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Abstract

During the past few years, the problem of assessing the statistical significance of
frequent patterns extracted from a given set S of data has received much attention.
Considering that .S always consists of a sample drawn from an unknown underlying
distribution, two types of risks can arise during a frequent pattern mining process:
accepting a false frequent pattern or rejecting a true one. In this context, many
approaches presented in the literature assume that the dataset size is an application-
dependent parameter. In this case, there is a trade-off between both errors leading to
solutions that only control one risk to the detriment of the other one. On the other
hand, many sampling-based methods have attempted to determine the optimal size
of S ensuring a good approximation of the original (potentially infinite) database
from which S is drawn. However, these approaches often resort to Chernoff bounds
that do not allow the independent control of the two risks. In this paper, we overcome
the mentioned drawbacks by providing a lower bound on the sample size required
to control both risks and achieve a significant frequent pattern mining task.

1 Introduction

In frequent pattern mining (1; 2), one aims to find interesting patterns from a
database in the form of association rules, sequences, episodes, correlations, etc.
Many algorithms have been proposed in the literature to deal with association
rule mining (3; 4; 5), sequential pattern mining (6; 7; 8; 9), graph mining
(10; 11; 12; 13), tree mining (14; 15; 16). Chao et al. (17) proposed a generic
library for dealing with a large family of frequent patterns. This domain of
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research has been applied in lots of applications (see (18) for a survey) such
as the discovery of customers’ behavior in supermarkets, the extraction of
patterns of alarms in manufacturing supervision, the modeling of web users,
etc. A pattern of a sample S is called frequent if its observed frequency is
greather than a minimal support threshold. For instance, a sequence mining
process consists of detecting frequent subsequences from a dataset of sequences
that are made up of possibly non contiguous symbols. For example, let us
assume that the database S is constituted of the following three sequences
S ={ACGT, ATGAT,CAGT A}. By fixing the minimal support threshold to
%, the pattern AGT is considered as frequent since it occurs three times out
of the three sequences of S, that actually is > %

During the past decade, the scientific community has mainly concentrated
its efforts on the reduction of the complexity of the frequent pattern mining
methods to deal with large datasets. In this context, the reduction of the search
space has constituted one of the main objectives. From an algorithmic point
of view, all these approaches have to prove that they are correct and complete,
i.e. they must guarantee that (i) all the frequent patterns that are extracted
are really frequent in S, and (ii) no frequent pattern of S has been overlooked.
However, these properties are not sufficient to guarantee the significance of a
frequent pattern mining process. Indeed, S being nothing else but a sample of
an unknown target distribution D, mining algorithms often suppose that the
distribution over S is the same as D from which these data have been drawn. In
other words, they make no assessment of the likelihood that a frequent pattern
extracted from S is an artifact of the sampling rather than a consistent pattern
in the target distribution D. In the same way, they do not assess the risk of
overlooking a pattern that would be in fact frequent according to D.

More formally, deciding if a pattern in S is frequent or not boils down to
comparing its observed proportion p with a given support threshold pq. If p >
Do, the pattern is considered as frequent by the mining algorithm. However, the
true probability p of this pattern comes under the unknown target distribution
D. Therefore, when an algorithm takes a decision about the status of a pattern,
it takes a risk « € [0, 1] of accepting a false frequent pattern (i.e. that appears
in S due to chance alone), or a risk 5 € [0, 1] of rejecting a true frequent
one. In this context, 1 — a can be called the theoretical precision, whereas
1 — 3 corresponds to the theoretical recall of the algorithm. It is important to
note that most frequent pattern mining algorithms do nothing (or little) to
control both a and . As mentioned before, their main goal “only” consists of
guarantying their correctness and their completeness over S, but nothing is
ensured over the underlying distribution D. This can be justified by the fact
that, statistically, given a constant number of data in S, reducing one of the
two risks implies increasing of the second one.

