specification must accommodate for
the functionalities of existing storage resources, for the needs
of the organizations operating the resources, and for the
requirements of high-end user applications. As a result, the
specification is rather complex, and it must allow for semantic
variations or different conformance levels by the implementa-
tions, thus making the choice of test cases more difficult.
From the experience gained in testing the SRM service

for the WLCG, it may be learned that the well-established
principles and methodologies of functional testing are funda-
mental, but they must be integrated with a judicious analysis
of the environmental and operating conditions of the system.
A thorough knowledge of the actual usage patterns enables
testers both to reduce the number of test cases that could be
obtained by a straightforward reading of the service interface,
and to find more test cases whose utility might not be guessed
from the same reading.
The SRM protocol is still evolving with new enhancements,

and the same testing framework will be used again as part of
the normal development and certification cycles.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the collective work of
the SRM collaboration and the WLCG project, and in partic-
ular the contributions of Arie Shoshani, Alex Sim and Junmin
Gu (LBNL), Jean-Philippe Baud, Paolo Badino, Maarten Lit-
maath (CERN), Timur Perelmutov (FNAL), Patrick Fuhrmann
(DESY), Shaun De Witt (RAL), Ezio Corso (ICTP), Luca
Magnoni and Riccardo Zappi (CNAF/INFN),
The authors have been supported by CERN and INFN,

respectively.

REFERENCES

[1] A. Sim, A. Shoshani et al., “The Storage Resource Manager Interface
Specification, Version 2.2,” http://www.ogf.org/documents/GFD.129.pdf,
Open Grid Forum GSM-WG, Proposed Recommendation GFD-R-P.129,
May 2008.

[2] W. Allcock et al., “GridFTP protocol specification,” GGF GridFTP
Working Group, Document, September 2002.

[3] P. Badino et al., “Storage Element Model for SRM 2.2 and GLUE
schema description, v3.5,” WLCG, Tech. Rep., Oct. 27, 2006.

[4] “Addendum to the SRM v2.2 WLCG Usage Agreement,” http://indico.
cern.ch/conferenceDisplay.py?confId=34806, May 2006.

[5] A. Domenici and F. Donno, “A model for the Storage Resource Man-
ager,” in Grid Computing: International Symposium on Grid Computing,
(ISGC 2007), Taipei, Taiwan, ser. Computer Science, S. C. Lin and
E. Yen, Eds. Springer US, 2007, pp. 99–105.

[6] ——, “Static and dynamic data models for the Storage Resource
Manager v2.2,” Journal of Grid Computing, vol. 7, no. 1, pp. 115–133,
March 2009.

[7] M. Ernst et al., “Managed data storage and data access services for
data grids,” in Proceedings of the Computing in High Energy Physics
(CHEP) conference, Interlaken, Switzerland, September 27 – October
1, 2004.

[8] “SRM v2.2 WLCG Usage Agreement,” http://cd-docdb.fnal.gov/0015/
001583/001/SRMLCG-MoU-day2[1].pdf, May 2006, grid Storage In-
terfaces Workshop, Fermilab.

[9] A. Shoshani et al., “Storage Resource Management: Concepts, Function-
ality, and Interface Specification,” in Future of Grid Data Environments:
A Global Grid Forum (GGF) Data Area Workshop, Berlin, Germany,
March 9–13, 2004.

[10] F. Donno and J. Menćak, “The S2 testing suite,” http://s-2.sourceforge.
net, September 2006.

[11] O. Barring et al., “Storage Resource Sharing with CASTOR,” in 12th
NASA Goddard/21st IEEE Conference on Mass Storage Systems and
Technologies (MSST2004), U. of Maryland, Adelphi, MD, Apr. 13–16,
2004.

[12] J.-Ph. Baud and J. Casey, “Evolution of LCG-2 Data Management,”
in Proceedings of the Computing in High Energy Physics (CHEP’04)
conference, Interlaken, Switzerland, September 27 – October 1, 2004.

[13] A. Sim et al., “Berkeley Storage Manager (BeStMan) Administrative
Guide,” Lawrence Berkeley National Laboratory, Tech. Rep., February
2009, http://datagrid.lbl.gov/bestman/docs/bestman-guide.pdf.

[14] E. Corso et al., “StoRM, an SRM Implementation for LHC Analysis
Farms,” in Proceedings of the Computing in High Energy Physics
(CHEP’06) conference, Mumbai, India, Feb. 2006.

