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A Lower Bound on the Sample Size needed toperform a Signi�ant Frequent PatternMining TaskStéphanie Jaquemont, François Jaquenet, Mar SebbanLaboratoire Hubert Curien, Université de Saint-Etienne, 18 rue du ProfesseurLauras, 42000 Saint-Etienne (Frane)AbstratDuring the past few years, the problem of assessing the statistial signi�ane offrequent patterns extrated from a given set S of data has reeived muh attention.Considering that S always onsists of a sample drawn from an unknown underlyingdistribution, two types of risks an arise during a frequent pattern mining proess:aepting a false frequent pattern or rejeting a true one. In this ontext, manyapproahes presented in the literature assume that the dataset size is an appliation-dependent parameter. In this ase, there is a trade-o� between both errors leading tosolutions that only ontrol one risk to the detriment of the other one. On the otherhand, many sampling-based methods have attempted to determine the optimal sizeof S ensuring a good approximation of the original (potentially in�nite) databasefrom whih S is drawn. However, these approahes often resort to Cherno� boundsthat do not allow the independent ontrol of the two risks. In this paper, we overomethe mentioned drawbaks by providing a lower bound on the sample size requiredto ontrol both risks and ahieve a signi�ant frequent pattern mining task.
1 IntrodutionIn frequent pattern mining (1; 2), one aims to �nd interesting patterns from adatabase in the form of assoiation rules, sequenes, episodes, orrelations, et.Many algorithms have been proposed in the literature to deal with assoiationrule mining (3; 4; 5), sequential pattern mining (6; 7; 8; 9), graph mining(10; 11; 12; 13), tree mining (14; 15; 16). Chao et al. (17) proposed a generilibrary for dealing with a large family of frequent patterns. This domain of
⋆ This work is part of the ongoing BINGO2 researh projet �naned by the FrenhNational Researh Ageny.Preprint submitted to Elsevier 23 April 2009
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researh has been applied in lots of appliations (see (18) for a survey) suhas the disovery of ustomers' behavior in supermarkets, the extration ofpatterns of alarms in manufaturing supervision, the modeling of web users,et. A pattern of a sample S is alled frequent if its observed frequeny isgreather than a minimal support threshold. For instane, a sequene miningproess onsists of deteting frequent subsequenes from a dataset of sequenesthat are made up of possibly non ontiguous symbols. For example, let usassume that the database S is onstituted of the following three sequenes
S = {ACGT, ATGAT, CAGTA}. By �xing the minimal support threshold to
2
3
, the pattern AGT is onsidered as frequent sine it ours three times outof the three sequenes of S, that atually is > 2

3
.During the past deade, the sienti� ommunity has mainly onentratedits e�orts on the redution of the omplexity of the frequent pattern miningmethods to deal with large datasets. In this ontext, the redution of the searhspae has onstituted one of the main objetives. From an algorithmi pointof view, all these approahes have to prove that they are orret and omplete,i.e. they must guarantee that (i) all the frequent patterns that are extratedare really frequent in S, and (ii) no frequent pattern of S has been overlooked.However, these properties are not su�ient to guarantee the signi�ane of afrequent pattern mining proess. Indeed, S being nothing else but a sample ofan unknown target distribution D, mining algorithms often suppose that thedistribution over S is the same as D from whih these data have been drawn. Inother words, they make no assessment of the likelihood that a frequent patternextrated from S is an artifat of the sampling rather than a onsistent patternin the target distribution D. In the same way, they do not assess the risk ofoverlooking a pattern that would be in fat frequent aording to D.More formally, deiding if a pattern in S is frequent or not boils down toomparing its observed proportion p̂ with a given support threshold p0. If p̂ >

