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BP 30179 86962 Futuroscope Chasseneuil cédex, France
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Abstract. In this paper, we focus on the use of discrete geometry for
the sake of real-time modeling and analysis. We consider multiproces-
sor context, and we determine the geometrical characterization of PFair
scheduling algorithms, which are known to be very performant strategies.
A feasability test can then be deduced from the geometrical properties.
Keywords: discrete geometry, real-time, scheduling, model.

1 Introduction

Real-time applications are dedicated to the control of (critical) physical pro-
cesses, e.g. nuclear plants, car ignition systems, planes, robots. . . The applica-
tion interacts with the process by means of sensors and actuators. The general
aim is to ensure the process safety. For that sake, not only algorithmic correct-
ness is required but also temporal correctness: the dynamic of the application
must be suited to the dynamic of the physical process. A real-time application is
classicaly modeled as a set of periodic tasks, dedicated to control, e.g. tempera-
ture acquisition in a nuclear station, robot’s trajectory computation, processing
of information provided by a synchronous link. . . Tasks are submitted to firm



deadlines, which must be respected, otherwise the application may have erro-
neous behavior. For instance, a late computed value can be obsolete, and using it
may be misleading, or even dangerous. The main challenge for systems designers
is to guarantee that all deadlines will be met. That is the concern of scheduling.

We consider here multiprocessor architectures and global scheduling: tasks
can run at any time on any processor, they are never definitively assigned to
a processor, and may start on one processor and resume on another. We also
assume parallelism to be forbidden: at any time, a task runs on at most on one
processor. If tasks are independent, synchronous (they all are first released at
the same time) with implicit deadline (deadlines are equal to periods), there
exist optimal1 scheduling algorithms, the PFair algorithms [4, 6]. But in larger
contexts, where tasks are not indenpendent, it has been proven that there exists
no optimal strategy [10]. The designer can then turn towards off-line scheduling.
A feasible schedule is computed before run-time, and is stored in a table. Off-line
scheduling is more powerful that on-line scheduling, since scheduling decisions
are made according to the instantaneous state of the application for on-line
strategies meanwhile they are based on a global knowledge of the application
for off-line scheduling. These approaches are mostly model-oriented. Approaches
based on finite automata and on Petri nets can be found in the litterature [11,
12]. We consider here an approach based on discrete geometry. Such an approach
has a very lower complexity than the former approaches, as well for the model
generation as for the model analysis.

In [13], we have defined a discrete geometrical model equivalent to the au-
tomata based model presented in [9]. In this model, each task is associated with
a 2D-discrete object that collects all valid states of the task, i.e. all the states
(cumulated processed execution time of the task, time) belonging to a valid sched-
ule. The shape of this 2D-discrete object depends only on time characteristics of
the task. The execution of the task set is then modeled by a n+1-discrete object
(where n is the number of tasks). This model is called Concurrency Model and is
built using extrusion and intersection of task models. Ressource sharing is mod-
eled using a nD-discrete space, extruded following the time direction and then
cut out from the concurrency model (see figure 3). We have proven in [13] that
there exists a feasible schedule on a m-processor architecture if and only if there
exists a m-connected path in the (n + 1)D-discrete model of the application.

Our aim is here to lay the basis for a geometrical characterization of PFair
schedules which can be used for applications composed of dependent tasks with
deadlines less than periods. This model can then be used to decide effectively if
PFair scheduling is feasible in that extended context.
The paper is organized as follows: in section 2, we introduce basic notions and
notations in discrete geometry and in real-time scheduling. In section 3, we
present the modeling of PFair algorithms. In section 4, we present the model
implementation within the geometrical software GRETA. The paper ends with
some concluding remarks.

1 A scheduling algorithm is said to be optimal if either it produces a feasible schedule,
i.e. a schedule such that all deadlines are met, or there exists no feasible schedule.



2 Preliminaries

2.1 Basic notations in discrete geometry

The following notations correspond to those given by Cohen and Kaufman in
[8], by Klette and Rosenfeld in [15] and those given by Andres in [3]. We provide
only a short overview of these notions.

A discrete (resp. Euclidean) point is an element of Z
n (resp. R

n ). A
discrete (resp. Euclidean) object is a set of discrete (resp. Euclidean) points.

We note pi the ith coordinate of a point p of Z
n. Two discrete points p and q are

k-neighbours (or k-connected), with 0 ≤ k ≤ n, if |pi− qi| ≤ 1 for 1 ≤ i ≤ n, and
k ≤ n−

∑n

i−1 |pi − qi|. The set D(a, b, γ, ω) = {(x, y) ∈ Z
2, γ ≤ ax+ by < γ +ω}

is called a digital straight line with slope a/b, lower bound γ and arithmetical
width ω.

