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Geometry of the Shilov Boundary of a Bounded

Symmetric Domain

Jean-Louis Clerc

today

Abstract

In the first part, the theory of bounded symmetric domains is pre-
sented along two main approaches : as special cases of Riemannian
symmetric spaces of the noncompact type on one hand, as unit balls
in positive Hermitian Jordan triple systems on the other hand. In the
second part, an invariant for triples in the Shilov boundary of such a
domain is constructed. It generalizes an invariant constructed by E.
Cartan for the unit sphere in C2 and also the triple Maslov index on
the Lagrangian manifold.

1 Introduction

The present paper is an outgrowth of the cycle of conferences delivred by the
author at the Tenth International Conference on Geometry, Integrability and
Quantization, held in Varna in June 2008. The first part (sections 2-5) is a
survey of the theory of bounded symmetric domains. Since their introduction
by E. Cartan, bounded symmetric domains have been intensively studied.
There are two main trends to present them. The usual approach first stud-
ies Hermitian symmetric spaces as special cases of Riemannian symmetric
spaces, namely those which admit a compatible complex structure. For the
noncompact type, the theory culminates with the Harish Chandra embed-
ding theorem, which realizes the space as a bounded symmetric domain in
P+, where P+ is the holomorphic tangent space at some (any) point of
the space. The bounded domain thus obtained in P+ is circled and can be
characterized by a norm condition (see Theorem 2.1) .

The second approach starts with a bounded circled symmetric domain
D in some complex vector space V and shows that the Lie algebra of vector
fields generated by the group of holomorphic diffeomorphisms of D has a
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very specific realization, which induces on V a rich algebraic structure (posi-
tive Hermitian Jordan triple system, PHJTS for short). Conversely, for each
positive Hermitian Jordan triple system V, it is possible to develop a spectral
theory for the elements of V and in particular to define a certain complex
Banach norm on V called the spectral norm. The unit ball for the spectral
norm can be shown to be a bounded symmetric domain. The Bergman met-
ric (which exists for any bounded domain) realizes the bounded symmetric
domain as a Hermitian symmetric space of the noncompact type. This ap-
proach shows a one to one correspondance between PHJTS and bounded
symmetric domains, which in a sense, shows that the concept of PHJTS is
exactly fitted for the study of bounded symmetric domains.

The characterization of the Shilov boundary of a bounded symmetric
domain is specially nice in the approach through PHJTS, as the elements
of the Shilov boundary can be characterized by an algebraic property (they
are the maximal tripotents).

There is an important difference inside bounded symmetric domains :
some of them are said to be of tube-type, the others being not of tube-type.
The Cayley transform (a generalization of the classical Cayley transform
mapping the open unit disc in C into the upper half-plane =z > 0) trans-
forms a domain of tube type in a Siegel domains of type I, which is a
generalized half-space over a convex cone, whereas a non tube type domain
is transformed into a Siegel domain of type II. Tube-type domains corre-
spond to a special class of PHJTS, namely those which are obtained from
a Euclidean Jordan algebra by the process of Hermitification (a variant of
the complexification). The interplay between the two notions (tube type vs
non-tube type, PHJTS vs Euclidean Jordan algebra) is an important tool
in studying fine properties of bounded symmetric domains.

The second part (sections 6-8) is a presentation of some ot the results
obtained during the last years by the author, partially in collaboration with
B. Ørsted, K-H. Neeb and K. Koufany (see [4]-[11]). The main theme is to
study the action of the diffeomorphisms group G of a bounded symmetric
domain D on triplets in the Shilov boundary S of D. An invariant is con-
structed for this action. This invariant coincides with known invariants in
specific cases. The classical triple Maslov index, a Z-valued invariant (for
the symplectic group) on triples of Lagrangians is the most famous. For tube
type domains, this triple invariant is the main ingredient in the classification
of orbits of G into S × S × S.

To help the reader, an example (the unit ball in the space of complex rect-
angular matrices) is followed through the paper (see 2.5, 3.4 and 4.6), and
most of the concepts that are introduced in a general setting are explicitely
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determined for this example. Somme other examples appear occasionally.
The paper contains no proof (except for a few proofs that are sketched)

but I tried to give appropriate references. In preparing these notes, I used
three main sources: the classical treatise by S. Helgason [17] and specially
chapter VIII, the book by Satake [30] which combines the classical approach
and the use of Jordan triple system, and the notes by O. Loos [25], where
Jordan triple systems are the main tool for studying bounded symmetric
domains. The books [17] and [30] contain many references to the literature
on the subject.

2 Hermitian Symmetric Spaces

2.1 Riemannian Symmetric Spaces

The basic reference for this section is Helgason’s book [17]. For a different
point of view, see [24].

Definition 2.1. A connected Riemannian manifold (M, g) is a Rieman-
nian symmetric space if, for each point m ∈ M , there exists an involutive
isometry sm of (M, g) such that m is an isolated fixed point of sm.

The differential Dsm(m) of sm at m is an involution of the tangent
space TmM , and, because m is an isolated fixed point, 1 can not be an
eigenvalue of Dsm(m). Hence Dsm(m) = −TmM , so that sm has to coincide
with the geodesic symmetry around m (a priori only locally defined, and
not necessarily locally isometric). If there is an isometry sm satisfying the
requirements of the definition, then it is unique and called the geodesic
symmetry centered at m.

For a general Riemannian manifold M , the group Is(M) of isometries of
(M, g) with the compact-open topology has a unique compatible structure
of Lie group (Myers-Steenrod theorem, see [28]). When M is a Riemannian
symmetric space, composition of symmetries centered at various points of M
produces enough isometries of M to prove that the group Is(M) is transitive
on M . A refinement says that the same statement is true for the neutral
component of Is(M). We will denote by G the neutral component of Is(M).

Fix an origin o in M . Let K be the isotropy subgroup of o in G. Then
K is a closed compact subgroup of G, and M is isomorphic to the quotient
space G/K.

Let g = (G) be the Lie algebra of G, and k the Lie algebra of K viewed
as a Lie subalgebra of g. The tangent space ToM of M at o can be identified
with g/k.
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The map

θ : G −→ G, g 7−→ so ◦ g ◦ so

is an involutive automorphism of G. Let Gθ = {g ∈ Gθ(g) = g} be the fixed
points set of θ. Then Gθ is a compact subgroup of G, and

(Gθ)0 ⊂ K ⊂ Gθ.

The differential of θ at the identity is an involutive automorphism of the Lie
algebra g, still denoted by θ. There is a corresponding decomposition

g = k⊕ p

where
k = {X ∈ gθX = X}, p = {X ∈ gθX = −X}.

Moreover,
[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

The projection from g to p along k yields an isomorphism of g/k with p,
and hence a natural identification ToM ' p. Moreover, the map

K −→ Hom(ToM), k 7−→ Dk(o)

defines an action of K on ToM , whereas K acts on p by the adjoint action.
The isomorphism ToM ' p is equivariant with respect to these actions of
K.

The vector space p is naturally equipped with a Lie triple product (LTS)
defined by

[X, Y, Z] = [[X, Y ], Z]. (1)

Proposition 2.1. The Lie triple product on p satisfies the following iden-
tities

[X, Y, Z] = −[Y, X,Z]

[X, Y, Z] + [Y, Z, X] + [Z,X, Y ] = 0

[U, V [X, Y, Z]] = [[U, V,X], Y, Z] + [X, [U, V, Y ], Z] + [X, Y, [U, V, Z]]

for all X, Y, Z, U, V in p.
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This Lie triple product has a nice geometric interpretation, namely

Ro(X, Y )Z = −[[X, Y ], Z] = −[X, Y, Z], (2)

where Ro is the curvature tensor of M at o (see [17] p. 215).
The Ricci curvature (also called the Ricci form) is the symmetric bilinear

form on ToM given by

ro(X, Y ) = −(Z 7−→ Ro(X, Z)Y ). (3)

Proposition 2.2. The Ricci curvature at o is invariant under the action of
K on ToM and satisfies, for all X, Y in p

ro(X, Y ) = −1
2
B(X, Y ) (4)

where B(X, Y ) =g (XY ) is the Killing form of the Lie algebra g .

See [30] p. 75 for a proof.
A Riemannian symmetric space M ' G/K is said to be of Euclidean

type if [p, p] = 0. The space M is said to be irreducible if it is not Euclidean
and the representation of K on the tangent space ToM ' p is irreducible
(admits no K-invariant subspace except {0} and p).

If M is irreducible, then there exists a unique (up to a positive real
number) K-invariant inner product on p, and hence the Ricci form ro has
to be proportional to it.

Definition 2.2. An irreducible Riemannian symmetric space is said to be
of the compact type if ro is positive definite
of the noncompact type if ro is negative definite.

The definition does not depend of the choice of the origin, as the group
G is transitive on M .

Any simply connected Riemannian symmetric space M is a product of
a Euclidean space and of irreducible symmetric spaces (see [17] ch. V,
Prop. 4.2 and ch. VIII, Prop. 5.5). If all factors are of the compact (resp.
noncompact) type, then M is said to be of the compact (resp. noncompact)
type.

If M is of compact type, then G is a compact semisimple Lie group. If
M is of the noncompact type, then G is a semisimple Lie group (with no
compact factors) and θ is a Cartan involution of G (see [17] ch. V).

For a Riemannian symmetric space of the noncompact type, the in-
finitesimal data characterize the space. More precisely, given a semisimple
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Lie algebra g with no compact factors, let G be any connected Lie group
with Lie algebra (G) = g and assume that G has a finite center (there al-
ways exists such a group). Let θ be a Cartan involution of g (notice that two
Cartan involutions of g are conjugate under the adjoint action of G). Let
g = k⊕p be the corresponding Cartan decomposition of g. The Killing form
B of g is negative definite on k and positive definite on p. The involution θ
can be lifted to an involutive automorphism of G, still denoted by θ. Then
K = Gθ is a connected compact Lie subgroup of G. Let M = G/K, and set
o = eK. The tangent space at o is naturally isomorphic to p and B|p×p is a
K-invariant inner product on p. Hence M can be equipped with a structure
of Riemannian manifold, on which G acts by isometries. The space M is a
Riemannian symmetric space of the noncompact type. Up to isomorphism,
M does not depend on the choice of G, but only on g (see [17] ch. VI).

2.2 Hermitian symmetric spaces

The main reference for this section is [17], ch. VIII). Other relevant sources
are [30], [20] section VII.9, [14] sections 1-4 .

Definition 2.3. A (connected) complex manifold M with a Hermitian met-
ric h is said to be a Hermitian symmetric space if, for each point m in M
there exists an involutive holomorphic isometry sm of M such that m is an
isolated fixed point of sm.

Hermitian symmetric spaces are special cases of Riemannian symmet-
ric spaces (the corresponding Riemannian metric being g = <h), but we
demand that the symmetries be holomorphic. As a consequence, one can
show that the group G (the neutral component of the group of Is(M, g)) acts
by holomorphic transformations on M . Notice that G is a real Lie group
(and not a complex Lie group).

Using same notation as in previous sections, the tangent space ToM
(which is naturally isomorphic to p) admits a complex structure, i.e. there
exists a (R-linear) operator J = Jo on p which satisfies J2 = −.

Lemma 2.1. The complex structure operator J satisfies

J([T,X]) = [T, JX]

B(JX, JY ) = B(X, Y )

for all X, Y in p and T in k.
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The first property corresponds to the fact that the action of K on ToM is
by complex linear transforms. The second property is a consequence of the
fact that J is an isometry of the tangent space for the Riemannian metric
g.