p0, the pattern is onsidered as frequent by the mining algorithm. However, thetrue probability p of this pattern omes under the unknown target distribution
D. Therefore, when an algorithm takes a deision about the status of a pattern,it takes a risk α ∈ [0, 1] of aepting a false frequent pattern (i.e. that appearsin S due to hane alone), or a risk β ∈ [0, 1] of rejeting a true frequentone. In this ontext, 1 − α an be alled the theoretial preision, whereas
1− β orresponds to the theoretial reall of the algorithm. It is important tonote that most frequent pattern mining algorithms do nothing (or little) toontrol both α and β. As mentioned before, their main goal �only� onsists ofguarantying their orretness and their ompleteness over S, but nothing isensured over the underlying distribution D. This an be justi�ed by the fatthat, statistially, given a onstant number of data in S, reduing one of thetwo risks implies inreasing of the seond one.In this paper, we di�erently take up this problem, by providing a lower bound2
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on the size of S needed to theoretially guarantee a preision of (1−α) and areall of (1−β) aording to any distribution D. Therefore, we rejet the wellknown statement that to inrease the reall, we have to aept to dereasethe preision, or vie versa. We rather answer the following question: What isthe minimal size of S required to satisfy given risks α and β? We laim thatthis ontribution is novel by omparison with the state of the art. Indeed, wewill see that the few approahes attempting to deal with this problem froma theoretial point of view either are based on Cherno� bounds that do notallow the independent ontrol of α and β, or all on statistial tests that re-quire to hoose the risk to optimize. Even though our ontribution is above alltheoretial, we laim that it an provide useful help in many appliations. Forinstane, in domains where the data aquisition is not ostly, one an wonderwhat is the minimal number of examples that are required to optimize thetrade-o� between the redution of the algorithmi onstraints and the guar-antee of a disovery of true knowledge. Therefore, in suh ases, our theoretialresult provides a bound reahable in pratie guaranteeing a signi�ant fre-quent pattern mining task. This is the ase for example in the modeling ofweb users' behavior, where tera-bytes of data are available in log �les. On theother hand, in domains where the number of available examples is limited (inmoleular biology for instane), it enables us to draw the attention of dataminers on the fat that some extrated patterns ould be the result of falsedisovery, and some others ould have been omitted despite their signi�ane.In this ase, the use of the extrated knowledge must be done with aution.The rest of the paper is organized as follows. In Setion 2, we present thestate of the art approahes aiming to assess the signi�ane of the extratedpatterns. Setion 3 is devoted to the presentation of our bound enabling us to�x in advane α and β; A �rst illustration is presented in Setion 4 on a realdatabase. In Setion 5, we disuss about the valuation of the parameters ofour bound, and we present a larger series of experiments.2 Related Work2.1 Bottlenek of frequent pattern mining algorithmsLet us suppose we arry out a series of experiments onsisting of tossing aoin N = 10 times. Let S be the resulting sample of 10 itemsets onstitutedin this ase of only one item (<tails> or <heads>). Suppose we observe in
S respetively 8 <tails> and 2 <heads>. By �xing the support threshold to
p0 = 0.5, the pattern tails will be onsidered as frequent in S, beause itsobserved frequeny p̂ = 0.8 is higher than p0, while the pattern <heads>3
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will not be. Does it mean that the extrated knowledge �<tails> is morefrequent than <heads>� is signi�ant? In fat, we an easily prove that suha ombination of <heads> and <tails> an �often� our over only 10 trials,without hallenging the balane of the oin itself. We an note that the sizeof S has a diret impat on the signi�ane of the result. During the past fewyears, several papers have drawn the attention of data miners on the risksof extrating regularities from data in the form of a random artifat. Theprevious example is a good illustration of this problem that an arise in afrequent pattern mining proess. Let us desribe now some possible solutionsthat have been presented in the literature, and that take into aount the sizeof S to overome the mentioned drawbak.2.2 Modifying the support threshold p0 using Cherno� boundsRather than diretly omparing the observed frequeny p̂ in S with p0, a �rstsolution onsists of bounding p0 in order to take into aount the estimateerror |p̂ − p| due to the use of a sample S of �nite size N , where p is the trueprobability of the pattern under the unknown theoretial distribution D.A well-known non parametri approah that deals with this problem is basedon Cherno� bounds that state that the estimate error between a randomvariable X observed on a sample S and its expeted value E(X) aording to
D is lower bounded by ǫ, suh that