In this paper, we differently take up this problem, by providing a lower bound
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on the size of S needed to theoretically guarantee a precision of (1 — «) and a
recall of (1 — 3) according to any distribution D. Therefore, we reject the well
known statement that to increase the recall, we have to accept to decrease
the precision, or vice versa. We rather answer the following question: What is
the minimal size of S required to satisfy given risks o and 37 We claim that
this contribution is novel by comparison with the state of the art. Indeed, we
will see that the few approaches attempting to deal with this problem from
a theoretical point of view either are based on Chernoff bounds that do not
allow the independent control of v and (3, or call on statistical tests that re-
quire to choose the risk to optimize. Even though our contribution is above all
theoretical, we claim that it can provide useful help in many applications. For
instance, in domains where the data acquisition is not costly, one can wonder
what is the minimal number of examples that are required to optimize the
trade-off between the reduction of the algorithmic constraints and the guar-
antee of a discovery of true knowledge. Therefore, in such cases, our theoretical
result provides a bound reachable in practice guaranteeing a significant fre-
quent pattern mining task. This is the case for example in the modeling of
web users’ behavior, where tera-bytes of data are available in log files. On the
other hand, in domains where the number of available examples is limited (in
molecular biology for instance), it enables us to draw the attention of data
miners on the fact that some extracted patterns could be the result of false
discovery, and some others could have been omitted despite their significance.
In this case, the use of the extracted knowledge must be done with caution.

The rest of the paper is organized as follows. In Section 2, we present the
state of the art approaches aiming to assess the significance of the extracted
patterns. Section 3 is devoted to the presentation of our bound enabling us to
fix in advance o and 3; A first illustration is presented in Section 4 on a real
database. In Section 5, we discuss about the valuation of the parameters of
our bound, and we present a larger series of experiments.

2 Related Work

2.1 Bottleneck of frequent pattern mining algorithms

Let us suppose we carry out a series of experiments consisting of tossing a
coin N = 10 times. Let S be the resulting sample of 10 itemsets constituted
in this case of only one item (<tails> or <heads>). Suppose we observe in
S respectively 8 <tails> and 2 <heads>. By fixing the support threshold to
po = 0.5, the pattern tails will be considered as frequent in S, because its
observed frequency p = 0.8 is higher than py, while the pattern <heads>
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will not be. Does it mean that the extracted knowledge “<tails> is more
frequent than <heads>" is significant? In fact, we can easily prove that such
a combination of <heads> and <tails> can “often” occur over only 10 trials,
without challenging the balance of the coin itself. We can note that the size
of S has a direct impact on the significance of the result. During the past few
years, several papers have drawn the attention of data miners on the risks
of extracting regularities from data in the form of a random artifact. The
previous example is a good illustration of this problem that can arise in a
frequent pattern mining process. Let us describe now some possible solutions
that have been presented in the literature, and that take into account the size
of S to overcome the mentioned drawback.

2.2 Modifying the support threshold py using Chernoff bounds

Rather than directly comparing the observed frequency p in S with pg, a first
solution consists of bounding py in order to take into account the estimate
error |p — p| due to the use of a sample S of finite size N, where p is the true
probability of the pattern under the unknown theoretical distribution D.

A well-known non parametric approach that deals with this problem is based
on Chernoff bounds that state that the estimate error between a random
variable X observed on a sample S and its expected value E(X) according to
D is lower bounded by ¢, such that

Ve €]0,1[, P(|X — E(X)| > €) < e 2N¢, (1)

Eq.1 states that, obviously, the higher the sample size N, the smaller the
estimate error. Chernoff bounds have been widely used in statistical learn-
ing theory for many years, and more recently in frequent pattern mining by
sampling-based methods (19; 20) to deal with the statistical relevance of the
extracted patterns. Basically, sampling-based data mining methods aim to
reduce the potentially huge 1/O overhead in scanning a database DB (that
potentially can not be stored in memory) for discovering frequent patterns.
Their goal consists of sampling the original database into a sample S and
extract regularities from this subset while guaranteeing the accuracy of the
extracted knowledge. Even if the sample S is here not drawn from an un-
known underlying distribution D (but rather from an existing large database
DB), this framework looks like ours, especially since those Chernoff bounds
can also be used to provide a theoretical size of S ensuring an upper bound of
the estimate error. Indeed, let the observed frequency p be the random vari-
able X of Eq.1 computed from S, and ppp its expected value E(X) over the
whole database DB (potentially large), the Chernoff bounds can be rewritten
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as follows:

P(|ps — pps| > €) < e (2)

Ineq.2 can be used in different ways. First, given a size N, solving for € this
inequality equal to a given probability provides a slack value of the support
threshold pg. On the other hand, given a value e, solving for N Eq.2 equal
to 0 provides a lower bound of the sample size N satisfying the estimate
error €. Despite its obvious advantages, the use of the Chernoff bounds has a
limitation. Indeed, as used in (19; 20), the symmetry due to the absolute value
in Eq.2 indicates that the risk of a bad estimation p is equally distributed
around ppp. In other words, the risk that a pattern occurs in S less often
than expected in DB is equal to the risk that a pattern occurs more often
than expected. In this context, Chernoff bounds does not allow the distinction
between the false positive rate o and the false negative rate 3, as defined in
the introduction. This can be a problem in domains where oo and (3 have to be
independently handled. For instance, suppose that a vaccine is administered
to a patient according to the frequent presence or not of a pattern in his
DNA. Missing a patient who has the disease (i.e. overlooking a true frequent
pattern) would not have the same medical effect than the one consisting of
administering the vaccine to a healthy person (i.e. admit a false frequent
pattern).

In (21), Toivonen presents another sampling method for discovering relevant
association rules. The algorithm also picks a random sample S from the origi-
nal database DB, then it determines from S all frequent associations rules that
probably hold in D B; finally it verifies with DB if they are actually frequent.
To control the risk of overlooking true frequent patterns, Toivonen replaces
the support threshold py by a lower bound based on the Chernoff bounds so
that misses are avoided with a high probability. However, Toivonen only deals
with 3. Indeed, by using DB to verify if the extracted patterns are actually
frequent, the risk a of false positive is intrinsically null. However, this way of
proceeding is only possible if the original database DB is available. While this
condition is fulfilled in Toivonen’s framework, it is an unacceptable constraint
in ours which assumes that S has been drawn from an unknown theoretical
distribution.

Recently, Laur et al. proposed in (22; 23) an approach that not only makes
use of Chernoff bounds but also deals with both risks « and 3. Given a sample
S, they provide a bound for py that ensures either a precision equal to 1 with
a high probability while controlling the recall, or a recall equal to 1 with a
high probability while limiting the degradation of the precision. Even if this
approach is theoretically well founded, the user has to choose the criterion
(recall or precision) he wants to optimize, that can be a tricky task in domains
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where both errors a and 3 are definitely undesirable.

2.3  Modifying the support threshold py using statistical tests

A second solution to check the relevance of a discovered pattern is to resort
to statistical tests that involve two hypotheses, a null hypothesis Hy and an
alternative one H,. Usually, H, is made to describe an interesting situation
(e.g. a frequent pattern), while Hy characterizes the irrelevant situation (e.g. a
non frequent pattern). When a test is performed, two types of errors can occur:
The first one, called Type I error, comes from the acceptation of the hypothesis
Hy while H, is true; the second one, called Type II error, corresponds to the
wrong decision to accept H, while H is true. Therefore, adapted to the context
of frequent pattern mining, the Type I error can be defined as describing the
risk a of accepting a false frequent pattern, while the Type II error can be
defined as being the risk § of rejecting a true frequent one. In this context,
it is important to recall that there exists a statistical trade-off between these
two risks. Given a sample size S, § actually increases if one wants to reduce «
and vice versa. In the following, we present some state of the art approaches
that deal with the relevance of extracted patterns using such statistical tests.

In (24), Megiddo & Srikant deal with the evaluation of the quality of associ-
ation rules extracted from a set of data. They present an approach for esti-
mating the number of false discoveries in order to control the precision. Let us
consider an association rule X = Y, where X and Y are sets of items. As a
null hypothesis, they assume that X and Y occur in the data independently.
Thus, they test the null hypothesis Hy : p(X NY) = p(X) x p(Y) against the
alternative one H, : p(XNY') > p(X) x p(Y'), which, roughly speaking, means
that a lot of transactions that contain X also contain Y. They run a statis-
tical test exploiting the property that the observed frequency of an itemset
asymptotically follows a normal distribution. To reduce the risk of accepting
a false frequent pattern, they increase the support threshold py by z, x o0,
where o, is the standard deviation of p and z, is the (1 — «) percentile of the
normal distribution. Therefore, by a priori tuning the risk «, they can control
the precision. Nevertheless, by using a small value for «, bounding py by this
way results in the decrease of the recall.