Lemma 2.2. Assume that g is semisimple. Then there exists a unique
element H in the center of k such that J =p H.

Sketch of the proof. The endomorphism D of g which is 0 on k and
coincides with J on p is easily seen to be a derivation of g (use Lemma
2.1). If g is semisimple, then any derivation is inner, hence D = H for some
element H in g. Decomposing H along g = k⊕ p shows that H has to be in
the center of k.

The fact that k has a non trivial center essentially characterizes the
Hermitian symmetric spaces among the Riemannian symmetric spaces. In
the noncompact type case, a precise statement is the following.

Proposition 2.3. Let g be a simple Lie algebra of the noncompact type,
with Cartan decomposition g = k⊕p. The associated Riemannian symmetric
space M = G/K admits a structure of Hermitian symmetric space if and
only if the center of k is non trivial. If true, there exists a unique (up to
±1) element H in the center of k such that H induces a complex structure
operator on p, and the corresponding symmetric space M ' G/K is, in a
natural way a Hermitian symmetric space of the noncompact type.

2.3 The Harish Chandra embedding

Proposition 2.3 gives an abstract description of the Hermitian symmetric
space associated to a simple algebra of the noncompact type. A more explicit
realization is obtained through the Harish Chandra embedding.

Let g be a semi-simple Lie algebra of the noncompact type, with Cartan
decomposition g = k ⊕ p w.r.t. some Cartan involution θ, and assume that
there exists an element H in the center of k such that the restriction of H to
p is a complex structure operator J . Let G be the complexification of g and
denote by X 7−→ X the conjugation of G with respect to the real form g. For
Z in G, let <Z = 1

2(Z+Z). Extend θ to G in a C-linear way, and observe that
X 7→ θX is a Cartan involution of G. Let G = K⊕P be the complexification
of the Cartan decomposition. Extend in a C-linear way the action of J to
P. Then P splits as P = P+ ⊕ P−, where P± = {X ∈ PJX = ±iX}.
One can think of P+ as the holomorphic tangent space of M = G/K at the
origin o = eK.
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Lemma 2.3. The space P+ (resp. P−) is an Abelian Lie subalgebra of G.
Moreover [K,P±] ⊂ P± .

Let G be a complex Lie group with Lie algebra (G) = G, and define K
(resp. P+, P−) to be the analytic subgroup of G with Lie algebra K (resp.
P+,P−). Let G (resp. K) be the real analytic subgroup of G with Lie
algebra g (resp. k).

Proposition 2.4. i) The exponential map exp : P± −→ P± is an isomor-
phism of complex Abelian Lie groups.

ii) K normalizes P−, K∩P− = {e} and the semidirect product Q− = KP−
is a parabolic subgroup of G.

iii) P+ ∩Q− = {e}, and the map

P+ ×Q− −→ G, (p+, q) 7−→ p+q

is an injective regular map onto an open subset of G.
iv) G ⊂ P+Q− and G ∩Q− = K.

Let g be in G. Then, as a consequence of Proposition 2.4, g can be
written in a unique way as g = expΨ(g) q−, with q− in Q− and Ψ(g) in
P+. Moreover, for any k in K, Ψ(gk) = Ψ(g), and hence Ψ induces a map
ζ : G/K −→ P+.

Define a norm on G by

‖X‖ = (−B(X, θX))1/2, X ∈ G

and the corresponding operator norm

‖X‖ = sup{‖X(Y )‖Y ∈ G, ‖Y ‖ ≤ 1} .

Theorem 2.1. (Harish Chandra embedding) The map ζ : G/K −→ P+ is
a biholomorphic diffeomorphism of G/K onto the domain D, where

D = {Z ∈ P+‖(<Z)‖ < 1} .

For a proof, see [17] ch. VIII, [30] section II.4.

2.4 Jordan triple system

The rôle of Jordan algebra and Jordan triple system in the theory of Her-
mitian symmetric spaces is originally due to M. Koecher (see [21]). The
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notes by O. Loos [25] offer a systematic presentation of the material to be
discussed. See also [30], [14].

Let M ' G/K be a Hermitian symmetric space of the noncompact
type. Then, considering M has a Riemannian symmetric space, p ' ToM
is equipped with its natural structure of Lie triple system, which coincides
(up to sign) with the curvature tensor at o (see (2)). The behaviour of
the curvature tensor under the action of the complex structure J is rather
intricate. It leads to the following definition.

For X, Y, Z in p, let

{X, Y, Z} =
1
2
(
[[X, Y ], Z] + J [[X, JY ], Z]

)
(5)

Theorem 2.2. The triple product defined by (5) satisfies the following iden-
tities

(JT1) J{X, Y, Z} = {JX, Y, Z} = −{X, JY, Z} = {X, Y, JZ}

(JT2) {X, Y, Z} = {Z, Y, X}

(JT3)
{U, V, {X, Y, Z}} = {{U, V,X}, Y, Z}−{X, {V,U, Y }, Z}+{X, Y, {U, V, Z}}

for all X, Y, Z, U, V in p.
Moreover it satisfies

[[X, Y ], Z] = {X, Y, Z} − {Y, X,Z} (6)

A complex vector space V with a triple product {X, Y, Z} which is C-
linear in X and Z, conjugate linear in Y , and satisfies (JT2) and (JT3) is
called a Jordan triple system (JTS).

Let V be a Jordan triple system. For X and Y in V let L(X, Y ) the the
C-linear operator on V defined by

L(X, Y )Z = {X, Y, Z}

and consider the sesquilinear form

τ(X, Y ) = L(X, Y ) (7)

If the form τ is nondegenerate, then τ is Hermitian (i.e. τ(X, Y ) = τ(Y, X)
for X, Y in V). Moreover

L(X, Y )∗ = L(Y, X) (8)
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for X, Y in V, whereA∗ stands for the adjoint of the operator A w.r.t. τ .
The triple system is said to be a positive Hermitian Jordan triple system
(PHJTS) if the form τ defined by (7) is positive definite.

Theorem 2.3. Let M ' G/K be a Hermitian symmetric space of the non-
compact type. Then (p, J) (considered as a complex vector space) with its
Jordan triple product defined by (5) is a PHJTS.

2.5 An example : the Hermitian symmetric space of type
Ip,q

Among the bounded symmetric domains, there the so-called classical ones
as opposed to the exceptional ones. The classical ones are studied system-
atically in [29]. See also [18], and the Appendix of [30]. We present here (to
be continued in 3.4 and 4.6) the classical domain of type Ip,q, i.e. the unit
ball in the space of p× q matrices with complex entries.

Let E be a complex vector space of dimension n, and let p, q two integers,
p, q ≥ 1 with p+q = n. Let G(q, E) be the Grassmannian of all q-dimensional
vector subspaces of E. It is in a natural way a complex manifold.

Two vector subspaces W of dimension q and W′ of dimension p are said
to be transverse if W∩W′ = {0}. This relation will be denoted by W>W′.
Choose such a transverse pair (W0, W′

0) so that E = W′
0 ⊕W0. Let

OW′
0

:= {W ∈ G(q, E)W>W′
0} .

This is an open subset of G(q, E). Let L be in Hom(W0, W′
0), an define its

graph WL as
WL = {ξ + Lξξ ∈ W0} .

Clearly, WL is a subspace of E of dimension q, and WL is transverse to W′
0,

hence belongs to OW′
0
. The map

Hom(W0, W′
0) 3 L 7−→ WL ∈ OW′

0

is a chart onto OW′
0
. The operator L = 0 corresponds to the ”origin” W0 in

OW′
0
.

The group GL(E) ' GL(n, C) operates transitively on G(q, E) by (g, W) 7→
g(W). Of course, this is really an action of the projective group G =
PGL(E) ' GL(n, C)/C∗.

Let h be a Hermitian form on E of signature (p, q), and let

M = Mp,q := {W ∈ G(q, E)h|W � 0} .
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Let W be in M . Then the restriction of h to W⊥ is positive-definite and
W⊥ is a canonical transverse space to W. It allows to identify the tangent
space of M at W with Hom(W, W⊥).

Let G = PU(E, h) be the (projective) group of (pseudo-)isometries w.r.t
h. If g is in G, and W is in M , then g(W) is still in M , so that this defines
an action of G on M . By Witt’s theorem, this action is transitive.

Let W be in M and g in U(E, h). Then g maps W to g(W), and at the
same time, g(W⊥) = (g(W))⊥, as g preserves h.

On M there is a natural structure of Hermitian manifold. The tangent
space at a point W has been identified with Hom(W, W⊥). If T : W → W⊥,
define T ∗ to be the unique complex linear operator from W⊥ into W such
that, for all ξ ∈ W and η ∈ W⊥.

h(Tξ, η) = h(ξ, T ∗η) .

Then for T, S in Hom(W,W⊥) set hW(S, T ) = ST ∗. This is a positive defi-
nite Hermitian form on the tangent space at W, and hW depends smoothly
on W, thus turning M into a Hermitian manifold. Moreover, the stabilizer
of W in U(E, h) is U(W, h|W) × U(W⊥, h|W⊥), and hW is easily seen to be
invariant by this stabilizer. Thus the metric defined by hW is invariant by
G.

Fix a point W0 in M . Then E = W0 ⊕ W⊥
0 , and let σ0 = σW0 be the

symmetry with respect to this decomposition, defined by σ0(ξ + η) = ξ − η
for ξ ∈ W0 and η ∈ W⊥

0 . This symmetry belongs to U(E, h) and hence
operates on M . Let W in M be a fixed point of σ0. Thus W is stable by σ0,
hence decomposes as W = W ∩ W0 ⊕ W ∩ W⊥

0 . As the restriction of h to
W has to be negative definite, this forces W = W0. Thus σ0 acts on M by
an involutive holomorphic transformation, preserving the Hermitian metric
and having W0 as isolated (even unique) fixed point. This shows that M is
a Hermitian symmetric space.

The Lie algebra of PU(E, h) is the same as the Lie algebra of SU(E, h)
as both groups are locally isomorphic, and it is given by

g = su(E, h) = {X ∈ End(E)h(Xξ, η) + h(ξ, Xη) = 0,∀ξ, η ∈ E, X = 0} .

Choose a basis (e1, . . . , ep, ep+1, . . . , en), of E such that h(ei, ei) = 1 for
1 ≤ i ≤ p, h(ei, ei) = −1 for p+1 ≤ i ≤ n and h(ei, ej) = 0 for 1 ≤ i 6= j ≤ n,
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so that the form h is represented by the matrix

Ip,q =



1
. . .

1
−1

. . .
−1


The Lie algebra g of G is then given by

g = su(p, q) =
{

X =
(

A Y
Y ∗ D

)
, A∗ = −A, D∗ = −D, (A + D) = 0,

}
The Lie algebra k of K ' P (U(q)× U(p)) is

k = s(u(p)× u(q)) =
{

X =
(

A 0
0 D

)
, A = −A∗, D∗ = −D,A + D = 0

}
whereas p is given by

p =
{

X =
(

0 Y
Y ∗ 0

)
Y ∈ Mat(p× q, C)

}
,

which allows to identify p with Mat(p× q, C).
The element H which is in the center of k such that pH is the complex

structure operator on p is

H =



q
p+q i

. . .
q

p+q i

− p
p+q i

. . .
− p

p+q i


.

The Lie triple system on p is given by

[X, Y, Z] = [[X, Y ], Z] = XY ∗Z − Y X∗Z − ZX∗Y + ZY ∗X ,

for X, Y, Z p× q matrices.
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The complexified Lie algebra G of g can be realized as sl(n, C), the Lie
algebra of n× n matrices with trace 0. Then

K =
{(

A 0
0 B

)
, A + B = 0

}
, P =

{(
0 Y
Z 0

) }
.

and

P+ =
{(

0 Y
0 0

) }
The corresponding Jordan triple product is given by

{X, Y, Z} = XY ∗Z + ZY ∗X .