∀ǫ ∈]0, 1[, P (|X − E(X)| ≥ ǫ) < e−2Nǫ2. (1)Eq.1 states that, obviously, the higher the sample size N , the smaller theestimate error. Cherno� bounds have been widely used in statistial learn-ing theory for many years, and more reently in frequent pattern mining bysampling-based methods (19; 20) to deal with the statistial relevane of theextrated patterns. Basially, sampling-based data mining methods aim toredue the potentially huge I/O overhead in sanning a database DB (thatpotentially an not be stored in memory) for disovering frequent patterns.Their goal onsists of sampling the original database into a sample S andextrat regularities from this subset while guaranteeing the auray of theextrated knowledge. Even if the sample S is here not drawn from an un-known underlying distribution D (but rather from an existing large database
DB), this framework looks like ours, espeially sine those Cherno� boundsan also be used to provide a theoretial size of S ensuring an upper bound ofthe estimate error. Indeed, let the observed frequeny p̂ be the random vari-able X of Eq.1 omputed from S, and pDB its expeted value E(X) over thewhole database DB (potentially large), the Cherno� bounds an be rewritten4
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as follows:
P (|p̂S − pDB| ≥ ǫ) < e−2Nǫ2 (2)Ineq.2 an be used in di�erent ways. First, given a size N , solving for ǫ thisinequality equal to a given probability provides a slak value of the supportthreshold p0. On the other hand, given a value ǫ, solving for N Eq.2 equalto δ provides a lower bound of the sample size N satisfying the estimateerror ǫ. Despite its obvious advantages, the use of the Cherno� bounds has alimitation. Indeed, as used in (19; 20), the symmetry due to the absolute valuein Eq.2 indiates that the risk of a bad estimation p̂ is equally distributedaround pDB. In other words, the risk that a pattern ours in S less oftenthan expeted in DB is equal to the risk that a pattern ours more oftenthan expeted. In this ontext, Cherno� bounds does not allow the distintionbetween the false positive rate α and the false negative rate β, as de�ned inthe introdution. This an be a problem in domains where α and β have to beindependently handled. For instane, suppose that a vaine is administeredto a patient aording to the frequent presene or not of a pattern in hisDNA. Missing a patient who has the disease (i.e. overlooking a true frequentpattern) would not have the same medial e�et than the one onsisting ofadministering the vaine to a healthy person (i.e. admit a false frequentpattern).In (21), Toivonen presents another sampling method for disovering relevantassoiation rules. The algorithm also piks a random sample S from the origi-nal database DB, then it determines from S all frequent assoiations rules thatprobably hold in DB; �nally it veri�es with DB if they are atually frequent.To ontrol the risk of overlooking true frequent patterns, Toivonen replaesthe support threshold p0 by a lower bound based on the Cherno� bounds sothat misses are avoided with a high probability. However, Toivonen only dealswith β. Indeed, by using DB to verify if the extrated patterns are atuallyfrequent, the risk α of false positive is intrinsially null. However, this way ofproeeding is only possible if the original database DB is available. While thisondition is ful�lled in Toivonen's framework, it is an unaeptable onstraintin ours whih assumes that S has been drawn from an unknown theoretialdistribution.Reently, Laur et al. proposed in (22; 23) an approah that not only makesuse of Cherno� bounds but also deals with both risks α and β. Given a sample

