N

N

Model-Driven Testing based on Markov Chain Usage
Models in the Automotive Domain
Sebastian Siegl, Winfried Dulz, Reinhard German, Gerhard Kiffe

» To cite this version:

Sebastian Siegl, Winfried Dulz, Reinhard German, Gerhard Kiffe. Model-Driven Testing based on
Markov Chain Usage Models in the Automotive Domain. 12th European Workshop on Dependable
Computing, EWDC 2009, May 2009, Toulouse, France. 6 p. hal-00381689

HAL Id: hal-00381689
https://hal.science/hal-00381689
Submitted on 12 May 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00381689
https://hal.archives-ouvertes.fr

Model-Driven Testing based on Markov Chain
Usage Models in the Automotive Domain

Sebastian Siegl, Winfried Dulz, Reinhard German

Department of Computer Science 7
University of Erlangen-Nuremberg

Martensstrasse 3, 91058 Erlangen, Germany

Gerhard Kiffe
AUDI AG
85045 Ingolstadt
gerhard kiffe @audi.de

{sebastian.siegl|dulz|german } @informatik.uni-erlangen.de

Abstract—The Extended Automation Method (EXAM) is
employed by AUDI AG - one of the leading car manufacturers
in Europe - to design and execute test cases for the purpose
of component and system-testing. Test cases are specified using
platform independent UML sequence diagrams. In order to
provide an executable test suite platform dependent code
is automatically generated from a formal description. The
test case execution itself is mainly performed on Hardware-
in-the-loop (HIL) simulators. The main drawback of the
existing procedure in EXAM is correlated to the fact that each
test case must be created individually, which is apparently
awkward and error-prone. Furthermore the development of
increasingly complex and interconnected features poses new
challenges to the prevalent validation and test routines in the
industry. We therefore have evaluated whether the appliance
of a Markov Chain Usage Model (MCUM) would help to
overcome this drawback. The MCUM was used to describe
at best all possible usage scenarios of the System Under Test
(SUT) and provided a basis to derive systematically test cases
without human interaction. These test cases can be further
processed inside EXAM. This approach makes it also possible
to get both indicators for the test-planning in advance and
to obtain dependability measures after the test cases have
been processed. The usage of MCUMs in a fully automated
process has been demonstrated within the QoS Enhanced
test Development (Q.E.D.) test framework. In addition, the
automotive domain requires a variety of problems to be resolved.

Keywords: Software Testing, Automated Test Generation,
Model-based Test Generation, Test coverage of specifications,
Test execution, Testing strategies, Automotive Systems,
Electronic Control Units

I. INTRODUCTION

Driven by customer and mandatory requirements more
and more complex and interconnected functionality in terms
of software is installed in modern cars. This development
emphasizes the need to establish test methods that can cope
with this development.

A. The EXAM Testing Method

The test method used by the AUDI AG and within the
Volkswagen AG to perform tests at component and system
levels is called Extended Automation Method (EXAM) [1].
EXAM defines a process, the roles, and the tools used to

1) model test cases graphically and platform independently
in UML. Sequence diagrams are used for this task and
build the formal basis for test case specifications.

2) generate platform dependent test scripts automatically
from the formal description in UML. In this way a
separation between the test case description and its
concrete implementation is achieved.

3) to use sharable test automation functionalities from a
structured database. Thus, test cases can be developed
in independent test teams and test know-how is accu-
mulated enterprise-wide.

So far, test automation in the scope of EXAM means the
automated generation of platform dependent code and the
execution of the derived test suite without human interactions.
However each single test case must be invented, be developed,
and be designed by the person which is instructed to test the
SUT. This procedure has many drawbacks, e.g. the estimation
of the test coverage implies a very hard task. Moreover it can
not be prevented that one or more important test scenarios
remain undiscovered.

B. MCUMs and the Q.E.D. process

MBT (Model-based Testing) techniques make use of formal
descriptions (models) of either the SUT or the expected usage
of the users of the SUT. In the former case a behavioral
specification is derived from the requirement definitions and
serves as a starting basis to automatically generate test cases
in order to test the SUT [2]. In the latter case usage models
are deduced from the requirements and may be considered as
independent of the specification. Because exhaustive testing of
real systems is infeasible in practice an appropriate set of test
cases is derived to accomplish a given test goal. At this point
Markovian statistics come into play.