3 Bounded symmetric domains

3.1 Bergman metric

The reference for this section is [17] ch. VIII.
Let D be a domain (i.e. a open connected subset) in some complex

finite-dimensional vector space E. Choose a Lebesgue measure dλ on E.

Definition 3.1. Let

H(D) = {f : D −→ Cf holomorphic,

∫
D
|f(z)|2dλ(z) < ∞}

The Bergman space H(D) is a Hilbert space for the norm ‖f‖ = (
∫
D |f(z)|2dλ(z))1/2,

as it is a closed subspace of L2(D). Let w be in D. Then the linear functional

H(D) 3 f 7−→ f(w)

is continuous (the proof uses the Cauchy formula and Schwarz inequality).
Hence there exists Kw in H(D) such that

f(w) =
∫
D

f(z)Kw(z)dλ(z) =
∫
D

f(z)k(z, w)dλ(z) (9)

where k(z, w) = Kw(z) is called the Bergman kernel of the domain D.

Proposition 3.1. The Bergman kernel satisfies the following properties :
i) k(z, w) is holomorphic in z and conjugate holomorphic in w.
ii) k(z, w) = k(w, z)
iii) for any biholomorphic diffeomorphism Φ of D

k(z, w) = jΦ(z)k(Φ(z),Φ(w))jΦ(w) (10)

where jΦ(z) is the Jacobian of Φ at z.
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Assume that D is a bounded domain. Then H(D) is not equal to {0},
as it contains the restrictions to D of all holomorphic polynomials on E. As
a consequence, for any z in D, k(z, z) > 0, and the Bergman kernel can be
used to construct a Hermitian metric on D given by

hz(ξ, η) = ∂ξ∂η log k(u, w)u=z,w=z (11)

called the Bergman metric. The Bergman metric is invariant under any
holomorphic diffeomorphism of D (a consequence of (10)).

Remark. Suppose D is a homogeneous domain, i.e. its group of biholo-
morphic diffeomorphisms G is transitive on D. Fix an origin o in D. Then,
by (10), k(z, z) = k(o, o)|jg(z)|−2, where g is any element of G such that
z = g(o). Now k(z, w), being holomorphic in z and conjugate holomorphic
in w is determined by its restriction to the diagonal. In practice, this gives,
for a homogeneous bounded domain, a way of computing explicitely the
Bergman kernel (up to a positive constant) and the corresponding Bergman
metric.

3.2 Bounded symmetric domains

In this section we mainly follow [25] section 2.

Definition 3.2. A bounded domain D is said to be symmetric (D is also
called a Cartan domain) if, for every z in D, there exists an involutive
biholomorphic dffeomorphism sz such that z is an isolated fixed point of sz.

Use of Bergman metric of D implies that a D is then a Hermitian sym-
metric space of the noncompact type. Let G the the neutral component of
the group of holomorphic diffeomorphisms of D, and let K be the stabilizer
in G of some fixed origin o in D. Then G is a semisimple Lie group, K is a
maximal compact subgroup and D is isomorphic to G/K.

A domain D is said to be circled if 0 belongs to D and D is stable by
the maps rθ : z 7−→ eiθz, for θ ∈ R/2πZ.

Theorem 3.1. A bounded symmetric domain is holomorphically equivalent
to a bounded symmetric and circled domain.

See [33] for a proof (the result is valid even in infinite dimension).
Let D be a bounded circled symmetric domain. Choose 0 as origin in

D. Then the stabilizer K of 0 in G acts by (restrictions to D of) linear
transformations. The Hermitian form h0 on T0D ' E given by the Bergman

15



metric at 0 is invariant under K, so that K can be viewed as a closed
subgroup of the unitary group U(E, h0). The symmetry s0 is given by

s0 : z 7→ −z = eiπz

and belongs to K, as D is circled. The map θ : g 7−→ s0 ◦ g ◦ s0 is a Cartan
involution of G, with K as fixed points.

Let g = k⊕p be the Cartan decomposition of the Lie algebra g of G with
respect to θ.

A holomorphic vector field on D can be regarded as a holomorphic map
ξX : D −→ E. In this setting, the bracket of two holomorphic vector fields ξ
and η is the holomorphic vector field [ξ, η] defined by

[ξ, η](z) = Dη(z)ξ(z)−Dξ(z)η(z). (12)

Any X in g induces a holomorphic vector field in D denoted by ξX . The map
X 7−→ ξX(0) yields a real isomorphism of p with E, which is K-equivariant.

For X and Y in g, one has the relation

ξ[X,Y ] = −[ξX , ξY ]. (13)

For u in E, abusing notation, denote by ξu the unique holomorphic vector
field induced by an element of p such that ξu(0) = u.

Proposition 3.2. Let v be in E. Then, for any z in D,

ξv(z) = v −Q(z)v (14)

where Q(z) is a conjugate linear map of E, and z 7→ Q(z) is a homoge-
neous quadratic map of degree 2.

For u, v in E, set

Q(u, v) = Q(u + v)−Q(u)−Q(v) (15)

(polarized symmetric form of Q, except for a factor 2), and for x, y, z in E

{x, y, z} = Q(x, z)y (16)

Theorem 3.2. The formula (16) defines on E a structure of positive Her-
mitian Jordan triple system (PHJTS) which coincides with the structure on
p defined by (5).
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3.3 The spectral norm on E

The main reference for this section is [25] section 3 and 5.
Let E be a PHJTS.

Definition 3.3. A real subspace W of E is said to be flat if

{W,W,W} ⊂ W (17)

∀ x, y ∈ W, {x, y, z} = {y, x, z} . (18)

Let W be a flat subspace of E. For x, y in W , denote by L̃(x, y) the
restriction to W of L(x, y). For x, y, u arbitrary elements of E, rewrite
(JT3) as

[L(x, y), L(u, u)] = L({x, y, u}, u)− L(u, {y, x, u}) .

Now, if x, y, u are in W , then, by (17) and (18), L̃({x, y, u}, u) = L̃(u, {x, y, u}) =
L̃(u, {y, x, u}), so that L̃(x, y) commutes to L̃(u, u), and hence, by polariza-
tion, to L̃(u, v) for arbitrary u and v in W .

The restriction to W of the real part of the Hermitian form τ is a real
inner product on W , and as a consequence of (8), L̃(x, y)t = L̃(y, x) =
L̃(x, y).

Hence the family {L̃(x, y), x, y ∈ W} is a family of mutually commuting
symmetric operators on W , so that there is a simultaneous diagonalization
of the family. This result allows a spectral analysis in E.

An element c of E is said to be a tripotent if it satisfies

{c, c, c} = 2c . (19)

Two tripotents c and d are said to be orthogonal if L(c, d) = 0. If this is the
case, then c + d is a tripotent.

Let c be a tripotent. One can show that L(c, c) (which is selfadjoint) ad-
mits eigenvalues in the set {2, 1, 0}. There is a corresponding decomposition
of E, called the Peirce decomposition with respect to c :

E = E2(c)⊕ E1(c)⊕ E0(c) , (20)

where Ej(c) = {x ∈ EL(c, c)x = jx}, for j = 0, 1, 2.

Proposition 3.3. Let c be a tripotent in E. Then the Peirce decomposition
(20) has the following properties :

{Ei(c), Ej(c), Ek(c)} ⊂ Ei−j+k(c)
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{E2(c), E0(c), E} = 0, {E0(c), E2(c), E} = 0

where i, j, k belong to {0, 1, 2} and with the convention that El(c) = {0} if l
does not belong to {0, 1, 2}.

Theorem 3.3. Let c1, c2, . . . , cs be a family of mutually orthogonal nonzero
tripotents. Then

W = Rc1 ⊕ Rc2 ⊕ · · · ⊕ Rcs (21)

is a flat subspace of E. Conversely, let W be a flat subspace of W . Then
there exists a family (c1, c2, . . . , cs) of mutually orthogonal tripotents such
that (21) yields. Moreover, the family is unique, up to order and signs.

If x is any element of E, its odd powers are defined by the induction
formula

x(2p+1) = {x, x(2p−1), x} . (22)

The real vector space R[x] generated by the odd powers of x is a flat
subspace. The previous result implies the following spectral theorem.

Theorem 3.4. Let x be an element of E. Then there exists a unique family
c1, c2, . . . , cs of mutually orthogonal tripotents, and positive real numbers
0 < λ1 < λ2 < · · · < λs such that

x = λ1c1 + λ2c2 + · · ·+ λscs . (23)

The λj ’s are called the spectral values of x. The spectral norm is, by
definition the largest eigenvalue of x and is denoted by |x|. It can be shown
that x 7−→ |x| is actually a (complex Banach) norm on E.

Theorem 3.5. Let D be a bounded circled domain in some complex vector
space E. Let {., ., .} be the induced structure of PHJTS on E, and let | . | be
the corresponding spectral norm. Then

D = {x ∈ E|x| < 1} . (24)

Conversely, let E be a PHJTS. The open unit ball for the spectral norm is a
bounded symmetric domain.

3.4 An exemple (continued from 2.5)

We continue to use notation introduced in section 2.5 for the Hermitian
symmetric space Mp,q. Recall that we chose an orthogonal decomposition
E = W0

⊥⊕W0, with h|W0
⊥ � 0 and h|W0

� 0. The restriction of h to W0
⊥
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yields an inner product on W0
⊥, and similarly for the restriction of (−h) to

W0. We denote the corresponding Hilbert norm on both of them by ‖ . ‖,
and we also define the corresponding operator norm on Hom(W0, W0

⊥) by

‖Z‖ = sup{‖Zξ‖ξ ∈ W0, ‖ξ‖ ≤ 1} .

Let W be in M , so that h|W � 0. Then W∩W0
⊥ = {0}, and W belongs to

OW0
⊥ . Hence there is a map Z : W0 → W0

⊥ such that

W = WZ := {ξ + Zξξ ∈ W0} .

Conversely, let Z be in Hom(W0, W0
⊥) and let WZ be its graph. Then the

condition h|WZ
� 0 reads

h(Zξ, Zξ) < −h(ξ, ξ), ∀ξ 6= 0 ∈ W0 ,

which is equivalent to the condition ‖Z‖ < 1.
Denote by Dp,q the unit ball in Hom(W0, W0

⊥) ' Mat(p× q, C) for the
operator norm. We just proved the following result, which describes the
Harish Chandra embedding for the Hermitian symmetric space Mp,q.

Proposition 3.4. The map Z 7−→ WZ is a 1-1 correspondance between
Dp,q and Mp,q.

Next we want to make explicit the action of G = PU(p, q) on Dp,q. Let g
be in U(p, q). Its block matrix expression with respect to the decomposition
of E as E = W0

⊥ ⊕W0 is of the form

g =
(

a b
c d

)
,


a∗a− c∗c = 1p

b∗a− d∗c = 0
b∗b− d∗d = −1q

.

Let Z be in Hom(W0, W0
⊥). Then for any ξ in W0

g

(
Zξ
ξ

)
=

(
(aZ + b)ξ
(cZ + d)ξ

)
.