Recently, in (25), Webb presents two new approaches to applying statistical
tests in pattern discovery to assess the quality of a pattern. First, he sug-
gests the split of the sample S into an ezploratory set, from which a pattern
extraction is achieved, and a holdout set used to assess the quality of each
pattern. Despite promising experimental results, this approach is above all
empirical and does not provide any bound that enables both risks to be re-
duced. Webb also presents an approach based on the Bonferroni adjustment
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(26). When a statistical test is applied many times during an assessment, a
special problem arises: if a corresponds to the risk of taking a wrong single
decision, repeating the test many times globally increases that risk (26). To
overcome this drawback, several strategies have been proposed (27). A famous
one is the Bonferoni adjustment that uses a risk a/n when performing n hy-
pothesis tests. However, if n is large, such adjustment turns out to be strict
and leads to the increase of the other risk £.

Another solution consists of using Holm procedure (28) that takes into ac-
count the p-value of each test and orders them to tune a less strict risk. Such
a strategy is also used in the BH procedure (29) that aims to set o while con-
trolling the so-called false discovery rate. However, both of these adjustments
require the computation of the p-values of the n tests which depend on the
current application. In our paper, we will provide a more general tool what-
ever the application we deal with. Moreover, note that we aim to determine a
relationship between the number N of data to mine and fixed risks o and
(. In the adjustment procedures mentioned before, a and 3 are linked to the
number n of statistical tests when testing multiple hypotheses. Therefore,
both objectives cannot be directly connected.

In (30), Lee et al. present the DELI algorithm which is based again on a sam-
pling method which generates a sample S from a database D B. To maintain in
S an accurate set of association rules, a confidence interval is built for the true

probability p of an association rule in DB, such that p € p + za/g,/’%,

where p is the support of the rule in S, « is the Type I error, and z, is the
(1 — a) percentile of the normal distribution. By fixing «, the authors show
that one can determine a suitable size of S satisfying the Type I error. As we
can note, this approach has two main drawbacks. First, only the Type I error
a is used to assess the statistical significance of the patterns. Therefore, the
size of S deduced from the confidence interval does not take into account the
Type II error §. On the other hand, the computation of this interval requires
the use of the size of the original database DB. As we mentioned before, our
more general framework does not require to have DB.

Finally, note that other statistical test-based investigations have dealt with
the assessment of the significance of patterns in data mining. They use effi-
cient tests (such as the Chi-square test and Fisher exact test) to statistically
measure the level of dependency between the components of a pattern. An of-
ten used strategy consists of verifying if the extracted structure would also be
discovered from a random sample having same margins (see (31) for example).

The approaches we presented in this survey either impose a symmetry condi-
tion on the estimate error, or minimize only one risk given a sample set size,
or require the calculation of p-values of a specific set of statistical tests. No
one offers theoretical results that provide a bound on the size of S satisfy-
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ing arbitrary chosen parameters v and (. In the following, we fill this gap
by proposing a statistical approach that exploits the asymptotic convergence
of the distribution of frequent patterns. We provide a bound on N, easily
computable, allowing the independent control of both risks o and S.

3 A statistical view of the recall and the precision

3.1  Risks of rejecting true frequent patterns and accepting false ones

Let p(w) be the proportion of data in the set S that contain a given pattern w.
Let us recall that w is called frequent if p(w) is higher than a minimal support
threshold po. In fact, p(w) is nothing else but an estimate of the real probability
p(w) over D. Since p(w) is unknown, one can formulate a hypothesis on its
real value and perform a statistical test. As usually done in the standard
approaches, we suggest to describe by the null hypothesis Hy the situation
where p(w) is not high enough to consider w as being frequent. As done in
(24), we suggest to keep the maximal value py that prevent w from being
accepted as frequent. Therefore, we test the null hypothesis Hy: p(w) = po,
against the alternative one H,, which describes an interesting discovery, i.e.