In a MCUM the possible usage at a specific abstraction layer
is represented by a Markov chain that consists of states and
transitions between states [3]. This graph structure describes
all possible usage scenarios for a given SUT. Transitions are
augmented by probabilities from a usage profile that reflects
usage choices users will have when they interact with the SUT.
It is possible to provide more than one usage profile for a given
Markov chain structure [4]. Therefore, the statistical selection
of test cases may also consider distinct properties of different

roles or user classes, e.g. car occupants, in interaction with the
SUT. Furthermore the results of statistically derived test cases
can be used for the calculation of dependability measures of
the SUT [5]. The Miller Reliability Model offers a possibility
to assess the dependability of a system even in the case of the
non-observance of failures, making use of pretest reliability
information[6].

MCUMs have been successfully employed in the Q.E.D.
test development process. Q.E.D. defines a complete process
for statistical testing that starts from formal UML use case
descriptions [7], [8]. Q.E.D. enables the automatic generation
of test cases for both testing functional and non-functional
requirements. The central structure of the framework is rep-
resented by a MCUM, which is generated automatically from
use case scenarios and can be employed to derive test cases
on-the-fly inside an executable TTCN-3 test suite as shown
in Fig. 1.

Requirements

X

X

\ 4
Sequence Diagrams

CIC L]

»

P
»
P

<
«

v
- Markov Chain \

User
Profile
N %
A
TTCN-3 Test
Suite 4—| Data Types
i4«—| Templates
| SuT |
Reliability
Fig. 1. Q.E.D. process: on-the-fly generation of test cases

The results of statistically generated test cases can be used
to obtain specific metrics of the SUT or e.g. the Kullback-
Leibler divergence with respect to the given profile, the mean
number of test cases to reach a certain confidence level or
even the expected reliability of the future system [9]. In this
paper we focus on the automatic generation of test cases from
a MCUM usage model that can be further processed inside
the EXAM tool chain.

One has to keep in mind that in the automotive domain
the input domain of a SUT consists of operations by the car
driver and its occupants, of environmental influences and of
stimuli that have their origin in other components of the car.
Furthermore, one has to keep in mind that the HIL test benches
should be used as efficiently as possible because testing time is
an expensive resource. The main goal is therefore to validate
the specified functionality of the SUT by using a minimal
sample of test cases that also comprises extreme and unlikely
conditions.

For that reason we checked whether the existing test method
EXAM could be enhanced by a test case generation out of a
MCUM. Test cases should be processable by EXAM tools and
fit the requirements from the automotive domain at best. All in
all, the whole test process should benefit from the availability
of a MCUM in order to pre-assess the coverage and test-depth
achieved by the selected test cases.

II. GENERAL APPROACH

Our main goal was to enhance the EXAM test process by a
method to automatically generate test cases for system testing
from given requirement documents. In this extended approach,
the invention and manual description of each single test case is
substituted by the modeling of a single MCUM. The primary
function of the usage model is to create specific test suites
that contain test cases according to preset test purposes and
conditions. For example, characteristic test aims can be time
constraints for the maximum test duration or exceeding the
bound of a dependability indicator. Moreover, benefits from
existing methods should be combined and preserved in an
optimal manner.

The method to construct the MCUM followed the principles
of sequence-based software specification [10], that has already
been applied in many application domains, e.g. for testing a
feedback control system in Simulink [11]. It consists basically
of the following steps:

1) Identify the system boundary

2) Enumerate all sequences of stimuli and their responses

across the system boundary

This process is explained in more detail. First the system
boundary of the SUT is defined. Based on the requirements
all stimuli that go across this boundary and involve the
functionality to be tested are extracted. This comprises stimuli
S that represent operations on the SUT and responses R
from the SUT. Next all theoretically possible sequences S
of stimuli to the system are enumerated and mapped to a
response, stated as u — 7. The enumerations are ordered
ascending by their length. This process follows specific rules.

Starting with the empty sequence A new sequences v are
derived from the existing u by increasing their length through
concatenation with any legal = € S. Illegal sequences are
such that are either impossible to occur, never invoked or not
observable by definition of the functionality to be tested.
Two sequences u and v are called equivalent if extended by
any sequence w the future response is the same to uw and
vw. In this case u is said to be reduced to v and not extended
further. Summarized, only legal and unreducible sequences are
extended.

