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A Lower Bound on the Sample Size needed toperform a Signi�
ant Frequent PatternMining TaskStéphanie Ja
quemont, François Ja
quenet, Mar
 SebbanLaboratoire Hubert Curien, Université de Saint-Etienne, 18 rue du ProfesseurLauras, 42000 Saint-Etienne (Fran
e)Abstra
tDuring the past few years, the problem of assessing the statisti
al signi�
an
e offrequent patterns extra
ted from a given set S of data has re
eived mu
h attention.Considering that S always 
onsists of a sample drawn from an unknown underlyingdistribution, two types of risks 
an arise during a frequent pattern mining pro
ess:a

epting a false frequent pattern or reje
ting a true one. In this 
ontext, manyapproa
hes presented in the literature assume that the dataset size is an appli
ation-dependent parameter. In this 
ase, there is a trade-o� between both errors leading tosolutions that only 
ontrol one risk to the detriment of the other one. On the otherhand, many sampling-based methods have attempted to determine the optimal sizeof S ensuring a good approximation of the original (potentially in�nite) databasefrom whi
h S is drawn. However, these approa
hes often resort to Cherno� boundsthat do not allow the independent 
ontrol of the two risks. In this paper, we over
omethe mentioned drawba
ks by providing a lower bound on the sample size requiredto 
ontrol both risks and a
hieve a signi�
ant frequent pattern mining task.
1 Introdu
tionIn frequent pattern mining (1; 2), one aims to �nd interesting patterns from adatabase in the form of asso
iation rules, sequen
es, episodes, 
orrelations, et
.Many algorithms have been proposed in the literature to deal with asso
iationrule mining (3; 4; 5), sequential pattern mining (6; 7; 8; 9), graph mining(10; 11; 12; 13), tree mining (14; 15; 16). Chao et al. (17) proposed a generi
library for dealing with a large family of frequent patterns. This domain of
⋆ This work is part of the ongoing BINGO2 resear
h proje
t �nan
ed by the Fren
hNational Resear
h Agen
y.Preprint submitted to Elsevier 23 April 2009
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resear
h has been applied in lots of appli
ations (see (18) for a survey) su
has the dis
overy of 
ustomers' behavior in supermarkets, the extra
tion ofpatterns of alarms in manufa
turing supervision, the modeling of web users,et
. A pattern of a sample S is 
alled frequent if its observed frequen
y isgreather than a minimal support threshold. For instan
e, a sequen
e miningpro
ess 
onsists of dete
ting frequent subsequen
es from a dataset of sequen
esthat are made up of possibly non 
ontiguous symbols. For example, let usassume that the database S is 
onstituted of the following three sequen
es
S = {ACGT, ATGAT, CAGTA}. By �xing the minimal support threshold to
2
3
, the pattern AGT is 
onsidered as frequent sin
e it o

urs three times outof the three sequen
es of S, that a
tually is > 2

3
.During the past de
ade, the s
ienti�
 
ommunity has mainly 
on
entratedits e�orts on the redu
tion of the 
omplexity of the frequent pattern miningmethods to deal with large datasets. In this 
ontext, the redu
tion of the sear
hspa
e has 
onstituted one of the main obje
tives. From an algorithmi
 pointof view, all these approa
hes have to prove that they are 
orre
t and 
omplete,i.e. they must guarantee that (i) all the frequent patterns that are extra
tedare really frequent in S, and (ii) no frequent pattern of S has been overlooked.However, these properties are not su�
ient to guarantee the signi�
an
e of afrequent pattern mining pro
ess. Indeed, S being nothing else but a sample ofan unknown target distribution D, mining algorithms often suppose that thedistribution over S is the same as D from whi
h these data have been drawn. Inother words, they make no assessment of the likelihood that a frequent patternextra
ted from S is an artifa
t of the sampling rather than a 
onsistent patternin the target distribution D. In the same way, they do not assess the risk ofoverlooking a pattern that would be in fa
t frequent a

ording to D.More formally, de
iding if a pattern in S is frequent or not boils down to
omparing its observed proportion p̂ with a given support threshold p0. If p̂ >

p0, the pattern is 
onsidered as frequent by the mining algorithm. However, thetrue probability p of this pattern 
omes under the unknown target distribution
D. Therefore, when an algorithm takes a de
ision about the status of a pattern,it takes a risk α ∈ [0, 1] of a

epting a false frequent pattern (i.e. that appearsin S due to 
han
e alone), or a risk β ∈ [0, 1] of reje
ting a true frequentone. In this 
ontext, 1 − α 
an be 
alled the theoreti
al pre
ision, whereas
1− β 
orresponds to the theoreti
al re
all of the algorithm. It is important tonote that most frequent pattern mining algorithms do nothing (or little) to
ontrol both α and β. As mentioned before, their main goal �only� 
onsists ofguarantying their 
orre
tness and their 
ompleteness over S, but nothing isensured over the underlying distribution D. This 
an be justi�ed by the fa
tthat, statisti
ally, given a 
onstant number of data in S, redu
ing one of thetwo risks implies in
reasing of the se
ond one.In this paper, we di�erently take up this problem, by providing a lower bound2
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on the size of S needed to theoreti
ally guarantee a pre
ision of (1−α) and are
all of (1−β) a