Ha: p(w) > Do-

Type I error: a represents the risk of rejecting H, while it is true. In our
frequent pattern mining context, v corresponds to the risk of accepting a false
frequent pattern. Therefore, 1 —a exactly describes the theoretical precision of
the algorithm over the distribution D. For instance, with a support threshold
po of 10%, observing p(w) = 10.2% in S does not mean that w is definitely
frequent in the target distribution D. To be able to take a well-founded deci-
sion, we can a priori fix a (usually 5%, but it can depend on the application
we deal with), and then compute a bound of rejection k, satisfying «. More
formally,

a = P (p(w) > k|Hy true). (3)

The number of data of S that contain w is a binomial random variable with
success probability p(w). According to the size N of S and the support thresh-
old pg, we can use either the normal or the Poisson approximation. In our
context, we aim to provide a theoretical bound on N that will be by nature
quite large. Moreover, since we are looking for frequent patterns, we can as-
sume that py will be chosen sufficiently large otherwise the framework would
be the one of exceptions or rare events that is the matter of another research
domain. Therefore, using the central limit theorem, we will consider in the
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following that the proportion p(w) follows a normal distribution N, such that

ﬁmymmem¢”w“§pW”)

Equation 3 can be rewritten

a:P<ﬁWO—Mw) k= p(w)

= Hyt : 4
\/p(w)(lfp(w)) \/p(w)(lfp(w)) | 0 'r’ue) ( )
N N

Since Hj is true, we have to replace p(w) by its value under H,. We get

. B I
\/po(l—po) \/po(l—po)
N N

We can then easily deduce the bound k& which corresponds to the (1 — «)-
percentile z, of the normal distribution:

_ po(1 — po)
k= Po + Za 7]\7 . (6)

To recap, by fixing a risk a, Equation 6 gives us the bound of rejection of
Hy. For example, let us suppose we are mining N = 10000 data. Let us fix
the support threshold py = 10% and the risk o = 5% (2, = 1.645 by reading
the table of the normal distribution). Plugging these values in Equation 6, we

get k=0.1+1.645 x */01'33869 = 0.105. Therefore, a pattern w with a support

p(w) = 10.2% will be in fact rejected in order to control the risk of accepting
false positives.

3.1.0.1 Type II error B: Regarding 3, it describes the probability to
reject o true frequent pattern. In contrast to «, 3 can be calculated according
to the previously computed bound k. Since H,: p(w) > pg is true, we have to
set a given value for p(w) satisfying the constraint p(w) > po. Let p, be this
value (see Section 5 for a discussion about p,). We get

B = P(p(w) < k|H, true). (7)

As previously done for «,
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. _ I
s p (P —pw) kg N
\/p(w)(l—p(w)) \/p(W)(l—p(w))
N N

By replacing p(w) by its value under H,, we get

o ﬁ(w) — Pa k — Pa
=P (\/pa(lpa) < \/pa(lpa)> . (9)
N N

Since k is known thanks to Eq. 6, the (1 — ()-percentile z3 is also known,
and 3 can be easily deduced from the normal distribution. To continue with
our previous example (assuming that N = 10000 data), let us suppose that
pa = 11%, then 5 = 5.5% (by reading the table of the normal distribution).
Therefore, for a true support of 11%, the probability to falsely accept the null
hypothesis based on a finite sample of N = 10000 data is 5.5%.

3.2 Lower bound on N

The ideal objective of a frequent pattern mining process is to reduce not only
a but also 5. However, as mentioned before, there exists a trade-off between
these two risks. With a constant number of data N, § actually increases if
one reduces « and vice versa. A solution to overcome this drawback consists
of determining how many data N would be needed to not exceed a priori fixed
« and [ risks. This is the matter of the next theorem.

Theorem 1 To ensure that the false positive rate and the false negative rate
do not exceed respectively fixed risks o and 3, the lower bound Ny, of the size
of the sample S on which the frequent pattern mining algorithm must be run
18 equal to

, 0<pg <pg <.