S, they provide a bound for p0 that ensures either a preision equal to 1 witha high probability while ontrolling the reall, or a reall equal to 1 with ahigh probability while limiting the degradation of the preision. Even if thisapproah is theoretially well founded, the user has to hoose the riterion(reall or preision) he wants to optimize, that an be a triky task in domains5
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where both errors α and β are de�nitely undesirable.2.3 Modifying the support threshold p0 using statistial testsA seond solution to hek the relevane of a disovered pattern is to resortto statistial tests that involve two hypotheses, a null hypothesis H0 and analternative one Ha. Usually, Ha is made to desribe an interesting situation(e.g. a frequent pattern), while H0 haraterizes the irrelevant situation (e.g. anon frequent pattern). When a test is performed, two types of errors an our:The �rst one, alled Type I error, omes from the aeptation of the hypothesis
H0 while Ha is true; the seond one, alled Type II error, orresponds to thewrong deision to aept Ha whileH0 is true. Therefore, adapted to the ontextof frequent pattern mining, the Type I error an be de�ned as desribing therisk α of aepting a false frequent pattern, while the Type II error an bede�ned as being the risk β of rejeting a true frequent one. In this ontext,it is important to reall that there exists a statistial trade-o� between thesetwo risks. Given a sample size S, β atually inreases if one wants to redue αand vie versa. In the following, we present some state of the art approahesthat deal with the relevane of extrated patterns using suh statistial tests.In (24), Megiddo & Srikant deal with the evaluation of the quality of assoi-ation rules extrated from a set of data. They present an approah for esti-mating the number of false disoveries in order to ontrol the preision. Let usonsider an assoiation rule X ⇒ Y , where X and Y are sets of items. As anull hypothesis, they assume that X and Y our in the data independently.Thus, they test the null hypothesis H0 : p(X ∩ Y ) = p(X)× p(Y ) against thealternative one Ha : p(X ∩Y ) > p(X)×p(Y ), whih, roughly speaking, meansthat a lot of transations that ontain X also ontain Y . They run a statis-tial test exploiting the property that the observed frequeny of an itemsetasymptotially follows a normal distribution. To redue the risk of aeptinga false frequent pattern, they inrease the support threshold p0 by zα × σp̂,where σp̂ is the standard deviation of p̂ and zα is the (1−α) perentile of thenormal distribution. Therefore, by a priori tuning the risk α, they an ontrolthe preision. Nevertheless, by using a small value for α, bounding p0 by thisway results in the derease of the reall.Reently, in (25), Webb presents two new approahes to applying statistialtests in pattern disovery to assess the quality of a pattern. First, he sug-gests the split of the sample S into an exploratory set, from whih a patternextration is ahieved, and a holdout set used to assess the quality of eahpattern. Despite promising experimental results, this approah is above allempirial and does not provide any bound that enables both risks to be re-dued. Webb also presents an approah based on the Bonferroni adjustment6
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(26). When a statistial test is applied many times during an assessment, aspeial problem arises: if α orresponds to the risk of taking a wrong singledeision, repeating the test many times globally inreases that risk (26). Tooverome this drawbak, several strategies have been proposed (27). A famousone is the Bonferoni adjustment that uses a risk α/n when performing n hy-pothesis tests. However, if n is large, suh adjustment turns out to be stritand leads to the inrease of the other risk β.Another solution onsists of using Holm proedure (28) that takes into a-ount the p-value of eah test and orders them to tune a less strit risk. Suha strategy is also used in the BH proedure (29) that aims to set α while on-trolling the so-alled false disovery rate. However, both of these adjustmentsrequire the omputation of the p-values of the n tests whih depend on theurrent appliation. In our paper, we will provide a more general tool what-ever the appliation we deal with. Moreover, note that we aim to determine arelationship between the number N of data to mine and �xed risks α and
β. In the adjustment proedures mentioned before, α and β are linked to thenumber n of statistial tests when testing multiple hypotheses. Therefore,both objetives annot be diretly onneted.In (30), Lee et al. present the DELI algorithm whih is based again on a sam-pling method whih generates a sample S from a database DB. To maintain in
S an aurate set of assoiation rules, a on�dene interval is built for the trueprobability p of an assoiation rule in DB, suh that p ∈ p̂ ± zα/2

√

p̂(|DB|−p̂)
|S|

,where p̂ is the support of the rule in S, α is the Type I error, and zα is the(1 − α) perentile of the normal distribution. By �xing α, the authors showthat one an determine a suitable size of S satisfying the Type I error. As wean note, this approah has two main drawbaks. First, only the Type I error
α is used to assess the statistial signi�ane of the patterns. Therefore, thesize of S dedued from the on�dene interval does not take into aount theType II error β. On the other hand, the omputation of this interval requiresthe use of the size of the original database DB. As we mentioned before, ourmore general framework does not require to have DB.Finally, note that other statistial test-based investigations have dealt withthe assessment of the signi�ane of patterns in data mining. They use e�-ient tests (suh as the Chi-square test and Fisher exat test) to statistiallymeasure the level of dependeny between the omponents of a pattern. An of-ten used strategy onsists of verifying if the extrated struture would also bedisovered from a random sample having same margins (see (31) for example).The approahes we presented in this survey either impose a symmetry ondi-tion on the estimate error, or minimize only one risk given a sample set size,or require the alulation of p-values of a spei� set of statistial tests. Noone o�ers theoretial results that provide a bound on the size of S satisfy-7
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ing arbitrary hosen parameters α and β. In the following, we �ll this gapby proposing a statistial approah that exploits the asymptoti onvergeneof the distribution of frequent patterns. We provide a bound on N , easilyomputable, allowing the independent ontrol of both risks α and β.3 A statistial view of the reall and the preision3.1 Risks of rejeting true frequent patterns and aepting false onesLet p̂(w) be the proportion of data in the set S that ontain a given pattern w.Let us reall that w is alled frequent if p̂(w) is higher than a minimal supportthreshold p0. In fat, p̂(w) is nothing else but an estimate of the real probability
p(w) over D. Sine p(w) is unknown, one an formulate a hypothesis on itsreal value and perform a statistial test. As usually done in the standardapproahes, we suggest to desribe by the null hypothesis H0 the situationwhere p̂(w) is not high enough to onsider w as being frequent. As done in(24), we suggest to keep the maximal value p0 that prevent w from beingaepted as frequent. Therefore, we test the null hypothesis H0: p(w) = p0,against the alternative one Ha, whih desribes an interesting disovery, i.e.
Ha: p(w) > p0.Type I error: α represents the risk of rejeting H0 while it is true. In ourfrequent pattern mining ontext, α orresponds to the risk of aepting a falsefrequent pattern. Therefore, 1−α exatly desribes the theoretial preision ofthe algorithm over the distribution D. For instane, with a support threshold
p0 of 10%, observing p̂(w) = 10.2% in S does not mean that w is de�nitelyfrequent in the target distribution D. To be able to take a well-founded dei-sion, we an a priori �x α (usually 5%, but it an depend on the appliationwe deal with), and then ompute a bound of rejetion k, satisfying α. Moreformally,