ording to any distribution D. Therefore, we reje
t the wellknown statement that to in
rease the re
all, we have to a

ept to de
reasethe pre
ision, or vi
e versa. We rather answer the following question: What isthe minimal size of S required to satisfy given risks α and β? We 
laim thatthis 
ontribution is novel by 
omparison with the state of the art. Indeed, wewill see that the few approa
hes attempting to deal with this problem froma theoreti
al point of view either are based on Cherno� bounds that do notallow the independent 
ontrol of α and β, or 
all on statisti
al tests that re-quire to 
hoose the risk to optimize. Even though our 
ontribution is above alltheoreti
al, we 
laim that it 
an provide useful help in many appli
ations. Forinstan
e, in domains where the data a
quisition is not 
ostly, one 
an wonderwhat is the minimal number of examples that are required to optimize thetrade-o� between the redu
tion of the algorithmi
 
onstraints and the guar-antee of a dis
overy of true knowledge. Therefore, in su
h 
ases, our theoreti
alresult provides a bound rea
hable in pra
ti
e guaranteeing a signi�
ant fre-quent pattern mining task. This is the 
ase for example in the modeling ofweb users' behavior, where tera-bytes of data are available in log �les. On theother hand, in domains where the number of available examples is limited (inmole
ular biology for instan
e), it enables us to draw the attention of dataminers on the fa
t that some extra
ted patterns 
ould be the result of falsedis
overy, and some others 
ould have been omitted despite their signi�
an
e.In this 
ase, the use of the extra
ted knowledge must be done with 
aution.The rest of the paper is organized as follows. In Se
tion 2, we present thestate of the art approa
hes aiming to assess the signi�
an
e of the extra
tedpatterns. Se
tion 3 is devoted to the presentation of our bound enabling us to�x in advan
e α and β; A �rst illustration is presented in Se
tion 4 on a realdatabase. In Se
tion 5, we dis
uss about the valuation of the parameters ofour bound, and we present a larger series of experiments.2 Related Work2.1 Bottlene
k of frequent pattern mining algorithmsLet us suppose we 
arry out a series of experiments 
onsisting of tossing a
oin N = 10 times. Let S be the resulting sample of 10 itemsets 
onstitutedin this 
ase of only one item (<tails> or <heads>). Suppose we observe in
S respe
tively 8 <tails> and 2 <heads>. By �xing the support threshold to
p0 = 0.5, the pattern tails will be 
onsidered as frequent in S, be
ause itsobserved frequen
y p̂ = 0.8 is higher than p0, while the pattern <heads>3
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will not be. Does it mean that the extra
ted knowledge �<tails> is morefrequent than <heads>� is signi�
ant? In fa
t, we 
an easily prove that su
ha 
ombination of <heads> and <tails> 
an �often� o

ur over only 10 trials,without 
hallenging the balan
e of the 
oin itself. We 
an note that the sizeof S has a dire
t impa
t on the signi�
an
e of the result. During the past fewyears, several papers have drawn the attention of data miners on the risksof extra
ting regularities from data in the form of a random artifa
t. Theprevious example is a good illustration of this problem that 
an arise in afrequent pattern mining pro
ess. Let us des
ribe now some possible solutionsthat have been presented in the literature, and that take into a

ount the sizeof S to over
ome the mentioned drawba
k.2.2 Modifying the support threshold p0 using Cherno� boundsRather than dire
tly 
omparing the observed frequen
y p̂ in S with p0, a �rstsolution 
onsists of bounding p0 in order to take into a

ount the estimateerror |p̂ − p| due to the use of a sample S of �nite size N , where p is the trueprobability of the pattern under the unknown theoreti
al distribution D.A well-known non parametri
 approa
h that deals with this problem is basedon Cherno� bounds that state that the estimate error between a randomvariable X observed on a sample S and its expe
ted value E(X) a

ording to
D is lower bounded by ǫ, su
h that

∀ǫ ∈]0, 1[, P (|X − E(X)| ≥ ǫ) < e−2Nǫ2. (1)Eq.1 states that, obviously, the higher the sample size N , the smaller theestimate error. Cherno� bounds have been widely used in statisti
al learn-ing theory for many years, and more re
ently in frequent pattern mining bysampling-based methods (19; 20) to deal with the statisti
al relevan
e of theextra
ted patterns. Basi
ally, sampling-based data mining methods aim toredu
e the potentially huge I/O overhead in s
anning a database DB (thatpotentially 
an not be stored in memory) for dis
overing frequent patterns.Their goal 
onsists of sampling the original database into a sample S andextra
t regularities from this subset while guaranteeing the a