2.2 Basic notions of real-time scheduling

We consider multiprocessor systems. For any real x, ⌊x⌋ denotes the greatest
integer less than or equal to x and ⌈x⌉ the smallest integer greater than or equal
to x.

The task model We consider applications composed of n independent periodic
tasks τ1(r1, C1, D1, P1), τ2(r2, C2, D2, P2), . . . , τn(rn, Cn, Dn, Pn). Each task
is submitted to hard temporal constraints. We adopt the classical modeling of
tasks [14]. Each periodic task τi is characterized by four temporal parameters
as described in figure 1: ri is the first release date or offset; Ci the worst-case
execution time; Di the relative deadline, which corresponds to the maximal de-
lay allowed between the release and the completion of any instance of the task;
and Pi the period. Each task τi consists in an infinite set of instances (or jobs),

Fig. 1. Temporal modeling of a real time periodic task

released at times ri + k × Pi, with k ∈ N. We assume that temporal parameters
are known and determinist.
In the sequel, P denotes the hyperperiod of the system defined as P = lcm(P1,



P2, . . . , Pn).
The processor’s utilization factor characterizes the processor workload due to

the application. It is defined by U =
n
∑

i=1

Ci

Pi

. If U > m (m being the number of

processors), the system is over-loaded and temporal faults cannot be avoided [7].
In the sequel, we suppose it to be less than m.
In the further, slot t denotes the time interval [t, t + 1). A task is said to be
scheduled at time t when that one processor processes it during slot t.

A schedule is defined by S : N × {1, . . . , n} → {0, 1} such that
n
∑

i=1

S(t, i) ≤ m.

We have S(t, i) = 1 ⇔ τi is scheduled at time t, for i = 1 . . . n and if
n
∑

i=1

S(t, i) =

k < m then (m−k) idle time units occur at time t. We also introduce Si defined
by

Si(t) =

{

1 if S(t, i) = 1
0 else

And for any times t and t′, and for any task τi, we define Wi(t, t
′) as the

processed execution time for task τi between time t and time t′. We have

Wi(t, t
′) =

t′−1
∑

u=t

Si(u).

2.3 Geometric model for real-time systems behaviors

Fig. 2. Geometrical model Ω(τ ) of task τ (r = 3, C = 3, D = 7, T = 11).

As shown on figure 2, the single task model Γi is an object of 2D space:
the (task processed execution time, time) space. The shape of this 2D-discrete
object depends on the temporal parameters (r, C, D, T ) of the task.

The model for the whole application Γ = (τi)i∈[1,n] is the set

Ω(Γ ) = {(x1, ...xn, t) ∈ Z
n+1, ∀i ∈ [1, n], (xi, t) ∈ Γi}.

Diagrams (a) to (d) on figure 3 present the building steps for the concurrency
model. It is obtained using extrusion and intersection operations.

Resource sharing between tasks τi and τj is modeled by a surface (noted
G(R) on figure 3) in the (xi, xj) plan which is then extruded following time



Fig. 3. building steps of a two task system geometric model.

direction. The result is finaly cut out from Γi to obtain Γi,R. Those steps are
depicted by diagrams (e) to (h) on figure 3.

Feasability of a real-time system application relies on the connectivity of the
resulting (n + 1)D-object: if it is m-connected then there exists at least one
valid schedule of the application on a m-processor architecture. If not, we can
measure the distance to feasability by computing the distance between connected
components. Please refer to [13] for a complete definition of the geometric model.

3 Discrete modelisation of PFair algorithm

In this part, we present a PFair algorithm and the associated discrete geometric
model in the context of synchronous tasks with implicit deadlines(∀i, ri = 0 and
Di = Ti). Then we model asynchronous task systems while relaxing the ri = 0
constraint. Then we consider systems with deadlines Di ≤ Ti and finally we take
concurrency and resource sharing into account.

3.1 PFair scheduling algorithm

PFair scheduling strategies have been proposed in the general multiprocessor
context, for which they are very efficient. The basic idea is that each task is
processed at “regular rate”. This means that at each time t, the number of
processed slots Wi(0, t) is proportionnal to t, with coefficient ui = Ci

Pi

. But, since
the number of processed slots at time t must be integer, ui × t is approximated
by either ⌊ui × t⌋ or ⌈ui × t⌉.
This is formally expressed by the following definition:
A schedule is PFair iff we have:

∀t ∈ N,−1 < ui × t −

t−1
∑

j=0

Si(j) < 1

Figure 4 illustrates PFairness. For any task τi, the broken line Wi must remain
strictly between both limit lines W− = ui × t − 1 and W+ = ui × t + 1.