α = P (p̂(w) > k|H0 true) . (3)The number of data of S that ontain w is a binomial random variable withsuess probability p(w). Aording to the size N of S and the support thresh-old p0, we an use either the normal or the Poisson approximation. In ourontext, we aim to provide a theoretial bound on N that will be by naturequite large. Moreover, sine we are looking for frequent patterns, we an as-sume that p0 will be hosen su�iently large otherwise the framework wouldbe the one of exeptions or rare events that is the matter of another researhdomain. Therefore, using the entral limit theorem, we will onsider in the8
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following that the proportion p̂(w) follows a normal distribution N , suh that
p̂(w) ≈ N



p(w),

√

p(w)(1 − p(w))

N



 .Equation 3 an be rewritten
α = P





p̂(w) − p(w)
√

p(w)(1−p(w))
N

>
k − p(w)

√

p(w)(1−p(w))
N

|H0 true



 . (4)Sine H0 is true, we have to replae p(w) by its value under H0. We get
α = P





p̂(w) − p0
√

p0(1−p0)
N

>
k − p0

√

p0(1−p0)
N



 . (5)We an then easily dedue the bound k whih orresponds to the (1 − α)-perentile zα of the normal distribution:
k = p0 + zα

√

p0(1 − p0)

N
. (6)To reap, by �xing a risk α, Equation 6 gives us the bound of rejetion of

H0. For example, let us suppose we are mining N = 10000 data. Let us �xthe support threshold p0 = 10% and the risk α = 5% (zα = 1.645 by readingthe table of the normal distribution). Plugging these values in Equation 6, weget k = 0.1 + 1.645×
√

0.1∗0.9
10000

= 0.105. Therefore, a pattern w with a support
p̂(w) = 10.2% will be in fat rejeted in order to ontrol the risk of aeptingfalse positives.3.1.0.1 Type II error β: Regarding β, it desribes the probability torejet a true frequent pattern. In ontrast to α, β an be alulated aordingto the previously omputed bound k. Sine Ha: p(w) > p0 is true, we have toset a given value for p(w) satisfying the onstraint p(w) > p0. Let pa be thisvalue (see Setion 5 for a disussion about pa). We get

β = P (p̂(w) < k|Ha true). (7)As previously done for α, 9
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β = P





p̂(w) − p(w)
√

p(w)(1−p(w))
N

<
k − p(w)

√

p(w)(1−p(w))
N

|Ha true



 . (8)By replaing p(w) by its value under Ha, we get
β = P





p̂(w) − pa
√

pa(1−pa)
N

<
k − pa

√

pa(1−pa)
N



 . (9)Sine k is known thanks to Eq. 6, the (1 − β)-perentile zβ is also known,and β an be easily dedued from the normal distribution. To ontinue withour previous example (assuming that N = 10000 data), let us suppose that
pa = 11%, then β = 5.5% (by reading the table of the normal distribution).Therefore, for a true support of 11%, the probability to falsely aept the nullhypothesis based on a �nite sample of N = 10000 data is 5.5%.
3.2 Lower bound on NThe ideal objetive of a frequent pattern mining proess is to redue not only
α but also β. However, as mentioned before, there exists a trade-o� betweenthese two risks. With a onstant number of data N , β atually inreases ifone redues α and vie versa. A solution to overome this drawbak onsistsof determining how many data N would be needed to not exeed a priori �xed
α and β risks. This is the matter of the next theorem.Theorem 1 To ensure that the false positive rate and the false negative ratedo not exeed respetively �xed risks α and β, the lower bound Nlow of the sizeof the sample S on whih the frequent pattern mining algorithm must be runis equal to