ura
y of theextra
ted knowledge. Even if the sample S is here not drawn from an un-known underlying distribution D (but rather from an existing large database
DB), this framework looks like ours, espe
ially sin
e those Cherno� bounds
an also be used to provide a theoreti
al size of S ensuring an upper bound ofthe estimate error. Indeed, let the observed frequen
y p̂ be the random vari-able X of Eq.1 
omputed from S, and pDB its expe
ted value E(X) over thewhole database DB (potentially large), the Cherno� bounds 
an be rewritten4
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as follows:
P (|p̂S − pDB| ≥ ǫ) < e−2Nǫ2 (2)Ineq.2 
an be used in di�erent ways. First, given a size N , solving for ǫ thisinequality equal to a given probability provides a sla
k value of the supportthreshold p0. On the other hand, given a value ǫ, solving for N Eq.2 equalto δ provides a lower bound of the sample size N satisfying the estimateerror ǫ. Despite its obvious advantages, the use of the Cherno� bounds has alimitation. Indeed, as used in (19; 20), the symmetry due to the absolute valuein Eq.2 indi
ates that the risk of a bad estimation p̂ is equally distributedaround pDB. In other words, the risk that a pattern o

urs in S less oftenthan expe
ted in DB is equal to the risk that a pattern o

urs more oftenthan expe
ted. In this 
ontext, Cherno� bounds does not allow the distin
tionbetween the false positive rate α and the false negative rate β, as de�ned inthe introdu
tion. This 
an be a problem in domains where α and β have to beindependently handled. For instan
e, suppose that a va

ine is administeredto a patient a

ording to the frequent presen
e or not of a pattern in hisDNA. Missing a patient who has the disease (i.e. overlooking a true frequentpattern) would not have the same medi
al e�e
t than the one 
onsisting ofadministering the va

ine to a healthy person (i.e. admit a false frequentpattern).In (21), Toivonen presents another sampling method for dis
overing relevantasso
iation rules. The algorithm also pi
ks a random sample S from the origi-nal database DB, then it determines from S all frequent asso
iations rules thatprobably hold in DB; �nally it veri�es with DB if they are a
tually frequent.To 
ontrol the risk of overlooking true frequent patterns, Toivonen repla
esthe support threshold p0 by a lower bound based on the Cherno� bounds sothat misses are avoided with a high probability. However, Toivonen only dealswith β. Indeed, by using DB to verify if the extra
ted patterns are a
tuallyfrequent, the risk α of false positive is intrinsi
ally null. However, this way ofpro
eeding is only possible if the original database DB is available. While this
ondition is ful�lled in Toivonen's framework, it is an una

eptable 
onstraintin ours whi
h assumes that S has been drawn from an unknown theoreti
aldistribution.Re
ently, Laur et al. proposed in (22; 23) an approa
h that not only makesuse of Cherno� bounds but also deals with both risks α and β. Given a sample

S, they provide a bound for p0 that ensures either a pre
ision equal to 1 witha high probability while 
ontrolling the re
all, or a re
all equal to 1 with ahigh probability while limiting the degradation of the pre
ision. Even if thisapproa
h is theoreti
ally well founded, the user has to 
hoose the 
riterion(re
all or pre
ision) he wants to optimize, that 
an be a tri
ky task in domains5

ha
l-0

03
81

66
7,

 v
er

si
on

 1
 - 

29
 J

ul
 2

00
9



where both errors α and β are de�nitely undesirable.2.3 Modifying the support threshold p0 using statisti
al testsA se
ond solution to 
he
k the relevan
e of a dis
overed pattern is to resortto statisti
al tests that involve two hypotheses, a null hypothesis H0 and analternative one Ha. Usually, Ha is made to des
ribe an interesting situation(e.g. a frequent pattern), while H0 
hara
terizes the irrelevant situation (e.g. anon frequent pattern). When a test is performed, two types of errors 
an o

ur:The �rst one, 
alled Type I error, 
omes from the a

eptation of the hypothesis
H0 while Ha is true; the se
ond one, 
alled Type II error, 
orresponds to thewrong de
ision to a

ept Ha whileH0 is true. Therefore, adapted to the 
ontextof frequent pattern mining, the Type I error 
an be de�ned as des
ribing therisk α of a

epting a false frequent pattern, while the Type II error 
an bede�ned as being the risk β of reje
ting a true frequent one. In this 
ontext,it is important to re
all that there exists a statisti
al trade-o� between thesetwo risks. Given a sample size S, β a
tually in
reases if one wants to redu
e αand vi
e versa. In the following, we present some state of the art approa
hesthat deal with the relevan
e of extra
ted patterns using su
h statisti
al tests.In (24), Megiddo & Srikant deal with the evaluation of the quality of asso
i-ation rules extra
ted from a set of data. They present an approa
h for esti-mating the number of false dis
overies in order to 
ontrol the pre
ision. Let us
onsider an asso
iation rule X ⇒ Y , where X and Y are sets of items. As anull hypothesis, they assume that X and Y o