By this procedure, a complete and consistent usage model
is created. An additional feature is the easy traceability of
requirements. Beside the annotation of the response to each
stimuli sequence w the corresponding requirement is assigned.
This ensures the correctness of the enumeration and in doing
so incomplete and inconsistent requirements are discovered.
If no requirement or desired system’s response is found for
a sequence this must be documented and a requirement must
be derived. So this procedure describes also a technique to
analyze the requirements.

The procedure to draft the MCUM followed this approach.
In a first step the system boundary of the SUT, i.e. in this
case of the Start-Stop functionality, is to be identified. Next all
stimuli that have influence on the functionality were extracted
from the specification. A stimulus in this context is always
represented by a discrete event that has an effect on the
SUT’s behavior. These stimuli can have their origin in different
"users” of the functionality, where a user may be the car driver,
other components of the car, and environmental influences
such as temperature. In the latter case, continuous changes
are mapped to events that provide the new values.

After this, an initial usage state is defined. Starting with this
state one identifies all possible stimulus sequences that can oc-
cur. A system response is assigned to every possible stimulus
sequence. Stimulus sequences are considered as equivalent, as
mentioned before, if they provoke the same system’s behavior
when extended by the same non empty stimulus sequence. In
this case they lead to the same usage state. An example for
such a usage state in our case study is given by the usage
state after which the car has come to a standstill and the
ignition has been turned off and on. The extension of this
usage state by many different stimuli sequences led to the
same response, independent of the way this usage state has
been reached. In this case these sequences are considered as
equivalent with respect to their future behavior, so they all
lead to the same usage state. An appropriate counterpart of the
EXAM repository is assigned to each transition, i.e. a platform
independent interface for the stimulus or a sequence of stimuli.
This way the usage description is kept generic and the specific
implementation is resolved when the target system for each
test case is chosen. In the case of using equivalence classes for
stimuli values one representative can be selected later on. The
application of equivalence classes makes it easy to combine
test vectors together with the MCUM in a manner that one can
define actual parameter values in a further step. The procedure
is continued by adding at each usage state every possible and

legal operation that could be performed at this usage state.
After that, it has to be considered what the expected reaction
of the SUT would be if this sequence of stimuli were executed.
If it is observable, a description of it or a method to check the
expected behavior is added to the transition. As a next step
it has to be considered which usage states are reachable next.
This procedure is continued until all reasonable sequences of
stimuli can be found in the MCUM.

Measurements and checks on the HILs, e.g. evaluations of
signal curves are performed in various ways. Unfortunately,
a fully automated approach starting solely from the MCUM
to establish all necessary actions seems to be hardly feasible.
Platform independent information to customize the monitoring
process can be entered into the MCUM in a semi formal
way. Remaining steps in order to prepare the execution are
performed on the EXAM layer. These aspects are not consid-
ered during usage modeling, because they form a part of the
evaluation and not of the usage. The test person that runs the
test case can then decide which check-methods to use from
the EXAM repository in a step after the generation of the test
cases and before the automated execution on the test bench.

The MaTeLo toolkit (www.all4tec.net), which is a com-
mercial offspring of the European IST project MaTeLo [12],
has been chosen as the main facility to design the MCUM.
By using the MaTeLo graph editor it is relatively easy to
create a structured usage model that consists of state groups
and macro-states that further lead to referenced submodels.
The structuring concept is not only important to keep the
model easily understandable and manageable but also helps
to specify information for the composition of the test cases in
the EXAM process. According to the EXAM modeling rules
test cases are structured and consist of three parts. First, the
SUT is initialized with a starting state that builds the basis
for the following test actions. Next, the actual test sequence
is described and in the third part it is checked whether the
SUT behavior confirms to the expected results. Macro-states
are applied to assign adherent nodes and transitions to one
of these describing parts. In this way, all derived test cases
automatically obey the EXAM test case structuring rules.

Test case generation can be performed automatically by
random walk based on the stochastic profile information or
by a graph-based minimal arc coverage algorithm. In the latter
case a test suite is created where each transition is traversed at
least once. All derived test cases are described in an adapted
XML dialect in order to pass the necessary information to the
EXAM initialization procedure and to process it automatically.
Test sequence steps and stimuli calls of test cases that are
described in XML are imported automatically into EXAM
in this way. The overall procedure is depicted in Fig. 2.
Compared to the Q.E.D. process where an executable test
suite can directly be generated from the MCUM, the test cases
derived from the MCUM are sequence diagrams that have to
be completed in a pre-execution step with administrative in-
formation, measurements, and monitoring handlers. Equipped
with these information the test cases are ready for execution
within EXAM.