Nlow =





zβ

√

pa(1 − pa) + zα

√

p0(1 − p0)

pa − p0





2

, 0 < p0 < pa < 1.Proof 1 The proof is straightforward. We an dedue from Equation 9 that
k = pa − zβ

√

pa(1 − pa)

N
, (10)10
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where zβ is the (1 − β)-perentile of the normal distribution. Equating Equa-tions 6 to 10, we an dedue that
p0 + zα

√

p0(1 − p0)

N
= pa − zβ

√

pa(1 − pa)

N
. (11)Extrating N from Equation 11, we obtain the lower bound. 2

Fig. 1. Trade-o� between Type I (light grey area) and Type II errors (dark greyarea). p0 (resp. pa) is the expetation of p̂(w) under H0 (resp. Ha).Let us now desribe the meaning of this bound. It is important to note thatthere is a diret relationship between β and pa given a �xed number of data.Indeed, as desribed in Figure 1, pa is the expetation of p̂(w) under the alter-native hypothesis Ha. β orresponds to the density of the normal distributionbeneath the bound k of rejetion of H0. Therefore, the farther pa is from
p0, the lower the risk β. Sine β and pa are parameters in our lower bound,reduing both implies an inrease of the needed number of data. The sameremark an be done between α and β. Reduing α for a given size N impliesthe inrease of β. Therefore, reduing both risks results in the inrease of therequired number of data.To illustrate this lower bound, the hart of Figure 2 shows the evolution of
Nlow aording to α, β, p0 and pa. For the sake of legibility we hoose α = β.We plot two urves with two di�erent values of pa. We an note that thesmaller pa − p0, the larger the lower bound. A further disussion about thevaluation of pa is presented in Setion 5.11
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Fig. 2. Nlow aording to α, β, p0 and pa.4 Illustration on a real world sequene mining taskLet us illustrate the impat of our bound in a real world sequene miningtask. We arry out a series of experiments on the Atis (Air Travel Infor-mation Servie) orpus. This database onsists of travel information requestsperformed in english. We have an original set Ω of 14044 sentenes from whihwe draw samples Si of inreasing size |Si| (from 10 to 14044) and we extratfrequent patterns with a support threshold of 10% with spam (32) whih isa well-known sequene mining tool. In this series of experiments, to allow theanalysis of the behavior of our bound, we assume that Ω represents the theo-retial underlying distribution D from whih the samples Si have been drawn.In order to assess the e�et of the size |Si| on the quality of the extratedknowledge, we have to be able to measure the empirial values of α and β,that we will all α̂ and β̂. α̂ is the observed proportion of patterns that havebeen extrated as frequent from Si while they are not frequent in the targetpopulation Ω. β̂ orresponds to the observed proportion of patterns that arefrequent in Ω but overlooked from Si.Figure 3 desribes, aording to an inreasing size |Si| of the sample set Siand a support threshold p0 = 10%, the evolution of 1 − α̂ and 1 − β̂, usinga value pa = 11%. Note that we performed 15 trials, for eah size |Si|, andwe omputed the average in order to redue the variane of the results. Asexpeted, the higher the number of sequenes, the smaller the omputed risks
α̂ and β̂. We an also note that for small sizes of Si (< 1000) both risks α̂and β̂ are high (> 10%) meaning that a lot of extrated patterns are not trulyfrequent in Ω and many others have been overlooked. This example is a good12
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Fig. 3. Evolution of the quality of the results of a sequene mining algorithm a-ording to an inreasing size of Si.illustration of the bottlenek of standard mining algorithms. Sine α̂ and β̂ anbe empirially measured, they an be ompared with theoretial risks α and
β to verify the relevane of our bound. To ahieve this task, let us ompute
Nlow for given theoretial parameters α, β, pa and p0. For instane, let us set
α = β = 5% (pa = 10% and pa = 11% being already �xed). Plugging thesevalues in our bound yields the value Nlow = 10165. If we observe from Figure3 the results obtained from 10165 sequenes, we an onlude that our boundis relevant beause the two observed errors omputed on the ATIS database(α̂ = 3% and β̂ = 2%) atually do not exeed our a priori �xed theoretialrisks α and β.Note that the di�erene between the observed and the theoretial errors anappear quite substantial on this experiment even if it is on the �safe side�.In fat, the distane between the observed and the theoretial errors diretlydepends on the sample Si drawn from the unknown target distribution. Butsine Nlow onstitutes a lower bound needed, in the worst ase, to satisfy αand β, our theorem states that we never fall on the �unsafe side�.5 What about the value of pa?So far, to illustrate our bound, we used a value of pa �lose� to p0 under thealternative hypothesis Ha. As we explained in the previous setion, there is13
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a strong relationship between pa and our lower bound Nlow. More preisely,
Nlow quadratially inreases with the drop of the di�erene between pa and
p0. Therefore, the hoie of a relevant value pa remains an important problemthat deserves speial attention. In statistial inferene, it is often states thatthe valuation of the parameters under Ha has to be �xed aording to theonsidered appliation. To avoid to be dependent on this appliation, we studyin the following of this setion two theoretial ways to set the value of pa.
5.1 A worst ase solutionThe �rst solution to takle the problem of the valuation of pa is to onsiderthat a pattern w is truly frequent from the moment that its probability p(w)over D is greater than the support threshold p0. Let N0 be the number of datasuh that N0