ur in the data independently.Thus, they test the null hypothesis H0 : p(X ∩ Y ) = p(X)× p(Y ) against thealternative one Ha : p(X ∩Y ) > p(X)×p(Y ), whi
h, roughly speaking, meansthat a lot of transa
tions that 
ontain X also 
ontain Y . They run a statis-ti
al test exploiting the property that the observed frequen
y of an itemsetasymptoti
ally follows a normal distribution. To redu
e the risk of a

eptinga false frequent pattern, they in
rease the support threshold p0 by zα × σp̂,where σp̂ is the standard deviation of p̂ and zα is the (1−α) per
entile of thenormal distribution. Therefore, by a priori tuning the risk α, they 
an 
ontrolthe pre
ision. Nevertheless, by using a small value for α, bounding p0 by thisway results in the de
rease of the re
all.Re
ently, in (25), Webb presents two new approa
hes to applying statisti
altests in pattern dis
overy to assess the quality of a pattern. First, he sug-gests the split of the sample S into an exploratory set, from whi
h a patternextra
tion is a
hieved, and a holdout set used to assess the quality of ea
hpattern. Despite promising experimental results, this approa
h is above allempiri
al and does not provide any bound that enables both risks to be re-du
ed. Webb also presents an approa
h based on the Bonferroni adjustment6
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(26). When a statisti
al test is applied many times during an assessment, aspe
ial problem arises: if α 
orresponds to the risk of taking a wrong singlede
ision, repeating the test many times globally in
reases that risk (26). Toover
ome this drawba
k, several strategies have been proposed (27). A famousone is the Bonferoni adjustment that uses a risk α/n when performing n hy-pothesis tests. However, if n is large, su
h adjustment turns out to be stri
tand leads to the in
rease of the other risk β.Another solution 
onsists of using Holm pro
edure (28) that takes into a
-
ount the p-value of ea
h test and orders them to tune a less stri
t risk. Su
ha strategy is also used in the BH pro
edure (29) that aims to set α while 
on-trolling the so-
alled false dis
overy rate. However, both of these adjustmentsrequire the 
omputation of the p-values of the n tests whi
h depend on the
urrent appli
ation. In our paper, we will provide a more general tool what-ever the appli
ation we deal with. Moreover, note that we aim to determine arelationship between the number N of data to mine and �xed risks α and
β. In the adjustment pro
edures mentioned before, α and β are linked to thenumber n of statisti
al tests when testing multiple hypotheses. Therefore,both obje
tives 
annot be dire
tly 
onne
ted.In (30), Lee et al. present the DELI algorithm whi
h is based again on a sam-pling method whi
h generates a sample S from a database DB. To maintain in
S an a

urate set of asso
iation rules, a 
on�den
e interval is built for the trueprobability p of an asso
iation rule in DB, su
h that p ∈ p̂ ± zα/2

√

p̂(|DB|−p̂)
|S|

,where p̂ is the support of the rule in S, α is the Type I error, and zα is the(1 − α) per
entile of the normal distribution. By �xing α, the authors showthat one 
an determine a suitable size of S satisfying the Type I error. As we
an note, this approa
h has two main drawba
ks. First, only the Type I error
α is used to assess the statisti
al signi�
an
e of the patterns. Therefore, thesize of S dedu
ed from the 
on�den
e interval does not take into a

ount theType II error β. On the other hand, the 
omputation of this interval requiresthe use of the size of the original database DB. As we mentioned before, ourmore general framework does not require to have DB.Finally, note that other statisti
al test-based investigations have dealt withthe assessment of the signi�
an
e of patterns in data mining. They use e�-
ient tests (su
h as the Chi-square test and Fisher exa
t test) to statisti
allymeasure the level of dependen
y between the 
omponents of a pattern. An of-ten used strategy 
onsists of verifying if the extra
ted stru
ture would also bedis
overed from a random sample having same margins (see (31) for example).The approa
hes we presented in this survey either impose a symmetry 
ondi-tion on the estimate error, or minimize only one risk given a sample set size,or require the 
al
ulation of p-values of a spe
i�
 set of statisti
al tests. Noone o�ers theoreti
al results that provide a bound on the size of S satisfy-7
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ing arbitrary 
hosen parameters α and β. In the following, we �ll this gapby proposing a statisti
al approa
h that exploits the asymptoti
 
onvergen
eof the distribution of frequent patterns. We provide a bound on N , easily
omputable, allowing the independent 
ontrol of both risks α and β.3 A statisti
al view of the re
all and the pre
ision3.1 Risks of reje
ting true frequent patterns and a