If ‖Z‖ < 1, then cZ + d is invertible, and letting η = (cZ + d)ξ, we obtain
that g(WZ) = Wg(Z) where

g(Z) = (aZ + b)(cZ + d)−1 . (25)

Now let Y be in p ' Hom(W0, W0
⊥). Then, for t in R close to 0
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exp tY =
(

1p tY
tY ∗ 1q

)
+ O(t2)

and hence

exp(tY )(Z) = (Z + tY )(tY ∗Z + 1q)−1 + 0(t2) = Z + t(Y −ZY ∗Z) + O(t2) ,

so that the holomorphic vector field induced by Y is given by

ξY (Z) = Y − ZY ∗Z .

Hence the Jordan triple product on V = Hom(W0, W0
⊥) reads

Q(Z)Y = ZY ∗Z, {X, Y, Z} = XY ∗Z + ZY ∗X .

Tripotents for this Jordan triple system are obtained as follows. Let F′ ⊂
W0

⊥ and F ⊂ W0 be two subspaces of the same dimension, say s with
0 ≤ s ≤ r = inf(p, q). Denote by F⊥ (resp. F′⊥) the orthogonal of F (resp.
F′) in W0 (resp. W0

⊥). Let c : F −→ F′ be an isometry. Associate to c the
map C : W0 −→ W0

⊥ as the following composed map :

C : W0
p−→ F c−→ F′ i−→ W0

⊥

where p is the orthogonal projection on F and i is the canonical injection in
W0

⊥. Then C is a tripotent, and any tripotent is obtained in this manner.
Observe that F = (kerC)⊥ and F′ = C.

The Peirce decomposition V = V2(C) ⊕ V1(C) ⊕ V0(C) w.r.t. C is
described in terms of block matrices w.r.t. the orthogonal decompositions
W = F⊕ F⊥ and W0

⊥ = F′ ⊕ F′⊥ by the following symbolic scheme :

F F⊥
F′

F′⊥
(

V2(C) V1(C)
V1(C) V0(C)

)
.

Two tripotents C1, C2 associated to the subspaces (F1, F′1) and (F2, F′2)
respectively are orthogonal if and only if F1 ⊥ F2 and F′1 ⊥ F′2.

Let X be any element in Hom(W0, W0
⊥). Let F = (kerX)⊥ and F′ = X.

On F, consider the Hermitian form defined by

qX(ξ, ξ′) = h(Xξ,Xξ′) ,

which is a positive definite form on F, and can be compared to the positive
definite form −h|F. Hence there exists an orthonormal basis (ξ1, ξ2, . . . , ξs)
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of F such that the matrix of the form qX in this basis is diagonal with
positive entries (say) λ2

1, λ
2
2, . . . , λ

2
s, where we assume that 0 < λ1 ≤ λ2 ≤

· · · ≤ λs. For 1 ≤ j ≤ s, let ηj =
Xξj

λj
. Then η1, η2, . . . , ηs is an orthonormal

basis of F′. For 1 ≤ j ≤ s, let Cj be the tripotent (of rank 1) associated
to the isometry cj : Cξj → Cηj which maps ξj to ηj . Then the Cj are
orthogonal tripotents, and X =

∑s
j=1 λjCj . This is essentially the spectral

decomposition of X in the sense of Theorem 3.4. The λj ’s are usually called
the singular spectral values of X. The largest eigenvalue λmax is given

λ2
max = sup{qX(ξ, ξ)ξ ∈ F, ‖ξ‖ ≤ 1}

= sup{‖Xξ‖2ξ ∈ W0, ‖ξ‖ ≤ 1} = ‖X‖2
op ,

so that the spectral norm on the PHJTS Hom(W0, W0
⊥) coincides with the

operator norm.
The Bergman kernel of the domain D is given by

k(Z,W ) = cp,q det(1p − ZW ∗)−n .

with cp,q a positive real number (see [18]).

4 The Shilov boundary of a bounded symmetric
domain

The presentation of this section follows [25] section 6.

4.1 The Shilov boundary of a bounded domain

Let D be a bounded domain in some complex finite-dimensional vector space
V. Let f be a function defined and holomorphic in a neighbourhood of D.
Then the classical maximum principle asserts that supz∈D |f(z)| is reached
on the boundary ∂D of D. It is a typical phenomenon of the theory of
holomorphic functions in several complex variables that this result may not
be optimal. A closed subset F of ∂D is said to satisfy the maximum principle
for holomorphic functions if, for any function f defined and holomorphic in
a neighbourhood of D

sup
z∈D

|f(z)| = sup
z∈F

|f(z)| ,
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in other words if the maximum of |f | over D is reached in F . One can show
that there exists a (unique) smallest closed set which satisfies the maximum
principle, called the Shilov boundary of the bounded domain D.

Example 1 Let D = {(z1, z2) ∈ C2|z1| < 1, |z2| < 1} be the product of
two copies of the complex unit disc. Its topological boundary is

∂D = {(z1, z2) ∈ C2|z1|, |z2| ≤ 1, |z1| = 1 or |z2| = 1}

whereas its Shilov boundary is

S = {(z1, z2) ∈ C2|z1| = |z2| = 1}.

The last statement is obtained by appplying twice the maximum principle
with respect to each complex variable.

Example 2 Let D = Dp,q be the unit ball (for the operator norm) in
Mat(p×q, C), and assume p ≥ q. A matrix A is in the topological boundary
of D if and only if ‖A‖op = 1. Equivalently, A∗A has all its eigenvalues less
than or equal to 1, and 1 is an eigenvalue of A∗A. Now A is in the Shilov
boundary of D if an only if A∗A = q (see 4.6 for a proof of this result). The
topologiclal boundary and the Shilov boundary of D coincide if and only if
q = 1, i.e. if the domain D is the unit ball in Cp.

Next, we will characterize the Shilov boundary of the unit ball of a
PHJTS.

4.2 More on tripotents

Let V be a PHJTS, and let D be its unit ball for the spectral norm. More
generally, we use freely of the notation introduced in sections 2 and 3. Recall
that a tripotent is an element c of V which satisfies {c, c, c} = 2c.

There is a partial order on tripotents : if c and d are two tripotents, then
say that c ≺ d if there exists a tripotent f 6= 0 orthogonal to c and such
that d = c + f . A nonzero tripotent c is said to be primitive if it can not
be written as a sum of two nonzero orthogonal tripotents. In other words,
a primitive tripotent is a minimal element among the nonzero tripotents.

A Peirce frame is, by definition, a maximal set of mutually orthogonal
primitive tripotents.

Proposition 4.1. Let c be a tripotent of V. Then the following are equiva-
lent :

i) c = c1 + c2 + · · ·+ cr, where (c1, c2, . . . , cr) is a Peirce frame.
ii) c is a maximal tripotent
iii) in the Peirce decomposition of V with respect to c, the factor V0(c)

is equal to {0} and hence V = V2(c)⊕ V1(c).
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In this context, the spectral theorem (cf Th. 3.4) can be written slightly
differently.

Theorem 4.1. Let x be an element in V. Then there exists a Peirce frame
(c1, c2, . . . , cr) and nonnegative real numbers 0 ≤ λ1 ≤ · · · ≤ λr such that
x =

∑r
j=1 λjcj.

Let V1 and V2 be two PHJTS. Then the direct sum V = V1 ⊕ V2 has a
natural structure of PHJTS, simply by setting

{x1 + x2, y1 + y2, z1 + z2} = {x1, y1, z1}1 + {x2, y2, z2}2 .

The spectral norm on V is given

|(x1 + x2)| = sup(|x1|1, |x2|2)

A PHJTS V is said to be simple if it can not be written as a sum of two
PHJTS. The simplicity of V is equivalent to the fact that the unit ball D is
irreducible as Hermitian symmetric space.

Proposition 4.2. Let V be a PHJTS. Then
i) two Peirce frames are conjugate under K.
ii) two maximal tripotents are conjugate under K.
iii) Assume that V is a simple PHJTS. Then two minimal tripotents are

conjugate under K.

From now on, we will assume, mostly for convenience, that V is a simple
PHJTS, although many statements are true generally or could be reformu-
lated to be valid in full generality.

The number of elements of a Peirce frame is the same for all frames, and
is called the rank of V, denoted by r. It is the rank of a maximal tripotent.
It is also equal to the rank of D as Hermitian symmetric space.

Let c be a tripotent. Then c can be written as a sum of primitive
tripotents, and the number of tripotents is the same for all expressions of c
as a sum of primitive tripotents, and is called the rank of the tripotent c.

4.3 Geometry of the convex set D

Recall that the Bergman metric at the origin 0 yields a positive definite Her-
mitian form h0 on V, for which we also use, for convenience, the notation
〈 ., .〉. The associated Hilbert norm is denoted by ‖ . ‖, not to be confused
with the spectral norm | . |. It is invariant under the action of K. Two or-
thogonal tripotents are orthogonal for this inner product, and two primitive
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idempotents have the same Hilbert norm (here it is necessary to assume that
V is simple).

Let c be a non zero tripotent. As |c| = 1, c is in the topological boundary
of D. The following proposition gives a rather precise description of the
boundary of D near c.

Proposition 4.3. Let c be a non-zero tripotent in V. Let

Hc = {x ∈ V, 〈x, c〉 = 〈c, c〉} , Hc = {x ∈ V,<〈x, c〉 = 〈c, c〉} .

Then,
∀x ∈ D, |〈x, c〉| < 〈c, c〉 . (26)

D ∩Hc = D ∩Hc = c + (D ∩ V0(c)) . (27)

If c is a maximal tripotent, then

D ∩Hc = D ∩Hc = {c} . (28)

The convex set D can be further studied by looking at its faces.

Definition 4.1. Let C be a closed convex set in a real vector space E. A
closed convex set F is said to be a face of C if

c, d ∈ C, 0 < t < 1, tc + (1− t)d ∈ F =⇒ c, d ∈ F . (29)

For example, a singleton {x}, where x is in C, is a face if and only if x
is an extremal point of C. A face is said to be proper if it is neither equal
to C nor to ∅. A proper face is contained in the topological boundary of C.

The intersection of any family of faces is a face. Given a subset A in
C, the face generated by A is the smallest face containing A, namely the
instersection of all faces containing A.

Proposition 4.4. Let F be a proper face of D.
i) The real affine span 〈F 〉 of a proper face is automatically a complex

affine subspace of V.
ii) There exists a unique non zero tripotent c, such that

F = F (c) := c + (D ∩ V0(c)) = 〈F 〉 ∩ D

For c a non zero tripotent, the space V0(c) is a PHJTS (see Proposition
20), and D ∩ V0(c) is its unit ball for the spectral norm. Hence the interior
of the face F (c) relative to 〈F 〉, which is equal to c + (D ∩ V0(c)), has a
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structure of bounded symmetric domain on its own. Its rank, which is also
the rank of the PHJTS V0(c) is called the rank of the face F (c).

Recall that G is the neutral component of the group of holomorphic
diffeomorphisms of D. Let g be in G. Then the action of g on D extends to
some neighbourhood of D (depending on g). Hence the action of the group
G extends to D.

Proposition 4.5. The group G acts on the set of faces of D, preserving the
rank of a face. The group G acts transitively on the set of faces of a given
rank.

4.4 The Shilov boundary of D

Denote by S be the Shilov boundary of D.

Theorem 4.2. Let x be in V. Then the following assertions are equivalent
:

i) x belongs to S
ii) x is an extremal point of the convex set D
iii) x is maximal tripotent of the PHJTS V
iv) ‖x‖ = sup{‖z‖z ∈ D} .

Sketch of i) ⇐⇒ iii). If z is in D, then by Theorem 4.1, there exists
a Peirce frame (c1, c2, . . . , cr) and 0 ≤ λ1 ≤ · · · ≤ λr < 1 such that z =∑r

j=1 λjcj . Let W be the complex vector space generated by the cj , 1 ≤ j ≤
r, and let P be the polydisc in W defined by

P := {w =
r∑

j=1

wjcjwj ∈ C, |wj | < 1, 1 ≤ j ≤ r} = W ∩ D .