Fig. 4. PFair execution of a task: the execution curve must be located between both
dotted lines

Figure 5 shows examples of PFair and non PFair behaviors.

Fig. 5. (a) a PFair execution and (b) a non PFair executions, and different status of
the task

At any time t, a task is said to be:

– ahead if Wi(t) is above the ideal line Wi(t) = ui × t. It has been processed

a little bit more than in the ideal case. We have: ui × t −
t−1
∑

j=0

Si(j) < 0.

– punctual if it has been processed for exactly ui × t slots. We have: ui × t−
t−1
∑

j=0

Si(j) = 0.

– behind if Wi(t) is under the ideal line Wi(t) = ui × t. It has been processed

a little bit less than in the ideal case. We have: ui × t −
t−1
∑

j=0

Si(j) > 0.

PFair strategies follow the global frame described below.

1. The task set is partitioned into three sets.
– the Urgent set collects all the behind tasks which would be late (under

the lower bound) if they were not processed at time t. These tasks must
be processed at time t, else the PFairness condition would be violated.



– the Tnegru set collects the ahead tasks which would be in advance (over
the upper bound) if they were processed at time t. These tasks must not
be processed at time t, else the PFairness condition would be violated.

– the Contending set collects the other tasks: the PFairness won’t be
violated neither if they are processed nor if they are not.

2. Urgent tasks are processed.
3. Contending tasks are sorted. The m - | Urgent(t) | first contending tasks are

processed2.

Several PFair versions have been proposed in the litterature (PF, PD and PD2

[6, 5, 1, 2]). These algorihms differ in the way they select tasks to process among
the contending tasks. Moreover, in PD2, Tnegru tasks may also be processed,
provided some processors are available. It is a conservative version of PFair
strategies. These scheduling strategies are very efficient, as stated in theorem 1.

Theorem 1 [6] The scheduling algorithms PF, PD and PD2 are optimal for
systems of periodic synchronous independent tasks with implicit deadlines (dead-
lines are equal to periods) in multiprocessor context. Moreover, the system is
feasible if and only if U ≤ m where m is the number of processors.

For multiprocessor systems, Pfair scheduling strategies are the only known op-
timal strategies.

3.2 PFair modeling

We define the PFair geometrical model for a task τ(r, C, D, T ) as the set of PFair
states belonging to a PFair schedule.

Definition 1. The PFair geometric model of a task τ is the set:

V (τ) = {(t, y) ∈ N such that ∃ a PFair schedule S, y =
∑

k∈[0,t] Si(k)}

Fig. 6. A PFair schedule of task τ (r = 3, C = 3, D = 7, T = 11).

Figure 6 presents the PFair execution schedule ( p p p ) for
task τ(3, 3, 7, 11) where p stands for processing and for idle. In the following,
we define this set on a more geometrical way.

2 | A | denotes the cardinality of set A.



3.3 Synchronous task systems with implicit deadlines

The discrete model of the PFair behaviors of a real-time task is composed of all
states the application can reach under PFair execution. This set consists of all
discrete points close enough (at a distance less than 1) to the line y = (C/T )t.

Fig. 7. Geometrical model Γ and PFair state set V for task τ (r = 0, C = 3, D = 7, T =
7).

We can see on figure 7 the geometrical model Γ of task τ(r = 0, C = 3, D =
7, T = 7) and the subset V of Γ composed of τ PFair states. Let us state

y =
t−1
∑

j=0

Si(j). From PFairness definition, we have ∀t ∈ N,−1 < Ci

Ti

× t − y < 1,

so we get: ∀t ∈ N,−Ti < Ci × t − y × Ti < Ti. We therefore define the set V
geometricaly as:

Definition 2. The set of discrete PFair states for a task τ(0, C, D = T, T ) is
defined by:

V (τ) = {(t, y) ∈ Z
2,−T < Ct − Dy < T }

Since PFair states belong to feasible schedules, we also have the following prop-
erty:

V (τ) ⊂ Ω(τ)

Asynchronous task systems with implicit deadlines. In this context, a
task cannot be processed before its first release. Therefore, the only states avail-
able before this time are those with y = 0. After release, the execution must
follow the line y = C

D
× t + r. Thus we give the following definition:

Definition 3. The set of discrete PFair states for a task τ(r 6= 0, C, D = T, T )
is:

V =

{

(t, y) ∈ Z
2,

∀t < r, y = 0,
∀t ≥ rC × r − T < Ct − Ty < C × r + T

}

.