epting false onesLet p̂(w) be the proportion of data in the set S that 
ontain a given pattern w.Let us re
all that w is 
alled frequent if p̂(w) is higher than a minimal supportthreshold p0. In fa
t, p̂(w) is nothing else but an estimate of the real probability
p(w) over D. Sin
e p(w) is unknown, one 
an formulate a hypothesis on itsreal value and perform a statisti
al test. As usually done in the standardapproa
hes, we suggest to des
ribe by the null hypothesis H0 the situationwhere p̂(w) is not high enough to 
onsider w as being frequent. As done in(24), we suggest to keep the maximal value p0 that prevent w from beinga

epted as frequent. Therefore, we test the null hypothesis H0: p(w) = p0,against the alternative one Ha, whi
h des
ribes an interesting dis
overy, i.e.
Ha: p(w) > p0.Type I error: α represents the risk of reje
ting H0 while it is true. In ourfrequent pattern mining 
ontext, α 
orresponds to the risk of a

epting a falsefrequent pattern. Therefore, 1−α exa
tly des
ribes the theoreti
al pre
ision ofthe algorithm over the distribution D. For instan
e, with a support threshold
p0 of 10%, observing p̂(w) = 10.2% in S does not mean that w is de�nitelyfrequent in the target distribution D. To be able to take a well-founded de
i-sion, we 
an a priori �x α (usually 5%, but it 
an depend on the appli
ationwe deal with), and then 
ompute a bound of reje
tion k, satisfying α. Moreformally,

α = P (p̂(w) > k|H0 true) . (3)The number of data of S that 
ontain w is a binomial random variable withsu

ess probability p(w). A

ording to the size N of S and the support thresh-old p0, we 
an use either the normal or the Poisson approximation. In our
ontext, we aim to provide a theoreti
al bound on N that will be by naturequite large. Moreover, sin
e we are looking for frequent patterns, we 
an as-sume that p0 will be 
hosen su�
iently large otherwise the framework wouldbe the one of ex
eptions or rare events that is the matter of another resear
hdomain. Therefore, using the 
entral limit theorem, we will 
onsider in the8
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following that the proportion p̂(w) follows a normal distribution N , su
h that
p̂(w) ≈ N



p(w),

√

p(w)(1 − p(w))

N



 .Equation 3 
an be rewritten
α = P





p̂(w) − p(w)
√

p(w)(1−p(w))
N

>
k − p(w)

√

p(w)(1−p(w))
N

|H0 true



 . (4)Sin
e H0 is true, we have to repla
e p(w) by its value under H0. We get
α = P





p̂(w) − p0
√

p0(1−p0)
N

>
k − p0

√

p0(1−p0)
N



 . (5)We 
an then easily dedu
e the bound k whi
h 
orresponds to the (1 − α)-per
entile zα of the normal distribution:
k = p0 + zα

√

p0(1 − p0)

N
. (6)To re
ap, by �xing a risk α, Equation 6 gives us the bound of reje
tion of

H0. For example, let us suppose we are mining N = 10000 data. Let us �xthe support threshold p0 = 10% and the risk α = 5% (zα = 1.645 by readingthe table of the normal distribution). Plugging these values in Equation 6, weget k = 0.1 + 1.645×
√

0.1∗0.9
10000

= 0.105. Therefore, a pattern w with a support
p̂(w) = 10.2% will be in fa
t reje
ted in order to 
ontrol the risk of a

eptingfalse positives.3.1.0.1 Type II error β: Regarding β, it des
ribes the probability toreje
t a true frequent pattern. In 
ontrast to α, β 
an be 
al
ulated a

ordingto the previously 
omputed bound k. Sin
e Ha: p(w) > p0 is true, we have toset a given value for p(w) satisfying the 
onstraint p(w) > p0. Let pa be thisvalue (see Se
tion 5 for a dis
ussion about pa). We get

β = P (p̂(w) < k|Ha true). (7)As previously done for α, 9
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β = P





p̂(w) − p(w)
√

p(w)(1−p(w))
N

<
k − p(w)

√

p(w)(1−p(w))
N

|Ha true



 . (8)By repla
ing p(w) by its value under Ha, we get
β = P





p̂(w) − pa
√

pa(1−pa)
N

<
k − pa

√

pa(1−pa)
N



 . (9)Sin
e k is known thanks to Eq. 6, the (1 − β)-per
entile zβ is also known,and β 
an be easily dedu
ed from the normal distribution. To 
ontinue withour previous example (assuming that N = 10000 data), let us suppose that
pa = 11%, then β = 5.5% (by reading the table of the normal distribution).Therefore, for a true support of 11%, the probability to falsely a

ept the nullhypothesis based on a �nite sample of N = 10000 data is 5.5%.
3.2 Lower bound on NThe ideal obje
tive of a frequent pattern mining pro
ess is to redu
e not only
α but also β. However, as mentioned before, there exists a trade-o� betweenthese two risks. With a 
onstant number of data N , β a
tually in
reases ifone redu
es α and vi
e versa. A solution to over
ome this drawba
k 
onsistsof determining how many data N would be needed to not ex
eed a priori �xed
α and β risks. This is the matter of the next theorem.Theorem 1 To ensure that the false positive rate and the false negative ratedo not ex
eed respe
tively �xed risks α and β, the lower bound Nlow of the sizeof the sample S on whi
h the frequent pattern mining algorithm must be runis equal to