The Shilov boundary of the polydisk P (as a bounded domain in W) is the
torus

T = {σ =
r∑

j=1

σjcj |σj | = 1, 1 ≤ j ≤ r}

(cf Example 1 in 4.1). Observe that any element of T is a maximal tripotent
of V. Now, if f is a holomorphic function in a neighbourhood U of D, then
apply the maximum principle to the restriction of f to W ∩ U (which is a
neigbourhood of P), to get

|f(z)| ≤ sup{|f(σ)|, σ ∈ T} ≤ sup{|f(σ)|, σ ∈ Σ}
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where Σ is the set of all maximal tripotents of V. This shows that the
maximum principle holds for Σ, and hence S ⊂ Σ. Conversely, let c be a
maximal tripotent. Consider the holomorphic function fc defined by fc(z) =
(2−〈z, c〉)−1. The function ζ 7→ (2− ζ)−1 is holomorphic in a neigbourhood
of the closed unit disc D in C and its modulus has a strict maximum in D
at ζ = 1. Hence the modulus of fc has a strict maximum on D at z = c (use
(28)). Hence c must be in the Shilov boundary of D, showing that Σ ⊂ S.�

As seen earlier, the action of G extends to D, and in particular G acts on
S. The action of G is transitive on S, and even the action of K is transitive,
a consequence of Proposition 4.2.

4.5 The arithmetic distance and the G-orbits in S × S.

Let x, y be two points in S. Then consider the face F(x, y) generated by
{x, y}. The rank of F(x, y) is called the arithmetic distance and denoted
by δ(x, y). By Proposition 4.5, the arithmetic distance is preserved by the
action of G.

For any k, 0 ≤ k ≤ r, let

Ok := {(x, y) ∈ S × Sδ(x, y) = k} . (30)

Theorem 4.3. For any k, 0 ≤ k ≤ r, Ok is an orbit under G. Any orbit of
G in S × S equals Ok for some k. Moreover,

∆S×S = O0 = O0 ⊂ O1 ⊂ · · · ⊂ Or = D . (31)

The orbit Or is an open dense subset of S ×S. There are useful charac-
terizations of pairs in Or.

Proposition 4.6. Let x, y ∈ S. The following propositions are equivalent
i) (x, y) belongs to Or.
ii) There is a geodesic ligne γ(t), t ∈ R in D such that

lim
t→−∞

γ(t) = x lim
t→+∞

γ(t) = y .

iii) The Bergman kernel k(z, w) defined on D × D can be extended by
continuity to (x, y).

A pair (x, y) in S ×S is said to be tranverse (and we then write x>y) if
any one of these equivalent properties is satisfied.
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4.6 Example (continued from 2.5 and 3.4)

We continue notation introduced earlier in the study of Mp,q (or Dp,q).
Assume p ≥ q. Notice that this is not really a restriction, as by duality,

Dp,q ' Dq,p. But the description of the Shilov boundary is easier in this
case. The rank of Mp,q is then equal to q. Let s be an integer, such that
1 ≤ s ≤ q. By an appropriate choice of basis of W0 and W0

⊥, a tripotent of
rank s can be written as

Cs =



1
. . .

1


with s times 1 on the main diagonal. The corresponding face is :

Fs =


Z =



1
. . .

1

ζ




(32)

where there are s times 1 on the main diagonal and ζ is an arbitrary element
in

Mat((p− s)× (q − s), C) with ‖ζ‖ ≤ 1.
From the determination of tripotents in 3.4, we know that a maximal

tripotent Z is obtained for s = q, which forces F = W0. Hence Z is an
isometric embedding from W0 into W0

⊥. This is equivalent to saying that
Z∗Z = Iq. Hence, the Shilov boundary S of the domain Dp,q is given by

S = Sp,q = {Z ∈ Mat(p× q, C)Z∗Z = Iq} . (33)

The space Sp,q is called the Stiefel manifold (it can also be considered as
the of all q-frames in Cp). If p = q, Sp,p can be identified with the unitary
group U(p, C).

Let Z be in S, i.e. Z is an isometric embedding. Then its graph WZ is a
totally isotropic susbspace (i.e.h|WZ

= 0) of E. Since WZ has dimension q, it
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is a maximally totally isotropic subspace of E. Conversely, any maximally
totally isotropic subspace of E is of dimension q and can be realized has WZ

for an appropriate Z in S. So in the original realization of Mp,q, the Shilov
boundary is realized as the set of all maximally totally isotropic subspaces
of E.

Proposition 4.7. The arithmetic distance on S is given by

δ(Z,Z ′) = rank(Z − Z ′) (34)

Proof. First consider the realization of S as the space of maximally
totally isotropic subspaces of E. There is an obvious invariant for the action
of G on S × S, namely the dimension of the intersection of the two spaces
of the pair. Conversely, let W and W′ be two maximally isotropic subspaces
of E, and let dim(W ∩W′) = s, with 0 ≤ s ≤ q. Then the signature of the
restriction of h on W+W′ has to be (q−s, q−s). Hence by Witt’s theorem,
two such pairs (W1, W′

1) and (W2, W′
2) are conjugate under U(E, h) if and

only if dim(W1 ∩ W′
1) = dim(W2 ∩ W′

2). This gives a description of the
orbits of G in S × S (cf Theorem 4.3).

If W (resp W′) is realized as the graph of some isometric imbedding Z
(resp. Z ′), then dim(W ∩W′) = dim ker(Z − Z ′). Hence this last quantity
is invariant under the action of G on S × S.

Now, consider the following pairs Z,Z ′ of tripotents (one pair in each
orbit) namely

Z =



1
. . .

1
1

. . .
1

0 . . . . . . 0
...

...
0 . . . . . . 0


, Z ′ =



1
. . .

1
−1

. . .
−1

0 . . . . . . 0
...

...
0 . . . . . . 0


where there are s times 1 (and hence (q−s) times −1) on the main diagonal
of Z ′. Then, the face generated by {Z,Z ′} is equal to Fs (see (32)), which
is of rank q − s. Hence the arithmetic distance δ(Z,Z ′) is equal to q − s =
rank(Z−Z ′) = q−dim ker(Z−Z ′). By the invariance of the latter quantity
under the action of G, we can conclude that the formula is true for all pairs
(Z,Z ′). �
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Another expression for the arithmetic distance is δ(Z,Z ′) = rank(Iq −
Z∗Z ′). In fact, Z − Z ′ and Iq − Z∗Z ′ have the same kernel.To see it, first,
by left multiplication by Z∗,

(Z − Z ′)ξ = 0 =⇒ (Iq − Z∗Z ′)ξ = 0 ,

and hence, ker(Z − Z ′) ⊂ ker(Iq − Z∗Z ′). Conversely,

(Iq − Z∗Z ′)ξ = 0 ⇒ 〈(Iq − Z∗Z ′)ξ, ξ〉 = 0 ⇒ 〈Z ′ξ, Zξ〉 = 〈ξ, ξ〉 .

But ‖Zξ‖ = ‖Z ′ξ‖ = ‖ξ‖ and hence, by Cauchy-Schwartz inequality, Z ′ξ =
Zξ. Hence ker(Z − Z ′) ⊃ ker(Iq − Z∗Z ′).

5 Euclidean Jordan algebras and tube-type do-
mains

For the theory of Euclidean Jordan algebras, the reader is refered to [13]. A
different point of view is presented in [32]. For the rest of this section, we
follow mainly [25], sections 3 and 5.

5.1 Euclidean Jordan algebra

Definition 5.1. A Euclidean Jordan algebra is a real Euclidean vector space
(W, 〈., .〉) with a bilinear product (x, y) 7→ x.y and a unit element e such that

i) x.y = y.x (commutativity)
ii) x2.(x.y) = x.(x2.y) (weak associativity)
iii) e.x = x.e = x
iv) 〈x.y, z〉 = 〈x, y.z〉 (symmetry property)
for all x, y, z in W .

Example. Let W = Symm(r, R) be the space of r × r real symmetric
matrices and set

x.y =
1
2
(xy + yx), e =, 〈x, y〉 = (xy) . (35)

Then W is a Euclidean Jordan algebra.
Let W be a Jordan Euclidean algebra. For x in W , let P (x) be the

operator on W defined by

P (x)y = 2x.(x.y)− x2.y . (36)
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The map P is called the quadratic representation of the Jordan algebra W .
For W = Symm(r, R), P (x)y = xyx.

An element x of W is said to be invertible if P (x) is an invertible opera-
tor. Invertible elements form a dense open subset of W . If x is an invertible
element of W , then define its inverse to be x−1 := P (x)−1x.

Let Q := {x ∈ W∃y ∈ W,x = y2} be the cone of squares in W , and
let Ω be the interior of Q. It coincides with the set of squares of invertible
elements.

A cone C in a Euclidean vector space E is said to be proper if it does
not contain any (affine) line. The dual cone C] is defined by

C] := {x ∈ E∀y ∈ C 〈x, y〉 ≥ 0} .

A cone C is said to be symmetric (or self dual) if its dual C] is equal to its
closure C. The automorphism group of the cone is the subgroup L = L(C)
of GL(E) defined by

L(C) := {g ∈ GL(E)g(C) = C}.

A cone C is said to be homogeneous if its group of automorphisms is tran-
sitive on C.

Proposition 5.1. Let W be a Euclidean Jordan algebra. The cone Ω is
convex, proper, symmetric and homogeneous. It is called the symmetric
cone of W . Conversely, any convex proper, symmetric and homogeneous
cone in a Euclidean space E can be realized as the symmetric cone Ω for
some structure of Euclidean Jordan algebra on W .

Example. For W = Symm(r, R), the symmetric cone Ω is the cone of
positive definite symmetric matrices. The automorphism group of the cone
is isomorphic to GL(r, R)/± acting by (g, x) 7−→ gxgt for g in GL(r, R) and
x in Symm(r, R).

Going back to the general case, an element c in a Euclidean algebra W is
said to be an idempotent if c2 = c. Two idempotents c and d are said to be
orthogonal if c.d = 0. Then c + d is an idempotent. A non zero idempotent
is said to be primitive if it cannot be written as a sum of two orthogonal
nonzero idempotents. Any idempotent can be written as a sum of mutually
orthogonal primitive idempotents. A Jordan frame is a set (c1, c2, . . . , cr) of
mutually orthogonal primitive idempotents such that e = c1 + c2 + · · ·+ cr.
Two Jordan frames are conjugate under an automorphism of the Jordan
algebra W . The number of elements in a Jordan frame is called the rank of
the Euclidean Jordan algebra W .
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Let x be an element in W . Then there exists a Jordan frame (c1, c2, . . . , cr)
and real numbers λ1 ≤ λ2 ≤ · · · ≤ λr such that x =

∑r
j=1 λjcj (spectral

decomposition of x). The λj ’s are unique and called the spectral values of
x.

There exists a linear form tr (resp. a homogeneous polynomial det of
degree r) on V , called the trace (resp. determinant), such that trx (resp.
det x) is the sum (resp. the product) of its spectral values (counted with
multiplicity). An element x is invertible if and only if det x 6= 0.

Example. Let W = Symm(r, R). Then an idempotent is an orthogonal
projector. It is minimal if it is of rank 1. A Jordan frame is a complete
family of mutually orthogonal projectors of rank 1 (i.e. associated to an
orthonormal basis of Rr). Spectral values, trace and determinant coincide
with the ususal notions.