Nlow

= p0. Therefore, a pattern w is truly frequent if it ours atmost N0 + 1 times in the Nlow data. So, we get that
pa =

N0 + 1

Nlow
= p0 +

1

Nlow
.Plugging this value in Equation 10, and equating Equations 6 to 10, we getthe following analytial representation of our lower bound, in a polynomialform of order 4 whose solution gives Nlow (this polynomial has been obtainedusing MappleTM):
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β = 0.We an see that the lower bound now only depends on the risks α and β,and the support threshold p0. pa is no longer a parameter of our bound, andtherefore the solution of this equation provides the exat lower bound guar-anteeing at worst α and β given a support threshold p0. Nevertheless, thissolution onstitutes a very pessimisti answer to our problem. For instane,solving this equation setting α = β = 5% and p0 = 0.1, we get Nlow = 3.1020sequenes! 14
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S2 L10Fig. 5. Comparison between various empirial realls and 1 − β, when p0 = 0.1.5.2 An average solutionIn the previous solution, we assumed that all the patterns that have been over-looked followed a normal distribution of expeted value pa = p0 + 1

Nlow

, whihis atually the worst situation. In pratie, eah omitted frequent pattern hasits own theoretial support pa that an belong to the interval ]p0, 1]. How anwe take into aount those di�erent possible values of pa in our bound? Wesuggest in the following the omputation of an average solution N̄low whih isthe expeted value of Nlow over ]p0, 1], suh that:15
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N̄low =
1

1 − p0
×

∫ 1

p0

Nlowdpa. (12)This expeted value does not depend on pa anymore. To assess the relevaneof this strategy, we omputed for di�erent values of α and β (for the sake ofsimpliity we set α = β) the expeted value N̄low using Eq.12. These theoret-ial results are desribed in Figures 4 and 5 in the form of two urves in solidline. They are ompared with various urves of empirial reall and preisionomputed from 10 di�erent datasets. Four of them are real databases: Atiswhih has already been used in this paper, and three other databases availableat the URL http://abu.nam.fr/. Firstnames is a set of 12437 male andfemale �rst names of di�erent origins; Towns is a set of 39074 names of frenhtowns; Frenh Words is a set of 250750 frenh words. We also built 6 arti-�ial databases from probabilisti automata: Reber is a set of 15000 sequenesgenerated from the Reber grammar (33) whose target distribution is an au-tomaton onstituted of 8 states and an alphabet of 7 letters; We generated 5other sets of 15000 sequenes from 5 automata, eah one omposed of x statesand an alphabet of y letters and denoted SxLy (see Fig.6 for an example ofan automaton S2L2). Note that suh an automaton onstitutes a theoretialdistribution D from whih it is possible to ompute the probability p(w) ofany pattern w, using suitable alulation methods (see (34) for example).
1(0.3) 2(0)

a(0.41)

b(0.7)