Nlow =





zβ

√

pa(1 − pa) + zα

√

p0(1 − p0)

pa − p0





2

, 0 < p0 < pa < 1.Proof 1 The proof is straightforward. We 
an dedu
e from Equation 9 that
k = pa − zβ

√

pa(1 − pa)

N
, (10)10
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where zβ is the (1 − β)-per
entile of the normal distribution. Equating Equa-tions 6 to 10, we 
an dedu
e that
p0 + zα

√

p0(1 − p0)

N
= pa − zβ

√

pa(1 − pa)

N
. (11)Extra
ting N from Equation 11, we obtain the lower bound. 2

Fig. 1. Trade-o� between Type I (light grey area) and Type II errors (dark greyarea). p0 (resp. pa) is the expe
tation of p̂(w) under H0 (resp. Ha).Let us now des
ribe the meaning of this bound. It is important to note thatthere is a dire
t relationship between β and pa given a �xed number of data.Indeed, as des
ribed in Figure 1, pa is the expe
tation of p̂(w) under the alter-native hypothesis Ha. β 
orresponds to the density of the normal distributionbeneath the bound k of reje
tion of H0. Therefore, the farther pa is from
p0, the lower the risk β. Sin
e β and pa are parameters in our lower bound,redu
ing both implies an in
rease of the needed number of data. The sameremark 
an be done between α and β. Redu
ing α for a given size N impliesthe in
rease of β. Therefore, redu
ing both risks results in the in
rease of therequired number of data.To illustrate this lower bound, the 
hart of Figure 2 shows the evolution of
Nlow a

ording to α, β, p0 and pa. For the sake of legibility we 
hoose α = β.We plot two 
urves with two di�erent values of pa. We 
an note that thesmaller pa − p0, the larger the lower bound. A further dis
ussion about thevaluation of pa is presented in Se
tion 5.11

ha
l-0

03
81

66
7,

 v
er

si
on

 1
 - 

29
 J

ul
 2

00
9



 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000

Nlow

pa=p0+0.01
pa=p0+0.005

α and β 

p0

Nlow

Fig. 2. Nlow a

ording to α, β, p0 and pa.4 Illustration on a real world sequen
e mining taskLet us illustrate the impa
t of our bound in a real world sequen
e miningtask. We 
arry out a series of experiments on the Atis (Air Travel Infor-mation Servi
e) 
orpus. This database 
onsists of travel information requestsperformed in english. We have an original set Ω of 14044 senten
es from whi
hwe draw samples Si of in
reasing size |Si| (from 10 to 14044) and we extra
tfrequent patterns with a support threshold of 10% with spam (32) whi
h isa well-known sequen
e mining tool. In this series of experiments, to allow theanalysis of the behavior of our bound, we assume that Ω represents the theo-reti
al underlying distribution D from whi
h the samples Si have been drawn.In order to assess the e�e
t of the size |Si| on the quality of the extra
tedknowledge, we have to be able to measure the empiri
al values of α and β,that we will 
all α̂ and β̂. α̂ is the observed proportion of patterns that havebeen extra
ted as frequent from Si while they are not frequent in the targetpopulation Ω. β̂ 
orresponds to the observed proportion of patterns that arefrequent in Ω but overlooked from Si.Figure 3 des
ribes, a

ording to an in
reasing size |Si| of the sample set Siand a support threshold p0 = 10%, the evolution of 1 − α̂ and 1 − β̂, usinga value pa = 11%. Note that we performed 15 trials, for ea
h size |Si|, andwe 
omputed the average in order to redu
e the varian
e of the results. Asexpe
ted, the higher the number of sequen
es, the smaller the 
omputed risks
α̂ and β̂. We 
an also note that for small sizes of Si (< 1000) both risks α̂and β̂ are high (> 10%) meaning that a lot of extra
ted patterns are not trulyfrequent in Ω and many others have been overlooked. This example is a good12
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Fig. 3. Evolution of the quality of the results of a sequen
e mining algorithm a
-
ording to an in
reasing size of Si.illustration of the bottlene
k of standard mining algorithms. Sin
e α̂ and β̂ 
anbe empiri
ally measured, they 
an be 
ompared with theoreti
al risks α and
β to verify the relevan
e of our bound. To a
hieve this task, let us 
ompute
Nlow for given theoreti
al parameters α, β, pa and p0. For instan
e, let us set
α = β = 5% (pa = 10% and pa = 11% being already �xed). Plugging thesevalues in our bound yields the value Nlow = 10165. If we observe from Figure3 the results obtained from 10165 sequen
es, we 
an 
on
lude that our boundis relevant be
ause the two observed errors 
omputed on the ATIS database(α̂ = 3% and β̂ = 2%) a
tually do not ex
eed our a priori �xed theoreti
alrisks α and β.Note that the di�eren
e between the observed and the theoreti
al errors 
anappear quite substantial on this experiment even if it is on the �safe side�.In fa
t, the distan
e between the observed and the theoreti
al errors dire
tlydepends on the sample Si drawn from the unknown target distribution. Butsin
e Nlow 
onstitutes a lower bound needed, in the worst 
ase, to satisfy αand β, our theorem states that we never fall on the �unsafe side�.5 What about the value of pa?So far, to illustrate our bound, we used a value of pa �
lose� to p0 under thealternative hypothesis Ha. As we explained in the previous se
tion, there is13
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a strong relationship between pa and our lower bound Nlow. More pre
isely,
Nlow quadrati
ally in
reases with the drop of the di�eren
e between pa and
p0. Therefore, the 
hoi
e of a relevant value pa remains an important problemthat deserves spe
ial attention. In statisti
al inferen
e, it is often states thatthe valuation of the parameters under Ha has to be �xed a