5.2 Hermitification of a Euclidean Jordan algebra

Euclidean Jordan algebras are intimately connected with PHJTS. First, Eu-
clidean Jordan algebras provide examples of PHJTS through the process of
Hermitification. Let W be a Euclidean Jordan algebra. Let W be its com-
plexification. Extend the Jordan product to W in a C-linear way. On W,
define the following triple product

{x, y, z} = 2
(
x.(y.z) + z.(y.x)− y.(x.z)

)
. (37)

Proposition 5.2. The complex vector space W with the triple product define
by (37) is a PHJTS (called the Hermitification of W ).

An idempotent of W is a tripotent of W, a primitive idempotent of W
is a primitive tripotent in W, and a Jordan frame of W is a Peirce frame in
W.

Proposition 5.3. Let c be a maximal tripotent in W. Then there exists a
Jordan frame (c1, c2, . . . , cr) of W and complex numbers (λ1, λ1, . . . , λr) of
modulus 1 such that c =

∑r
j=1 λjcj.

Extend the quadratic representation P from W to W in a holomorphic
way. Similarly, extend the inversion (x 7→ x−1) from W to W in a meromor-
phic way.

Proposition 5.4. An element z of W is a maximal tripotent if and only if
z is invertible and satisfies z−1 = z. The Shilov boundary S of the unit ball
D in W is given by

S = {z ∈ Wz invertible , z−1 = z} .
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In particular, this gives equations for the Shilov boundary S of the unit
ball D in W. The Shilov boundary is a totally real submanifold of W and

dimR S = dimCD.

5.3 Euclidean Jordan algebra associated to a tripotent

We have the following statement, which (loosely speaking) goes in the op-
posite direction. Let V be a PHJTS.

Proposition 5.5. Let c be a tripotent in V, and let V = V2(c)⊕V1(c)⊕V0(c)
be the Peirce decomposition of V w.r.t. c. Then :

i) the map z 7−→ z∗ := 1
2{c, z, c} is a conjugate linear involution of V2(c).

ii) its set of fixed points W (c) := {z ∈ V2(c)z∗ = z} is a Euclidean
Jordan algebra for the following data :

x.y =
1
2
{x, c, y}, unit c , 〈x, y〉 = <τ(x, y) . (38)

This result (applied for a maximal tripotent) helps to describe the do-
main D and its Shilov boundary S near a point c in S.

Proposition 5.6. Let c be a maximal tripotent in V. Let V = V2(c)⊕V1(c)
be the corresponding Peirce decomposition, and let W (c) be the corresponding
real form of V2(c), with its structure of Euclidean Jordan algebra. Let Ω(c)
be the symmetric cone of W (c). Then :

i) the (affine) tangent space TcS of S at c is equal to

TcS = c + iW (c)⊕ V1(c) (39)

ii) the following inclusion holds :

D ⊂
(
c− Ω(c) + iW (c)

)
⊕ V1(c) (40)

See [7] for a proof.

5.4 Euclidean Jordan algebras vs PHJTS

Let W be a Euclidean Jordan algebra, with unit element e, and let W be its
Hermitification. Then L(e, e) = 2 and Q(e) is the conjugation of W with
respect to W . Hence e is a (maximal) tripotent, the Peirce decomposition
with respect to e is trivial (i.e. W2(e) = W), the fixed points set of Q(e) is
W and the structure of Euclidean Jordan algebra on W is the initial one.

These properties essentially characterize those PHJTS which can be ob-
tained from a Euclidean Jordan algebra by Hermitification.
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Proposition 5.7. Let V be a PHJTS. Let D be its unit ball fro the spectral
norm of V, and let S be its Shilov boundary. Then the following equivalent
properties are equivalent :

i) V is the Hermitification of some Euclidean Jordan algebra.
ii) If c is a maximal tripotent of V, then the corresponding Peirce de-

composition is trivial, i.e. V = V2(c).
iii) S is a totally real submanifold of V
iv) dimR S = dimC V.

Example. The PHJTS V = Mat(p × q, C) is the Hermitification of
a Euclidean Jordan algebra if and only if p = q. If p = q, then V is
the Hermitification of the Euclidean Jordan algebra Herm(p, C), where the
Jordan product is given by x.y = 1

2(xy + yx).

5.5 The Cayley transform

Main reference for this section is [25] section 10. For a presentation of the
Cayley transform from the point of view of semisimple Lie groups, see the
original paper [34] or [30] chapter 3.

Let us first give a complement to Proposition 5.5. We keep the notation
from previous sections.

Let c be a tripotent in V. For a be in V2(c), let Ra be the endomorphism
of V1(c) defined by

Ra(x) = {a, c, x} . (41)

Further, define Φ : V1(c)× V1(c) −→ V2(c) by

Φ(u, v) = {u, v, c} . (42)

Proposition 5.8. Let c be a tripotent in a PHJTS V. Let R and Φ be
defined by (41) and respectively (42). Then :

i) for a, b in V2(c)

1
2
(Ra ◦Rb + Rb ◦Ra) = Ra.b, Re =

R∗
a = Ra∗

ii) for a is in Ω(c)

R∗
a = Ra and Ra � 0 .

iii) Φ is Hermitian and Ω(c)-positive definite in the sense that, for all
u, v in V1(c)

Φ(u, v) = Φ(v, u)∗
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Φ(u, u) ∈ Ω(c) and Φ(u, u) = 0 if and only if u = 0 .

Recall the notion of Siegel domain of type I and of type II. First, suppose
we are given a Euclidean vector space E and a proper open convex cone Ω
in E. Let E = E + iE be the complexification of E. Define T = T (E,Ω) as

T = Ω + iE := {z = u + iv ∈ Eu ∈ Ω, v ∈ E} .

In other terms, the set T is the tube over Ω, or the generalized right half-
space in E. In our context, it is called the Siegel domain of type I associated
to (E,Ω).

For a Siegel domain of type II, the data are :
i) a Euclidean vector space E with a proper open convex symmetric cone

Ω in E
ii) a complex vector space F
iii) a Hermitian and Ω-positive definite map Φ : F× F −→ E,
where, as usual E is the complexification of E.
Define S = S(E,Ω, F,Φ)

S := {(u, w) ∈ E× F<(u)− Φ(w,w) ∈ Ω} . (43)

Then S is called the Siegel domain of type II associated to (E,Ω, F,Φ).
Observe that a Siegel domain of type I is a degenerate case of a Siegel

domain of type II (take F = {0}).
We can now define the Cayley transform.

Proposition 5.9. Let c be a maximal tripotent in V. Let V = V2(c)⊕V1(c)
be the Peirce decomposition w.r.t. c. For x an arbitrary element of V, let
x = x2 + x1 be the corresponding decomposition of x.

i) Let x be in D. Then c−x2 is invertible in the complex Jordan algebra
V2(c).

ii) Set, for x in D

γc(x) = (e + x2)(e− x2)−1 + R(e−x2)−1(x1) .

Then γc is a biholomorphic diffeomorphism of D onto the Siegel domain
S(W (c),Ω(c), V1(c),Φ).

When the PHJTS V is the Hermitification of a Euclidean Jordan algebra,
then, in our notation V1(e) = 0, and the image of D by the Cayley map is a
Siegel domain of type I. The bounded domains corresponding to the PHJTS
obtained by Hermitification of a Euclidean Jordan algebra (cf Proposition
5.7) are called tube type domains.
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6 The triple invariant.

The general reference for this section is [11].
Finding invariants is a good tool to study orbits. In this section, we will

construct an invariant for the action of G on S×S×S. We first construct an
invariant on D×D×D, then ”pass to the limit” to construct an invariant on
S × S × S. The invariant behaves quite differently wether D is of tube-type
or not.

6.1 The symplectic area of a geodesic triangle

The Kaehler form on D is the real differential 2-form ω defined on D by the
formula

ωz(ξ, η) = gz(ξ, Jzη) (44)

where ξ and η are in the tangent space at z. The definition as stated is valid
on any complex Hermitian manifold. The form ω is clearly G-invariant,
and it is a closed form (more generally, this is true for the Kaehler form
associated to the Bergman metric of any bounded domain).

Given two points z, w in D, there is a unique geodesic segment starting
from z and ending at w. This fact is true for any Riemannian symmetric
space of the noncompact type . Given three points z1, z2, z3 in D, one can
form the oriented geodesic triangle T (z1, z2, z3), joining z1 to z2, then z2 to
z3 and finally from z3 to z1, each time by using the unique geodesic segment
between two summits. Choose a piece of smooth surface Σ in D such that its
boundary is the triangle, and orientate Σ such that its oriented boundary is
T (z1, z2, z3). Then define the symplectic area of T (z1, z2, z3) by the formula

A(z1, z2, z3) =
∫

Σ
ω . (45)

As the form ω is closed, this integral does not depend on the choice of Σ
and defines a real valued function on D ×D ×D.

It turns out that this function can be explicitely computed. For conve-
nience, we slightly change the normalization of the metric. We will use the
metric (proportional to the Bergman metric) which has minimal sectional
holomorphic curvature equals to −1. It amounts to replace, in the defintion
of the metric on D the Bergman kernel kD by the kernel k(z, w) = kD(z, w)

2
p ,

where p is some integer related to the roots structure of the symmetric space
D (see [11] for details).
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Theorem 6.1. Let z1, z2, z3 be three points in D. Then

A(z1, z2, z3) = −
(
arg k(z1, z2) + arg k(z2, z3) + arg k(z3, z1)

)
. (46)

Observe that D is simply connected, and for any z, w in D, k(z, w) 6= 0
and k(z, z) > 0, so that there is a unique continuous determination of the
argument of k(z, w) over D ×D which takes value 0 on the diagonal.

For (most of) the classical domains, the result is due to Domic and
Toledo (see [12]). The computation in the general framework is in [11].

For the unique disc in C, this formula is esssentially equivalent to the
classical Gauss formula for the area of a geodesic triangle in the unit disc
(with the Poincaré metric) A = π− (α+β +γ), where α, β, γ are the angles
of the triangle.

Proposition 6.1. The symplectic area satisfies the following properties :
i) A

(
g(z1), g(z2), g(z3)

)
= A(z1, z2, z3), for all g in G.

ii) A(zτ(1), zτ(2), zτ(3)) = (τ)A(z1, z2, z3)
for τ any permutation of {1, 2, 3}.
iii) (cocycle property)

A(z1, z2, z3) = A(z1, z2, z4) + A(z2, z3, z4) + A(z3, z1, z4) (47)

iv) (bounds for the area)

−rπ < A(z1, z2, z3) < rπ (48)

where z1, z2, z3, z4 are arbitrary points in D.

Property i) is a consequence of the fact that the defintion of the area
uses notions (geodesic triangle, Kaehler form) which are invariant under G,
ii) reflects the fact that permuting two summits of a triangle changes its
orientation, and iii) is a direct consequence of the fact that the Kaehler
form is closed (it can also be seen on the formula (46)). The proof of iv) is
more subtle and uses the explicit expression given by (46). The bounds are
sharp.

6.2 The limit process

Having contructed this invariant function on D×D×D, one can ”pass to the
limit” to construct an invariant on S×S×S. A triple (σ1, σ2, σ3) in S×S×S
is said to be mutually transverse if σi>σj for i 6= j. For mutually transverse
triples, the approach to a point of the Shilov boundary is unrestricted.
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Theorem 6.2. Let σ1, σ2, σ3 be mutually transverse points in S. Then the
limit

ι(σ1, σ2, σ3) =
1
π

lim
zj→σj

A(z1, z2, z3) (49)

exists as zj in D tends to σj (j = 1, 2, 3).