2
N | VPl = pa) + 2 po(l—po)]
low —
Pa — Do

Proof 1 The proof is straightforward. We can deduce from Equation 9 that

pa(l _pa) (10)

k:pa_zﬁ N 3

10
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where z is the (1 — [3)-percentile of the normal distribution. Equating Equa-
tions 6 to 10, we can deduce that

w:pa_zﬁ Pa(l — pa) (11)

pO_'_Za N

Extracting N from Equation 11, we obtain the lower bound. O

Densité de la lol normale

Fig. 1. Trade-off between Type I (light grey area) and Type II errors (dark grey
area). po (resp. p,) is the expectation of p(w) under Hy (resp. Hy).

Let us now describe the meaning of this bound. It is important to note that
there is a direct relationship between 3 and p, given a fixed number of data.
Indeed, as described in Figure 1, p, is the expectation of p(w) under the alter-
native hypothesis H,. § corresponds to the density of the normal distribution
beneath the bound k of rejection of Hy. Therefore, the farther p, is from
po, the lower the risk 3. Since # and p, are parameters in our lower bound,
reducing both implies an increase of the needed number of data. The same
remark can be done between a and 3. Reducing « for a given size N implies
the increase of (3. Therefore, reducing both risks results in the increase of the
required number of data.

To illustrate this lower bound, the chart of Figure 2 shows the evolution of
Niow according to «, (3, pp and p,. For the sake of legibility we choose a = (.
We plot two curves with two different values of p,. We can note that the
smaller p, — po, the larger the lower bound. A further discussion about the
valuation of p, is presented in Section 5.

11
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250000
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Fig. 2. Njo, according to a, 3, po and pg.

4 TIllustration on a real world sequence mining task

Let us illustrate the impact of our bound in a real world sequence mining
task. We carry out a series of experiments on the ATIS (Air Travel Infor-
mation Service) corpus. This database consists of travel information requests
performed in english. We have an original set €2 of 14044 sentences from which
we draw samples S; of increasing size |S;| (from 10 to 14044) and we extract
frequent patterns with a support threshold of 10% with sPAM (32) which is
a well-known sequence mining tool. In this series of experiments, to allow the
analysis of the behavior of our bound, we assume that €2 represents the theo-
retical underlying distribution D from which the samples S; have been drawn.
In order to assess the effect of the size |S;| on the quality of the extracted
knowledge, we have to be able to measure the empirical values of o and [,
that we will call & and B & is the observed proportion of patterns that have
been extracted as frequent from .S; while they are not frequent in the target
population ). B corresponds to the observed proportion of patterns that are
frequent in €2 but overlooked from 5;.

Figure 3 describes, according to an increasing size |S;| of the sample set .S;
and a support threshold pg = 10%, the evolution of 1 — & and 1 — B, using
a value p, = 11%. Note that we performed 15 trials, for each size |S;|, and
we computed the average in order to reduce the variance of the results. As
expected, the higher the number of sequences, the smaller the computed risks
& and (3. We can also note that for small sizes of S; (< 1000) both risks é&
and /3 are high (> 10%) meaning that a lot of extracted patterns are not truly
frequent in {2 and many others have been overlooked. This example is a good

12
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FPrecision and Recall rates

1- 3 (Precision)
v 1-a (Recall)
| | |

| ] | | |
Gl
1000 2000 4000 GO0 S000 . }4%][][][][] 12000 L4000

Dataset size

Fig. 3. Evolution of the quality of the results of a sequence mining algorithm ac-
cording to an increasing size of S;.

illustration of the bottleneck of standard mining algorithms. Since & and 3 can
be empirically measured, they can be compared with theoretical risks o and
0 to verify the relevance of our bound. To achieve this task, let us compute
N for given theoretical parameters «, 3, p, and py. For instance, let us set
a=F=5% (p, = 10% and p, = 11% being already fixed). Plugging these
values in our bound yields the value Ny, = 10165. If we observe from Figure
3 the results obtained from 10165 sequences, we can conclude that our bound
is relevant because the two observed errors computed on the ATIS database
(& = 3% and 3 = 2%) actually do not exceed our a priori fixed theoretical
risks o and £.