Markov-Chain
Usage Model

Automatic Te:

Case Derivation *

{trans:tion corn
Strans:tion corn
{trans:tion corne
{trens:tion corns
{expresil=aute 4
dvalus conplyze=
Lrexprest | Lauto)
Aransitiond
{trens:tion cornents"tes:
{trans:tion corn
(trzns:tion
€trans:tion corne
¢trens:tion corne
{expresulauto connen
<ialuz complyaz=
{rexpresi[{aute}

Test Cases
in XML

operat ingByste
Fahruerkszeuer

BA" deLayni
ozlean tire: boo.

Semiautomatic Import in EXAM $

I Y

EM

Test Cases in the UML
Sequence Diagrams

A

Fig. 2. EXAM enhanced by a MCUM

III. CASE STUDY START-STOP FUNCTIONALITY

In order to evaluate the MCUM-driven approach we have
chosen the Start-Stop functionality because it represents a
fairly complex application scenario and requires many ECUs
(Electronic Control Unit) to interact via car communica-
tion networks. Start-Stop performs an automatic shutdown of
the engine during longer standing periods and an automatic
restart [13], which reduces the fuel consumption and noxious
emissions of the car. Start-Stop is highly interconnected within
the ECUs of the car, and the implementation is leading to
a high system complexity. This is mainly caused by the
requirement that the motor shutdown and restart should happen
as imperceptible as possible and the familiar functionality and
comfort of the car should be sustained.

Thus, for testing the Start-Stop functionality we had to con-
sider many entities performing the Start-Stop function within
the car as well as other ECUs of the car and environmental
influences. Furthermore, we assumed high level evaluation
functions in EXAM in order to keep the abstraction level in
the MCUM consistent.

The MCUM for the Start-Stop functionality was designed
by using the MaTeLo graph editor. It consists of about 300
states and covers the functional specification in a car with
manual gearshift control. The specification consisted mainly of
textual descriptions in a requirement management system plus
graphs and tables that bring out certain aspects of the textual
specification. Traceability of requirements was achieved by
linking requirements with transitions and making use of state
groups to structure them. In Fig. 3 the central part of the
MCUM is depicted. It describes usage that affects the start-
stop functionality, including inputs from other ECUs in the car
and environmental influences.

Already during the modeling of the MCUM deficiencies
in the specifications could be identified. The detection is
straightforward, because following each possible usage se-
quence the expected system’s reactions are described based on
the requirements specification. During this procedure could be
identified

« one clearly misplaced erroneous specification,

« three contradictions within the requirements specification
and

« ambiguities in the specification, that have origin in the
omission of possible usage scenarios.

Naturally the identification of all these deficiencies is impor-
tant because they can lead to unexpected or even undesired
behavior of the final system. This demonstrates that as early
as possible potential implementation errors due to an erroneous
behavior model can be identified and avoided even before test
cases are executed in order to test the SUT.

Test cases have been derived via random walk based on the
profile information. Since no statistics for the future usage
behavior have been available we have assumed a uniform
probability distribution, which guarantees maximum entropy.
Applying 100 test cases an arc coverage of already 78%
was achieved and resulted in a mean test case length of 49
transitions. The shortest possible path traversing the MCUM
required 31 transitions.

In addition, an algorithm was employed to create a test suite
for minimal arc coverage. The generated test suite consisted
of 37 test cases with a mean test case length of 42 transitions.
This is quite a good result because each transitions is traversed
at least once in a comparably small number of test cases.
Therefore, this test suite can be used as the minimal basis
for testing the Start-Stop functionality.

Considering the test requirements in the automotive domain
new coverage algorithms for distinct testing criteria have been
invented. The generation of a test cases for arc coverage
is often performed by algorithms that address the Chinese
Postman Problem [14]. These work fine, however tend to
create a few but lengthy test cases. Thus the known established
algorithms for the derivation of test cases for coverage omit
the fact that with the length of an offline-executed test case
the risk increases that requirements are left untested during
a test run. This is due to the fact that a test case is aborted
when an error occurs. If this happens at an early test step
and the whole test case is aborted many steps remain untested
and a new test run has to be set up to test them. A family
of algorithms has been developed to overcome this drawback.
Mainly they aim for creating test suites for coverage consisting
of shortest individual test cases with regard to a cost function.
This cost function can be number of steps required or the
estimated execution time of a test case. Also the coverage
not of the whole model but of distinct states and transitions
with minimal length test cases - w.r.t. a cost function - is
made possible [15]. These are based on A* and Dijkstra’s
algorithms. Their enhancement and integration into EXAM
makes part of our future work.