The proof uses the explicit formula for the symplectic area (46), and the
characterization of transverse pairs given in Proposition 4.6.

For the singular case (at least one pair (σi, σj) with i 6= j is not trans-
verse), the approach to the Shilov boundary has to be restricted.

Let c be any point in S. Then c is a maximal tripotent of V, and
the Peirce decomposition of V with respect to c reads V = V2(c) ⊕ V1(c).
Let W (c) be the real from of V2(c) with its structure of Euclidean Jordan
algebra and let Ω(c) be the symmetric cone of W (c) (cf Proposition 5.5) .
Let γ : [0, 1] −→ V be a smooth curve such that γ(0) = c and γ(t) ∈ D for
0 < t ≤ 1. By (5.6), the tangent vector γ̇(0) to the curve at c satisfies

γ̇(0) ∈ −Ω(c) + iW (c)⊕ V1(c) .

Definition 6.1. The curve γ is said to be Ω-radial at c if

γ̇(0) ∈ −Ω(c)⊕ V1(c) .

In other words, there is no restriction on the V1 component of the tangent
vector to the curve at c (it allows tangential approach to the Shilov boundary
in these directions), but there is a strong condition on its component in
V2(c). For instance, when D is the unit disc in C a Ω-radial curve γ at
the point c = γ(0) has to be radial in the usual sense (its derivative at c is
perpendicular to the unit circle).

Proposition 6.2. Let c be in S and let γ be a Ω-radial curve at c. Let g be
in G. Then g ◦ γ is a Ω-radial curve at g(c).

We can now complete Theorem 6.2 to include non transverse triples.

Theorem 6.3. Let σ1, σ2, σ3 be in S. Then the limit

ι(σ1, σ2, σ3) =
1
π

lim
zj→σj

A(z1, z2, z3) (50)

exists as zj in D tends to σj along any Ω-radial curve at σj (j = 1, 2, 3).
The limit does not depend on the curves used to approach the points σj.
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For the proof, see [6], [7].
The function ι will be called the triple invariant on S.

Proposition 6.3. The triple invariant ι : S × S × S → R has the following
properties:

i) ι
(
g(σ1), g(σ2), g(σ3)

)
= ι(σ1, σ2, σ3), for all g in G

ii) ι(στ(1), στ(2), στ(3)) = (τ)ι(σ1, σ2, σ3) for any permutation τ of {1, 2, 3}
iii) (cocycle property)

ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

iv) −r ≤ ι(σ1, σ2, σ3) ≤ r
for all σ1, σ2, σ3, σ4 in S.

These results are immediate consequences of Proposition 6.1. The bounds
in iv) can be shown to be sharp. There is even a characterization of those
triples (σ1, σ2, σ3) in S × S × S for which |ι(σ1, σ2, σ3)| = r (see [11]) .

6.3 Example : Elie Cartan’s invariant

Consider the special case of the unit ball in C2 :

D = {(x, y) ∈ C2, xx + yy < 1}.

On C3, consider the Hermitian form h given by

h
(
(z, x, y), (z′, x′, y′)

)
= zz′ − xx′ − yy′ .

The map (x, y) 7−→ C(1, x, y) yields an isomorphism of D with the open
set D̃ of the projective space P2(C) = (C3 \ {0})/C∗ defined by

D̃ := {[v] ∈ P2(C)h(v, v) > 0} ,

where we have set [v] = Cv for any v 6= 0 in C2.
The Shilov boundary of D (which coincides with its topological boundary

in this case) is the unit sphere S in C2. The corresponding boundary of D̃
is the S̃ of isotropic lines (for the form h) in C3 .

The group PU(h) ' PU(1, 2) acts naturally on D̃ and on S̃. These
actions can be transferred to D and S respectively.

In 1932 (cf [3]), Elie Cartan constructed an invariant for triples of distinct11

points in S. First observe that if v and w are non proportional isotropic
11Observe that two points on S are transverse in the sense of 4.5 if and only if they

are distinct
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vectors in C3, then h(v, w) 6= 0, because otherwise the complex plane gen-
erated by v and w would be totally isotropic, which is impossible. Now let
v1, v2, v3 be three isotropic vectors in C3 \ {0} mutually non proportional,
and consider the complex number

J(v1, v2, v3) = h(v1, v2)h(v2, v3)h(v3, v1) ,

which is different from 0 by the previous observation. Now, if we change
vj to λjvj (j = 1, 2, 3), then J is multiplied by the factor |λ1|2|λ2|2|λ3|2.
Hence the argument of J depends only on the triple of complex isotropic
lines ([v1], [v2], [v3]). Moreover the principal determination of the argument
belongs to [−π

2 ,+π
2 ]. In fact, two disctinct points of S are conjugate by an

element of SU(1, 2) to (say) the points (0,−1) and (0, 1) respectively. If
(x, y) is a third point on S, then

J
(
(1,−1, 0), (1, 1, 0), (1, x, y)

)
= 2

(
|y|2 + (x− x)

)
,

proving the claim. Hence arg J gives a well defined invariant on triples of
distinct points in S, taking values in [−π

2 ,+π
2 ]. Up to a factor 2

π , it coincides
with the triple invariant ι we have defined on S×S×S. For more properties
of this invariant, see [15]. For a generalization to the Stiefel manifold, see
[4].

6.4 Example : the triple Maslov index

For a presentation of the classical triple Maslov index, see [23].
Another important example is the celebrated triple Maslov index on

the Lagrangian manifold. Let (E,ω) be a real symplectic vector space of
dimension 2r. A Lagrangian is a maximal totally isotropic subspace of E.
The dimension of a Lagrangian is necessarily r and a vector subspace L of
dimension r is a Lagrangian if and only if the restriction of ω to L × L is
identically 0. The symplectic group G = Sp(2r, R) transforms a Lagrangian
into another Lagrangian.

The set of all Lagrangians is easily seen to be a closed submanifold of the
Grassmannian of r-dimensional spaces in E, which is called the Lagrangian
manifold, denoted by Λr. It turns out that it can be realized as the Shilov
boundary of a bounded symmetric domain.

Let W = Symm(r, R) be the Euclidean Jordan algebra of real r × r
symmetric matrices, with Jordan and scalar products

x.y =
1
2
(xy + yx) 〈x, y〉 = xy
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On its Hermitification W ' Symm(r, C), the spectral norm coincides
with the usual operator norm on (symmetric) matrices. Hence the associated
bounded symetric domain is the unit ball D (called the Siegel disc), which
can equivalently be defined by

D := {z ∈ Symm(r, C)1− zz∗ � 0} .

Let E be the complexification of E, and let σ be the conjugation of E
with respect to E. Extend ω as a C-bilinear symplectic form on E. Let h
be the Hermitian form on E× E defined by

h(ξ, ξ′) =
i

2
ω
(
ξ, σ(ξ′)

)
.

Let (ε1, . . . , εr, φ1, . . . , φr) be a symplectic basis, i.e. a basis of E such that

ω(εj , φj) = −ω(φj , εj) = 1

for 1 ≤ j ≤ r, and 0 for all other pairs of vectors in the basis. Let ej =
εj + iφj . Then

h(ej , ej) = 1, h
(
σ(ej), σ(ej)

)
= −1

for 1 ≤ j ≤ r and 0 for all other pairs. Let V+ be the complex vector space
generated by the ej , 1 ≤ j ≤ r and let V− = σ(V+) be the complex vector
space generated by the σ(ej), 1 ≤ j ≤ r. Then V+ and V− are complex
Lagrangian subspaces, and

h|V+×V+
� 0, h|V+×V− = 0, h|V−×V− � 0 .

Using the basis {e1, . . . , er} (resp. {σ(e1), . . . , σ(er)}), identify V+ (resp.
V−) with Cr, and hence E ' V+ × V− with Cr × Cr. In these setting,
σ(ξ, η) = (η, ξ) and the forms ω and h are given by

h
(
(ξ, η), (ξ′, η′)

)
= ξtξ

′ − ηtη′, ω
(
(ξ, η), (ξ′, η′)

)
= −2i (ξtη′ − ηtξ′)

for ξ, ξ′, η, η′ ∈ Cr. Let D̃ be the set of complex vector subspaces L of E, of
dimension r, which satisfy

ω|L×L = 0, h|L×L � 0 .

The set D̃ is an open set in the complex Lagrangian manifold, which contains
V−.

Let z be in Mat(r, C). We regard z as an operator from V− into V+,
and let

Lz = {(zη, η)η ∈ V−} ⊂ E
be its graph. Observe that 0 is mapped to V−.
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Proposition 6.4. The map z 7−→ Lz is a holomorphic isomorphism of D
onto D̃.

The condition ω|Lz×Lz
= 0 is a consequence of the symmetry of z,

whereas the condition h|Lz×Lz
� 0 is a consequence of ‖z‖ < 1.

Extend in a C-linear way the action of the symplectic group G to E, and
observe that G preserves both ω and h. Hence the group G acts on D̃, and
on D by transfering the action.

Thanks to Proposition 5.4, the Shilov boundary S of D is given by

S = {z ∈ Symm(r, C)zz∗ = 1} .

If z is in S, then its graph Lz satisfies both ω|L×L = 0 and h|L×L = 0.
Such a space L is stable by σ, and hence has to be the complexification
of some Lagrangian subspace L of E. Conversely, the complexification of
any Lagrangian L of E can be obtained as the graph of some element in S.
Hence the Shilov boundary of D is identified with the Lagrangian manifold
Λr, in a G-equivariant way.

Let L1, L2, L3 be three Lagrangians in E. Then, following Kashiwara
(see [23]), consider the quadratic form Q = QL1,L2,L3 on L1 × L2 × L3

defined by :

Q(ξ1, ξ2, ξ3) = ω(ξ1, ξ2) + ω(ξ2, ξ3) + ω(ξ3, ξ1) , (51)

where ξ1 ∈ L1, ξ2 ∈ L2, ξ3 ∈ L3. If g is in G, then

Qg(L1),g(L2),g(L3) = QL1,L2,L3 ◦ g−1

so that the signature of Q is an invariant under the action of G. Define the
triple Maslov index of the triple (L1, L2, L3) by

ι(L1, L2, L3) = QL1,L2,L3 .

This defines an invariant (under the action of the symplectic group) for
triples of Lagrangians. Through the identification of the Lagrangian man-
ifold with the Shilov boundary of the Siegel disc, the triple Maslov index
coincides with the triple invariant on S × S × S which we have defined in
Theorem 6.3.

For all classical domains of tube-type, there is an analog of Kashiwara’s
formula for the triple invariant (see [5]). The situation is specially interesting
for the domain corresponding to the Euclidean Jordan algebras of rank 2
(type IV).
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7 G-orbits in S × S × S (tube-type case)

The reference for this section is [9].
There is a great difference between our two examples. In the case of the

unit sphere in C2 (which is the Shilov boundary a non tube-type domain
of rank 1), the triple index takes all values in the interval [−1, 1]. In the
case of the Lagrangian manifold Λr (which is the Shilov boundary of a tube-
type domain of rank r), the triple index has values in the set of integers
{−r,−r + 1, . . . , r − 1, r}. This is characteristic of the difference between
tube-type domains and non-tube type domains. This reflects a qualitative
difference in the orbit picture of G in S×S×S. In the non-tube-type case,
there is a continuous family of G-orbits, whereas in the tube-type case, there
is only a finite number of G- orbits. In the latter case, one can even give
a classification of the orbits. Let us present some more details for the tube
type case.

So, let D be a bounded symmetric domain of tube-type, realized as the
unit ball in a PHJTS W which is the Hermitification of some Euclidean
Jordan algebra W . Let S be its Shilov boundary.