Note that the difference between the observed and the theoretical errors can
appear quite substantial on this experiment even if it is on the “safe side”.
In fact, the distance between the observed and the theoretical errors directly
depends on the sample S; drawn from the unknown target distribution. But
since Ny, constitutes a lower bound needed, in the worst case, to satisfy «
and [, our theorem states that we never fall on the “unsafe side”.

5 What about the value of p,?

So far, to illustrate our bound, we used a value of p, “close” to p, under the
alternative hypothesis H,. As we explained in the previous section, there is

13
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a strong relationship between p, and our lower bound N,,,. More precisely,
Niow quadratically increases with the drop of the difference between p, and
po. Therefore, the choice of a relevant value p, remains an important problem
that deserves special attention. In statistical inference, it is often states that
the valuation of the parameters under H, has to be fixed according to the
considered application. To avoid to be dependent on this application, we study
in the following of this section two theoretical ways to set the value of p,.

5.1 A worst case solution

The first solution to tackle the problem of the valuation of p, is to consider
that a pattern w is truly frequent from the moment that its probability p(w)
over D is greater than the support threshold py. Let Ny be the number of data
such that NO = po. Therefore, a pattern w is truly frequent if it occurs at
most Ny + 1 “times in the Ny data. So, we get that

_Nokt o0
Pa = Nlow — P Nlow.

Plugging this value in Equation 10, and equating Equations 6 to 10, we get
the following analytical representation of our lower bound, in a polynomial
form of order 4 whose solution gives N, (this polynomial has been obtained
using MAPPLET):

2252’@]70 + Zﬁpo + 4251902 + ngo - 2252702 + ZapO + 2005 — QZépg - Qzépg)N‘l

(—
(2po(—23 — 25 + 23po — 25 + 2525 + 22po) + 4p(2522 — 25) + 6pg(25 — 2522) )N?
(1-— 4zﬁp0 + 2pg22 zﬁ + 226 — QZﬁzapO + Zﬁ GZépo + 62%p3)N2

(

225 + 225 — 425p0)N + 25 = 0.

We can see that the lower bound now only depends on the risks a0 and 3,
and the support threshold py. p, is no longer a parameter of our bound, and
therefore the solution of this equation provides the exact lower bound guar-
anteeing at worst « and [ given a support threshold pg. Nevertheless, this
solution constitutes a very pessimistic answer to our problem. For instance,
solving this equation setting o = 3 = 5% and py = 0.1, we get Ny, = 3.10%°
sequences!
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Fig. 4. Comparison between various empirical precisions and 1 — «, when pg = 0.1.
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Fig. 5. Comparison between various empirical recalls and 1 — 3, when pg = 0.1.

5.2  An average solution

In the previous solution, we assumed that all the patterns that have been over-
looked followed a normal distribution of expected value p, = py + ﬁ, which
is actually the worst situation. In practice, each omitted frequent pattern has
its own theoretical support p, that can belong to the interval |pg, 1]. How can
we take into account those different possible values of p, in our bound? We
suggest in the following the computation of an average solution Nj,,, which is
the expected value of N, over |pg, 1], such that:
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_ 1 1
Niow = X / Nlowdpa- (12)
p

0

This expected value does not depend on p, anymore. To assess the relevance
of this strategy, we computed for different values of « and 3 (for the sake of
simplicity we set o = 3) the expected value Ny, using Eq.12. These theoret-
ical results are described in Figures 4 and 5 in the form of two curves in solid
line. They are compared with various curves of empirical recall and precision
computed from 10 different datasets. Four of them are real databases: ATIS
which has already been used in this paper, and three other databases available
at the URL http://abu.cnam.fr/. FIRSTNAMES is a set of 12437 male and
female first names of different origins; TOWNS is a set of 39074 names of french
towns; FRENCH WORDS is a set of 250750 french words. We also built 6 arti-
ficial databases from probabilistic automata: Reber is a set of 15000 sequences
generated from the Reber grammar (33) whose target distribution is an au-
tomaton constituted of 8 states and an alphabet of 7 letters; We generated 5
other sets of 15000 sequences from 5 automata, each one composed of x states
and an alphabet of y letters and denoted Sz Ly (see Fig.6 for an example of
an automaton S2L2). Note that such an automaton constitutes a theoretical
distribution D from which it is possible to compute the probability p(w) of
any pattern w, using suitable calculation methods (see (34) for example).

a(0.41)

Fig. 6. Automaton S2L2 viewed as a target distribution D.