== =
& > © =
©
O @ @ @@ B — @D, iy
S - e
S} ® i ®
©
& G | el
|
== @ ® @ "
&)
.
® |
=
] e
= ~r pis T ==
T =
® ©® - T
@
e 2 b & &
Fig. 3. Central part of the MCUM for the Start-Stop scenario

For providing an objective assessment of the extended
EXAM approach test cases for the Start-Stop functionality
were created manually by an experienced test designer. The
resulting test cases were compared to those that have been
automatically derived from the MCUM. The analysis revealed
that test cases derived from the MCUM by random walk
generation covered a broader spectrum of operation sequences
that may occur in real life scenarios than those, which have
been manually created. Among the random test cases we
also found situations that otherwise would not have been
tested. These experiments have shown that by means of a
MCUM real life scenarios were revealed that can occur in
practice and which are difficult to anticipate in advance by
pure consideration.

Furthermore, a comparison with test cases resulting from the
algorithm to achieve minimal arc coverage identified scenarios
that were not contained in the crafted test cases. Due to this
fact scenarios exist that would have probably been neglected
using the established EXAM method and therefore could not
be tested.

It is hardly possible to compare the time needed for creating
the MCUM and sketching the test cases manually in an exact
manner. This is correlated to the fact that creating a MCUM
imposes another quality in modeling, since it implicates re-
quirements analyses as stated in section II. Moreover, it is
difficult to compare the efforts of the manual way directly

with the efforts expended by our approach. This is due to the
fact, that not only the efforts but also the output of the methods
would have to be made comparable in a gaugeable manner,
which is obviously a hard task. Though we can claim from our
experience that the effort for creating the MCUM and deriving
the test cases has been less or equal than creating the test cases
manually and we achieved the stated improvements.

All in all many benefits have been determined by applying a
MCUM, i.e deficiencies in the specification could be identified
even before test case execution, new test scenarios could be
obtained, and gaps in the test case coverage could be closed.
However, we did not establish a fully automated way yet to
be able to derive test cases from a MCUM at the considered
abstraction layer. Questions for reaching this goal are not
resolved yet, e.g. how to establish full traceability from the
EXAM repository back to the MCUM and how to enable
regression testing based on the MCUM. Furthermore, it is
difficult to sustain the established modularity, reusability and
thus exchangability of test sequences if one would pursue the
fully automated approach.

Hence, our future goal is to create an architecture, which
keeps and reflects the benefits of the existing EXAM process.

IV. FUTURE WORK

In our future work we will examine how to make MCUMs
an integrated part of EXAM. Two promising approaches into

this direction arised from our work. The first one pursues the
extended approach presented in this paper but does not provide
a complete automated process starting from the MCUM up
to the test case generation (cp. Fig. 4). Instead, the usage
of a MCUM as a tool for improving the test management
and detecting test cases should be further optimized. Just as
specifying single test cases in the UML our future research is
focusing on describing a MCUM for EXAM completely in the
UML, including functional and non-functional requirements.

MCUM Usage Scenario Warkov-Chain
- Description Usage Model
Design Tool p i
<< derive ==
UML Sequence Diagram
Test Case Specification UL Activity Diagram
EXM == generate >
Test Flow Cantral Python, XML
Device Drivers Precompiled Applications
=< control >>
Thqu Party System Under Test HIL test benches
Equipment

Fig. 4. EXAM enhanced by MCUM for test case generation

In the second approach MCUMs in EXAM are employed at
the same layer as sequence diagrams (cp. Fig. 5). In this way,
the automatic derivation of dependability measures [6] will
be possible and testing time could be dynamically adjusted
to the realization of desired test targets. In addition, recorded
usage data of components can be used to calculate specific
usage profiles, which control the actual test case generation
and thus, the executed stimuli and evaluation sequences. In
this way real usage data could be directly used to test a new
system or a future system release.

EMM

McuUm

Test Driver MCUM Control Sst

<= generate ==

with MCUM Test Flow Control Pythan, <ML
Test Driver Device Drivers Precompiled Applications
<< control ==
Thqu Party System Under Test HiLtest benches
Equipment
Fig. 5. EXAM and a MCUM as test driver

Optimizing the test case derivation is also planned in our
future work. We intend to develop algorithms that allow the
systematic discovery of test cases according to specific test
benches and test requirements. Hereby, the main benefits of
using a MCUM, e.g. the calculation of dependability indicators
will be sustained.