b(0.59)Fig. 6. Automaton S2L2 viewed as a target distribution D.For eah of the databases, we ompute with spam the set of frequent patternswith a support threshold of 10%. This set will onstitute the target distribu-tion. Then we sample sets of growing size (from 10 to 15000) from whih wealso extrat frequent patterns, and we alulate the empirial preision (1− α̂)and reall (1 − β̂). The results are shown respetively in Figure 4 and Figure5, and have to be ompared with the urves in solid line of those �gures.They on�rm that we atually provide a relevant lower bound on the numberof sequenes needed to at least guarantee a priori �xed theoretial reall andpreision. Whatever the database, its orresponding urves (1− α̂ or 1− β̂) arealways over the theoretial one. Note that the distane between the empirialrisks and our lower bound is quite large for some databases, meaning thatour bound an remain quite pessimisti. However, it does not hallenge itsrelevane sine, as shown with the urves obtained from the automata S1L1016
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and S2L10, it may happen that the empirial risks, due to spei� samplinge�ets, are muh more lose to the theoretial ones.Note that the theoretial urves desribed in Figures 4 and 5 only takle thease of p0 = 0.1. In order to provide a alulating tool that would make theestimation of the minimal number of data easier, we built the theoretial urvesfor di�erent values of p0. Figure 7 desribes a set of abai that diretly providethe lower bound N̂low required to guarantee at least a preision of (1−α) anda reall of (1 − β) (one again, for the sake of simpliity, we set α = β). Wean note that the urves are not the same, that means that the value of p0has a diret impat on the lower bound. From a mathematial point of view,this an be easily explained by the fat that p0 is used in the formulae of Nlow(see Theorem 1) within a onave funtion in the form of p0(1 − p0) whih ismaximal for p0 = 0.5. Therefore, for the same values α and β, setting p0 = 0.5requires more data than for other values. This explains the fat that the urvefor p0 = 0.5 is under the others. Therefore, from a statistial point of view,to avoid having large risks α and β, a good strategy onsists of hoosing asupport threshold p0 far from 0.5.
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Nlow and the support threshold p0 (from 0.1 to 0.9).6 Conlusion and future workIn this paper, we dealt with the assessment of the signi�ane of a frequentpattern mining proess. To perform this task, we presented a lower boundon the number of data required to satisfy theoretial preision and reall. Asfar as we know, this onstitutes the �rst attempt to ontrol both riteria by17
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providing a ondition on the number of data we have to deal with. Despite itstheoretial nature, we showed that our bound an be very useful in real worlddata mining appliations. We empirially tested our bound in the spei� aseof sequene mining tasks. However, our work an be adapted to other datamining ontexts that require a omparison to a minimal support threshold.Throughout this paper, we wanted to stay in a theoretial framework in orderto avoid a dependene on the appliation we deal with. This explains why wedid not use any information about the sample set S. In the future, we planto redue the pessimism of our theoretial bound by integrating bakgroundknowledge during the omputation of the bound. One solution would onsistin using the empirial distribution of the patterns in S to weight eah valueused in the omputation of the integral in Eq.12. However, this deserves furtherinvestigations. Indeed, one again, suh an empirial distribution is dependenton a �nite sample set whose size must be integrated in the model to avoid tohave bad estimates.Finally, note also that our theorem an also onstitute a good ondition toful�ll in various mahine learning domains. Atually, sine building a set of
Nlow data allows us to have a good estimate of any pattern w, it also enablesus to orretly estimate the probability of any n-gram, whih is a speial aseof pattern. Sine n-grams are used in many probabilisti models in mahinelearning, suh as probabilisti automata, stohasti transduers, or HiddenMarkov models, we think that Nlow an onstitute a good lower bound toe�iently learn suh stohasti models.Referenes[1℄ B. Goethals, M. J. Zaki, Advanes in frequent itemset mining implemen-tations: report on �mi'03, SIGKDD Explorations 6 (1) (2004) 109�117.[2℄ J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: urrent sta-tus and future diretions, Data Mining and Knowledge Disovery 15 (1)(2007) 55�86.[3℄ R. Agrawal, R. Srikant, Fast algorithms for mining assoiation rules inlarge databases, in: Proeedings of 20th International Conferene on VeryLarge Data Bases, Morgan Kaufmann, 1994, pp. 487�499.[4℄ H. Mannila, H. Toivonen, A. I. Verkamo, E�ient algorithms for disov-ering assoiation rules, in: KDD Workshop, 1994, pp. 181�192.[5℄ A. Ceglar, J. F. Roddik, Assoiation mining, ACM Computing Surveys38 (2) (2006) .[6℄ H. Mannila, H. Toivonen, A. I. Verkamo, Disovery of frequent episodesin event sequenes, Data Mining and Knowledge Disovery 1 (3) (1997)259�289. 18
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