ording to the
onsidered appli
ation. To avoid to be dependent on this appli
ation, we studyin the following of this se
tion two theoreti
al ways to set the value of pa.
5.1 A worst 
ase solutionThe �rst solution to ta
kle the problem of the valuation of pa is to 
onsiderthat a pattern w is truly frequent from the moment that its probability p(w)over D is greater than the support threshold p0. Let N0 be the number of datasu
h that N0

Nlow

= p0. Therefore, a pattern w is truly frequent if it o

urs atmost N0 + 1 times in the Nlow data. So, we get that
pa =

N0 + 1

Nlow
= p0 +

1

Nlow
.Plugging this value in Equation 10, and equating Equations 6 to 10, we getthe following analyti
al representation of our lower bound, in a polynomialform of order 4 whose solution gives Nlow (this polynomial has been obtainedusing MappleTM):

(−2z
2

βz2
αp2

0 + z4
βp4

0 + 4z2
βp3

0z
2
α + z4

βp2
0 − 2z2

βp
4
0z

2
α + z4

αp4
0 + z4

αp2
0 − 2z4

αp3
0 − 2z4

βp
3
0)N

4

+ (2p0(−z2
α − z4

β + z2
βp0 − z2

β + z2
αz2

β + z2
αp0) + 4p3

0(z
2
βz2

α − z4
β) + 6p2

0(z
4
β − z2

βz2
α))N3

+ (1 − 4z2
βp0 + 2p0z

2
αz2

β + 2z2
β − 2z2

βz2
αp2

0 + z4
β − 6z4

βp0 + 6z4
βp

2
0)N

2

+ (2z4
β + 2z2

β − 4z4
βp0)N + z4

β = 0.We 
an see that the lower bound now only depends on the risks α and β,and the support threshold p0. pa is no longer a parameter of our bound, andtherefore the solution of this equation provides the exa
t lower bound guar-anteeing at worst α and β given a support threshold p0. Nevertheless, thissolution 
onstitutes a very pessimisti
 answer to our problem. For instan
e,solving this equation setting α = β = 5% and p0 = 0.1, we get Nlow = 3.1020sequen
es! 14
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al re
alls and 1 − β, when p0 = 0.1.5.2 An average solutionIn the previous solution, we assumed that all the patterns that have been over-looked followed a normal distribution of expe
ted value pa = p0 + 1

Nlow

, whi
his a
tually the worst situation. In pra
ti
e, ea
h omitted frequent pattern hasits own theoreti
al support pa that 
an belong to the interval ]p0, 1]. How 
anwe take into a

ount those di�erent possible values of pa in our bound? Wesuggest in the following the 
omputation of an average solution N̄low whi
h isthe expe
ted value of Nlow over ]p0, 1], su
h that:15
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N̄low =
1

1 − p0
×

∫ 1

p0

Nlowdpa. (12)This expe
ted value does not depend on pa anymore. To assess the relevan
eof this strategy, we 
omputed for di�erent values of α and β (for the sake ofsimpli
ity we set α = β) the expe
ted value N̄low using Eq.12. These theoret-i
al results are des
ribed in Figures 4 and 5 in the form of two 
urves in solidline. They are 
ompared with various 
urves of empiri
al re
all and pre
ision
omputed from 10 di�erent datasets. Four of them are real databases: Atiswhi
h has already been used in this paper, and three other databases availableat the URL http://abu.
nam.fr/. Firstnames is a set of 12437 male andfemale �rst names of di�erent origins; Towns is a set of 39074 names of fren
htowns; Fren
h Words is a set of 250750 fren
h words. We also built 6 arti-�
ial databases from probabilisti
 automata: Reber is a set of 15000 sequen
esgenerated from the Reber grammar (33) whose target distribution is an au-tomaton 
onstituted of 8 states and an alphabet of 7 letters; We generated 5other sets of 15000 sequen
es from 5 automata, ea
h one 
omposed of x statesand an alphabet of y letters and denoted SxLy (see Fig.6 for an example ofan automaton S2L2). Note that su
h an automaton 
onstitutes a theoreti
aldistribution D from whi
h it is possible to 
ompute the probability p(w) ofany pattern w, using suitable 
al
ulation methods (see (34) for example).
1(0.3) 2(0)