For each of the databases, we compute with SPAM the set of frequent patterns
with a support threshold of 10%. This set will constitute the target distribu-
tion. Then we sample sets of growing size (from 10 to 15000) from which we
also extract frequent patterns, and we calculate the empirical precision (1 —&)
and recall (1 — (). The results are shown respectively in Figure 4 and Figure
5, and have to be compared with the curves in solid line of those figures.
They confirm that we actually provide a relevant lower bound on the number
of sequences needed to at least guarantee a priori fixed theoretical recall and
precision. Whatever the database, its corresponding curves (1—d& or 1 —ﬁA) are
always over the theoretical one. Note that the distance between the empirical
risks and our lower bound is quite large for some databases, meaning that
our bound can remain quite pessimistic. However, it does not challenge its
relevance since, as shown with the curves obtained from the automata S1L10
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and S2L10, it may happen that the empirical risks, due to specific sampling
effects, are much more close to the theoretical ones.

Note that the theoretical curves described in Figures 4 and 5 only tackle the
case of pyp = 0.1. In order to provide a calculating tool that would make the
estimation of the minimal number of data easier, we built the theoretical curves
for different values of py. Figure 7 describes a set of abaci that directly provide
the lower bound Ny, required to guarantee at least a precision of (1 —«) and
a recall of (1 — 3) (once again, for the sake of simplicity, we set a = 3). We
can note that the curves are not the same, that means that the value of pg
has a direct impact on the lower bound. From a mathematical point of view,
this can be easily explained by the fact that pg is used in the formulae of Ny,
(see Theorem 1) within a concave function in the form of py(1 — pg) which is
maximal for pg = 0.5. Therefore, for the same values o and 3, setting py = 0.5
requires more data than for other values. This explains the fact that the curve
for pg = 0.5 is under the others. Therefore, from a statistical point of view,
to avoid having large risks « and [, a good strategy consists of choosing a
support threshold p, far from 0.5.
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Fig. 7. Evolution of the theoretical recall and precision according to the lower bound
Niow and the support threshold py (from 0.1 to 0.9).

6 Conclusion and future work

In this paper, we dealt with the assessment of the significance of a frequent
pattern mining process. To perform this task, we presented a lower bound
on the number of data required to satisfy theoretical precision and recall. As
far as we know, this constitutes the first attempt to control both criteria by
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providing a condition on the number of data we have to deal with. Despite its
theoretical nature, we showed that our bound can be very useful in real world
data mining applications. We empirically tested our bound in the specific case
of sequence mining tasks. However, our work can be adapted to other data
mining contexts that require a comparison to a minimal support threshold.

Throughout this paper, we wanted to stay in a theoretical framework in order
to avoid a dependence on the application we deal with. This explains why we
did not use any information about the sample set S. In the future, we plan
to reduce the pessimism of our theoretical bound by integrating background
knowledge during the computation of the bound. One solution would consist
in using the empirical distribution of the patterns in S to weight each value
used in the computation of the integral in Eq.12. However, this deserves further
investigations. Indeed, once again, such an empirical distribution is dependent
on a finite sample set whose size must be integrated in the model to avoid to
have bad estimates.

Finally, note also that our theorem can also constitute a good condition to
fulfill in various machine learning domains. Actually, since building a set of
N, data allows us to have a good estimate of any pattern w, it also enables
us to correctly estimate the probability of any n-gram, which is a special case
of pattern. Since n-grams are used in many probabilistic models in machine
learning, such as probabilistic automata, stochastic transducers, or Hidden
Markov models, we think that N, can constitute a good lower bound to
efficiently learn such stochastic models.
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