V. CONCLUSIONS

In this paper we have demonstrated how to apply a MCUM
for the automatic deduction of test cases in the automotive

domain. In our Start-Stop case study substantial advantages are
discovered that result from creating a MCUM usage scenario.
Main findings are that even before executing the test cases
deficiencies and ambiguities in the system specification can
be identified. Potential failures can be detected and clarified
in an early validation step even before a single test case will
be executed. Test cases derived by random sampling from a
MCUM describe usage scenarios that would otherwise not
have been tested. The test suite for minimal arc coverage can
be used to close coverage gaps in a manually created test
suite. A fully automated test case generation process starting
from the MCUM up to the execution on the test bench has not
been established yet. Our goal was the optimal enhancement of
the EXAM process by an automatic test case generation from
MCUMs. We also have detected perspectives for algorithms
and future testing architectures that are more promising though
they do not provide a fully automated test case generation
environment.

REFERENCES

[11 G. Kiffe, EXAM Konzeptpapier, Audi AG, Ingolstadt, Dezember 2007.
[2] S. Rosaria and H. Robinson, “Applying models in your testing process,”
Information and Software Technology, vol. 42, pp. 815-824, 2000.

[3] J. A. Whittaker and M. G. Thomason, “A Markov chain model for
statistical software testing,” IEEE Transactions on Software Engineering,

vol. 20, no. 10, 1994.

[4] S. Prowell and J. Poore, “Computing system reliability using Markov
chain usage models,” J. Syst. Softw., vol. 73(2), pp. 219-225, 2004.

[5] W. J. Gutjahr, “Software Dependability Evaluation Based on Markov
Usage Models,” Performance Evaluation, vol. 40, no. 4, pp. 199-222,
2000. [Online]. Available: citeseer.ist.psu.edu/gutjahrOOsoftware.html

[6] K. Sayre and J. Poore, “A Reliability Estimator for Model Based
Software Testing,” in ISSRE ’02: Proceedings of the 13th International
Symposium on Software Reliability Engineering (ISSRE’02). Washing-
ton, DC, USA: IEEE Computer Society, 2002, p. 53.

[71 M. Beyer, “Q.E.D. - Ein Entwurfsprozess fuer statistische Tests mit
Betrachtung von Zeit- und Leistungsanforderungen,” Ph.D. dissertation,
Department of Computer Science 7, University Erlangen-Nuremberg,
2008.

[8] M. Beyer, W. Dulz, and K.-S. J. Hielscher, “Performance Issues in
Statistical Testing,” in Proceedings of 13th GI/ITG Conference on Mea-
surement, Modeling, and Evaluation of Computer and Communication
Systems (MMB 2006). VDE Verlag GmbH, 2006, pp. 191-207.

[91 S. J. Prowell, “Computations for Markov Chain Usage Models,”

Software Engineering Institute, Carnegie-Mellon University, Pittsburgh,

USA, Tech. Rep., 2000, uT-CS-03-505.

S. J. Prowell and J. H. Poore, “Foundations of sequence-based software

specification,” IEEE Trans. Softw. Eng., vol. 29, no. 5, pp. 417429,

2003.

J. M. Carter and J. H. Poore, “Sequence-based specification of feedback

control systems in simulink®),” in CASCON ’07: Proceedings of the

2007 conference of the center for advanced studies on Collaborative

research. New York, NY, USA: ACM, 2007, pp. 332-345.

W. Dulz and F. Zhen, “MaTeLo - Statistical Usage Testing by Annotated

Sequence Diagrams, Markov Chains and TTCN-3,” in IEEE Proc. of

Third International Conference on Quality Software (QSIC 2003), 2003,

pp. 336-342.

Systemlastenheft Start-Stopp-Funktion, Volkswagen AG, 38436 Wolfs-

burg, March 2008.

H. Thimbleby, “The directed chinese postman problem,” in In journal

of Software Practice and Experience, 2003, p. 2003.

S. Siegl, “Evaluation of Model-Driven Test Case Generation based

on Markov-Chain Usage Models in the Automotive Domain,” Mas-

ter’s thesis, Department of Computer Science, University of Erlangen-

Nuremberg, Germany, June 2008.

(10]

(1]

[12]

[13]

[14]

[15]