a(0.41)

b(0.7)

b(0.59)Fig. 6. Automaton S2L2 viewed as a target distribution D.For ea
h of the databases, we 
ompute with spam the set of frequent patternswith a support threshold of 10%. This set will 
onstitute the target distribu-tion. Then we sample sets of growing size (from 10 to 15000) from whi
h wealso extra
t frequent patterns, and we 
al
ulate the empiri
al pre
ision (1− α̂)and re
all (1 − β̂). The results are shown respe
tively in Figure 4 and Figure5, and have to be 
ompared with the 
urves in solid line of those �gures.They 
on�rm that we a
tually provide a relevant lower bound on the numberof sequen
es needed to at least guarantee a priori �xed theoreti
al re
all andpre
ision. Whatever the database, its 
orresponding 
urves (1− α̂ or 1− β̂) arealways over the theoreti
al one. Note that the distan
e between the empiri
alrisks and our lower bound is quite large for some databases, meaning thatour bound 
an remain quite pessimisti
. However, it does not 
hallenge itsrelevan
e sin
e, as shown with the 
urves obtained from the automata S1L1016
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and S2L10, it may happen that the empiri
al risks, due to spe
i�
 samplinge�e
ts, are mu
h more 
lose to the theoreti
al ones.Note that the theoreti
al 
urves des
ribed in Figures 4 and 5 only ta
kle the
ase of p0 = 0.1. In order to provide a 
al
ulating tool that would make theestimation of the minimal number of data easier, we built the theoreti
al 
urvesfor di�erent values of p0. Figure 7 des
ribes a set of aba
i that dire
tly providethe lower bound N̂low required to guarantee at least a pre
ision of (1−α) anda re
all of (1 − β) (on
e again, for the sake of simpli
ity, we set α = β). We
an note that the 
urves are not the same, that means that the value of p0has a dire
t impa
t on the lower bound. From a mathemati
al point of view,this 
an be easily explained by the fa
t that p0 is used in the formulae of Nlow(see Theorem 1) within a 
on
ave fun
tion in the form of p0(1 − p0) whi
h ismaximal for p0 = 0.5. Therefore, for the same values α and β, setting p0 = 0.5requires more data than for other values. This explains the fa
t that the 
urvefor p0 = 0.5 is under the others. Therefore, from a statisti
al point of view,to avoid having large risks α and β, a good strategy 
onsists of 
hoosing asupport threshold p0 far from 0.5.
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al re
all and pre
ision a

ording to the lower bound

Nlow and the support threshold p0 (from 0.1 to 0.9).6 Con
lusion and future workIn this paper, we dealt with the assessment of the signi�
an
e of a frequentpattern mining pro
ess. To perform this task, we presented a lower boundon the number of data required to satisfy theoreti
al pre
ision and re
all. Asfar as we know, this 
onstitutes the �rst attempt to 
ontrol both 
riteria by17
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providing a 
ondition on the number of data we have to deal with. Despite itstheoreti
al nature, we showed that our bound 
an be very useful in real worlddata mining appli
ations. We empiri
ally tested our bound in the spe
i�
 
aseof sequen
e mining tasks. However, our work 
an be adapted to other datamining 
ontexts that require a 
omparison to a minimal support threshold.Throughout this paper, we wanted to stay in a theoreti
al framework in orderto avoid a dependen
e on the appli
ation we deal with. This explains why wedid not use any information about the sample set S. In the future, we planto redu
e the pessimism of our theoreti
al bound by integrating ba
kgroundknowledge during the 
omputation of the bound. One solution would 
onsistin using the empiri
al distribution of the patterns in S to weight ea
h valueused in the 
omputation of the integral in Eq.12. However, this deserves furtherinvestigations. Indeed, on
e again, su
h an empiri
al distribution is dependenton a �nite sample set whose size must be integrated in the model to avoid tohave bad estimates.Finally, note also that our theorem 
an also 
onstitute a good 
ondition toful�ll in various ma
hine learning domains. A
tually, sin
e building a set of
Nlow data allows us to have a good estimate of any pattern w, it also enablesus to 
orre
tly estimate the probability of any n-gram, whi
h is a spe
ial 
aseof pattern. Sin
e n-grams are used in many probabilisti
 models in ma
hinelearning, su
h as probabilisti
 automata, sto
hasti
 transdu
ers, or HiddenMarkov models, we think that Nlow 
an 
onstitute a good lower bound toe�
iently learn su
h sto
hasti
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