Fig. 8. Geometrical model and PFair-state set V for task (r = 3, C = 3, D = 7, T = 7).

Fig. 9. Geometrical model and PFair-state set V for task (r = 3, C = 3, D = 7, T =
11).

Task systems with relative deadlines. When the relative deadline is strictly
less than the period, the task must complete execution before deadline and no
execution can arise between D and T . The task must be processed during C slots
between r and r + D. So the execution rate is here equal to C

D
, and the task is

idle before r and between D and T . We thus have:

Definition 4. The set of discrete PFair states for a task τ(r 6= 0, C, D ≤ T, T )
on its first period is defined by:

V1 =







(t, y) ∈ Z
2,

∀t ≤ r, y = 0,
∀t ∈ [r, D[, C × r − D < Ct − Dy < C × r + D,
∀t ∈ [D, T [, y = C







.

The next period starts with the next job release at T . We therefore represent
the PFair behaviors during time interval [0, k × T ] using union of lines (y =
C
D

× t + (i − 1) × T )1≤i≤k digitisation. We state r0 = r, ri = (i − 1) × T and
Di = ri + D.

Definition 5. The set of discrete PFair states for a task τ(r 6= 0, C, D ≤ T, T )
on its ith period (i > 1) is defined by:

Vi =

{

(t, y) ∈ Z
2,

∀t ∈ [ri, Di[, C × ri − D < Ct − Dy < C × ri + D},
∀t ∈ [Di, ri+1[, y = C × i

}

.

The complete set is therefore:



Definition 6. The set of discrete PFair states for a task τ(r 6= 0, C, D ≤ T, T )
on its k first periods is:

V =
⋃

1≤i≤k

(Vi).

Concurrency and resource sharing. The model for PFair states of the whole
system is obtained using extrusion of each PFair model of each task followed by
their intersection [13], we get the following set:

Definition 7. The set of discrete PFair states of the task system (τi)i∈[1,n] is
the set

VΓ = {(t, y1, ....yn) ∈ Z
n+1 such that ∀i ∈ [1, n], (t, yi) ∈ Vτi

}

The feasability of a system is determined by the connectivity of the final
object. If there exists an m-connected path (set of discrete m-neighbourg points
of the object such that there exists one and only one point for each t coordi-
nate) through the object then there exists a schedule which guarantees that all
deadlines are met.

The geometric modeling of the PFair on-line algorithm allows several analy-
sis: we can decide if there exists a PFair schedule, for a given number of proces-
sors m, by searching a m-connected path in the model. If such a m-connected
path does not exist, we can assure that there exists a resource sharing prob-
lem (see theoreme 1). Since the model integrates both PFainess and resource
management,we can also determine whether there exists a schedule that both is
PFair and respects resource scharing constraints for a given number of proces-
sors. If no such schedule exists, it can be possible to find a connected path that
is partly PFair before and after the resource sharing problem and thus bypasses
the ressource sharing impossible states. It can be useful in order to propose a
bi-modal schedule: PFair mixed with a specific non-Pfair behavior which is com-
patible with the resources management. We can therefore also compute distance
to PFairness of a schedule for a m processor architecture. This distance is de-
fined as the length of the shortest m-connected path linking the last PFair state
before the resource sharing problem and the first PFair state after.

4 implementation

The software GRETA has been developped 4 years ago. This software computes
the geometrical model of a task system where tasks can be asynchronous, with
relative deadlines (D < T ). The ressources sharing is also implemented.

The PFair model is computed in the same way as the general model, we just
have to add a further test on each point to decide if it belongs to the model or
if it does not. On figure 10, we can see the PFair model of a two task system. In
the obtained discrete object, a Pfair schedule can be computed as a list of states
(voxels)(see light grey voxels on figure 10).



Fig. 10. GRETA result of PFair modelling for a two task system.

5 Conclusion

PFair scheduling is a very powerful strategy for real-time scheduling in multipro-
cessor context. It has been proven to be optimal for synchronous, independent
task systems, with implicit deadlines. It could thus be of interest to use it for
larger context. Besides, the discrete geometrical approach is really effective for
deciding feasability and finding feasible schedules. We have here paired both no-
tions. We have presented the geometrical characterization of PFair behaviors of
a real-time application. We have then explained how to take resources manage-
ment constraints into account in our model. The geometrical modeling has been
implemented within the software GRETA.

Next step will be the extraction of as Pfair as possible schedules. Furthermore,
it could be interesting to try to derive a resource management protocol which is
as close as possible from PFair behavior. A work in progress is the definition of
quality criteria based on geometrical properties (mainly distances) that allow to
quantify the ”PFairness” of a given schedule.
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