Proposition 7.1. The Shilov boundary S has a natural structure of compact
Riemannian symmetric space, for which the group K acts by isometries.

Sketch of the proof (see [25]) . Let c be a point in S, i.e. c is a maximal
tripotent in W. The Peirce decomposition w.r.t. c is just W = W2(c), and
Q(c) is a (conjugate-linear) involution of W. Its set of fixed points W (c)
has a structure of Euclidean Jordan algebra, isomorphic to W . The tangent
space TcS of S at c can be identified with iW (c), and one can transport the
invariant inner product on the Euclidean Jordan algebra W (c) to define an
inner product on TcS. As c varies, this defines a Riemannian structure on S,
which is invariant under K. Moreover, Q(c) maps S into itself, yielding an
involutive isometry of S. But Q(c) acts on TcS ' iW (c) by −1, and hence
coincides with the geodesic symmetry at c. �

Define a torus to be a maximal flat submanifold in S. One way of
obtaining a torus is to use a Jordan frame (c1, c2, . . . , cr) in W . Then

T := {z =
r∑

j=1

eiθjcjθj ∈ R/2πZ}

is a torus in S.
Let T be a torus in S. Then, given any couple (x, y) in S × S, there

exists an element k in K such that kx and ky belong to T (an important
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result in the theory of compact Riemannian symmetric spaces, see [17] ch.
VII).

Theorem 7.1. Let T be a torus in S. Let x, y, z be three points in S. There
exists an element g of G such that g(x), g(y), g(z) belong to T .

In other words, any G-orbit in S × S × S meets T × T × T . This result
is very helpful towards the classification of G-orbits.

To give the classification result, we need one last invariant on S×S×S.
Let x, y, x be three points in S. Form the face Fx,y,z generated by the subset
{x, y, z}, and define δ(x, y, z) to be the rank of Fx,y,z. Then clearly, δ(x, y, z)
is invariant under the action of G. Notice that this invariant is symmetric
with respect to permutations of the three points.

Theorem 7.2. Let x, y, z (resp. x′, y′, z′) be in S×S×S. Then there exists
an element g of G such that x′ = g(x), y′ = g(y), z′ = g(z) if and only if

δ(x, y) = δ(x′, y′), δ(y, z) = δ(y′, z′), δ(z, x) = δ(z′, x′),

δ(x, y, z) = δ(x′, y′, z′), ι(x, y, z) = ι(x′, y′, z′).

In other words, the five invariants (the three mutual arithmetic distances,
the rank δ of the face generated by the three points and the triple index ι)
characterize the G-orbits. Notice in particular that it implies that there is
only a finite number of G-orbits in S × S × S. Fixing a torus T in S (or a
Jordan frame in W ), it is possible to give a representative in T × T × T of
each G-orbit in S × S × S. The five invariants are not quite independant
(for instance, an obvious inequality is δ(x, y) ≤ δ(x, y, z)), but one can give
precisely the conditions on the values of these invariants in order to have a
corresponding G-orbit (see [9] for details). For the case of the Lagrangian
manifold, the classification of the orbits of Sp(2r, R) into Λr ×Λr ×Λr is in
[19].

8 The Maslov index for paths

The main reference for this section is [8].
In symplectic geometry, the theory of the triple Maslov index is only one

aspect of the theory of the Maslov index. There are other indices, more or
less related to the triple Maslov index. Each of them can be generalized in
the context of Shilov boundaries of bounded symmetric domains of tube-
type. We will concentrate on the generalization of the Maslov index for a
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path of Lagrangians. From our point of view (which does not follow the
historical development of these notions), it arises naturally in relation to
the cocycle property of the triple invariant, when addressing the question of
the existence of a primitive for this cocycle.

Use notation of section 7. Let m be a Z-valued function on S×S which
has the following properties :

m(g(x), g(y)) = m(x, y)
m(y, x) = −m(y, x)

(52)

for x, y in S × S and g in G.
Then it is easily verified that the function

µ(x, y, z) = m(x, y) + m(y, z) + m(z, x) (53)

on S × S × S is Z-valued and has the following properties :
i) µ(g(x), g(y), g(z)) = µ(x, y, z) for x, y, z in S and g in G
ii) µ is skew-symetric with respect to permutations of {x, y, z}
iii) µ(x, y, z, t) = µ(x, y, t) + µ(y, z, t) + µ(z, x, t), for all x, y, z, t in S.
The function m is called a primitive of µ. The attentive reader will

observe that this has a cohomological flavor, which will not be discussed
here (for more information, see [16], [27]).

There exists no primitive for the triple invariant ι on S × S × S, i.e.
no function m on S × S satisfying the asumptions (52), and which would
satisfy (53) for µ = ι. But there is in some sense a substitute, by going to
the universal cover of S. In fact S is not simply connected.

Proposition 8.1. Let D be an irreducible bounded symmetric domain of
tube-type, and let S be its Shilov boundary. Then π1(S), the first homotopy
group of S, is isomorphic to Z.

Recall that the Shilov boundary of the unit ball of W is

S = {z ∈ Wz = z−1} .

If z is in S, then (det z)−1 = det(z−1) = det z = det z, so that |det z| = 1.
Let S1 = {z ∈ S det z = 1}. Then S1 is simply connected and the universal
covering of S can be realized as S̃, where

S̃ := {(z, θ) ∈ S1 × R det z = eirθ} .

Then there exists a Z-valued function m̃ on S̃ × S̃ which is a primitive of
the triple Maslov index ι, in the sense that :
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i) m̃ is invariant by the diagonal action of (some covering of) G
ii) m̃ is invariant by the diagonal action of π1(S), i.e. m(T x̃, T ỹ) =

m(x̃, ỹ) for any T in π1(S)
iii) m̃ is skew-symmetric, i.e. m̃(x̃, ỹ) = −m̃(ỹ, x̃)
iv) for any three points x̃1, x̃2, x̃3 in S̃, the sum

m̃(x̃1, x̃2) + m̃(x̃2, x̃3) + m̃(x̃3, x̃1)

depends only on the projections x1, x2, x3 of x̃1, x̃2, x̃3 on S and is equal to
ι(x1, x2, x3).

The construction of m̃ follows the original construction of Souriau for
the Lagrangian manifold (see [31], [16]).

Notice that a function on S̃ × S̃, which is invariant by the diagonal
action of π1(S) is nothing but a function defined for paths in S, which is
invariant under a homotopy of the path (with fixed extremities). This is the
point of view in the original and more geometric approach, due to Maslov,
Arnold and Leray for the Lagrangian manifold, leading to the notion of the
Maslov index for a path of Lagrangians. We sketch a presentation of the
generalization of this approach (see [8] for details).

Fix x0 a point in S, and define the Maslov cycle based at x0 as the set
Σ(x0) defined by

Σ(x0) = S \ {x ∈ Sx>x0}.

As the point x0 is supposed to be fixed, we drop the index x0. The set
Σ = Σ(x0) is a (real) algebraic hypersurface, as

Σ = {x ∈ S det(x− x0) = 0} .

It admits the following stratification:

Σ =
r⊔

j=1

Σ(j), Σ(j) = {x ∈ S, δ(x, x0) = r − j} .

By computing the codimension of each stratum Σ(j) in S, it can be shown
that the singular set of Σ (which is equal to tr

j=2Σ
(j)) has codimension at

least 3 in S, the regular stratum Σ(1) being an (open) hypersurface in S.
Let x be a point in Σ(1). The tangent space TxS of S at x has a natural

structure of Euclidean Jordan algebra, and in particular, there is a sym-
metric cone Ωx in it. It turns out that Hx, the tangent hyperplane to Σ(1)

at x does not meet the cone Ωx. Hence, as the cone Ωx is convex, it lies
entirely inside one open half-space limited by Hx. A transverse orientation
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of the Maslov cycle is obtained at each regular point x of Σ (i.e. x ∈ Σ(1))
by declaring positive the half-space of TxS limited by Hx that contains the
cone Ωx.

These two geometric properties of Σ (the singular set of Σ is of codi-
mension greater than or equal to 3, Σ admits a transverse orientation) are
the key ingredients in the construction of a Z-valued index for paths, due to
Arnold (see [1]).

Definition 8.1 (admissible path). Let γ(t), 0 ≤ t ≤ 1 be a path in S, with
endpoints x = γ(0) and y = γ(1) not in Σ. The path is said to be admissible
if the following conditions are satisfied :

i) γ is a smooth map
ii) γ(t) does not belong to Σ except for a finite number of values of t,

say t1, t2, . . . , tl in the increasing order
iii) for each j, 1 ≤ j ≤ l, xj = γ(tj) belongs to Σ(1) and the tangent

vector γ̇(tj) of the path at xj is transverse to Σ(1).

Let γ be an admissible path. For each j, 1 ≤ j ≤ l, let εj be +1 if the
tangent vector γ̇(tj) belongs to the positive half-space limited by Hxj , and
εj = −1 if not. Now define the Maslov index of the path γ (relative to x0)
to be

Masx0(γ) =
l∑

j=1

εj .

Theorem 8.1. Let x and y be two points in S, not belonging to the Maslov
cycle Σ(x0). Then:

i) any homotopy class of paths with origin x and end y contains an
admissible path.

ii) two admissible paths with origin x and end y which are homotopic
have the same Maslov index.

The theorem allows to extend the defintion of the Maslov index to ar-
bitrary paths, provided their extremities do not belong to the Maslov cycle
based at x0.

The Maslov index of a path depends on the point x0. It is however
possible to construct from it a function on S̃×S̃, which has a simple relation
to the primitive constructed à la Souriau (see again [8] for details).

The Maslov index has many applications in mathematics and in mathe-
matical physics (metaplectic representation, geometrical optics, semiclassi-
cal approximation to quantum mechanics). See [2], [16], [22], [23], [26].
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9 Appendix : List of bounded symmetric domains
and their Shilov boundaries

We give the list of the simple bounded symmetric domains and the list of the
Shilov boundaries of the simple tube type domains. Notations for Lie groups
and Lie algebras are those of [17]. The classification can be obtained either
by first classifying the simple Riemannian symmetric spaces, then looking
for those cases where k has a non trivial center (this is the approach in [17])
or one can classify the PHJTS (see [25] section 4).

List of simple bounded symmetric domains

V g tube type rank
I Mat(p× q, C) su(p, q) yes if p = q inf(p, q)
II Skew(n, C) so∗(2n, C) yes if n even [n

2 ]
III Symm(n, C) sp(2n, R yes n

IV C× Cn−1 so(2, n) yes 2
V Mat(1× 2, O) e6,(−14) no 2
V I Herm(3, O) e7,(−25) yes 3

N.B. V stands for the corresponding PHJTS, and g is the Lie algebra of the
group of holomorphic diffeomorphisms of the domain.

List of Shilov boundaries of bounded symmetric domains of tube type

W G S
Symm(n, R) Sp(2n, R) Λn ' U(n, C)/O(n, R)
Herm(n, C) SU(n, n) U(n, C)
Herm(n, H) SO∗(4n) U(2n, C)/SU(n, H)

R1,n−1 SO0(2, n) S1 × Sn−1/Z2

Herm(3, O) E7,(−25) U(1)E6/F4

NB. W stands for the Euclidean Jordan algebra in the complexification
of which the tube type domain is realized, G is (up to a finite covering)
the neutral component of the group of holomorphic diffeomorphisms of the
domain, and S is its Shilov boundary.
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Math. Annalen 337 (2007) 91-138.

[9] Clerc J-L. and Neeb K-H., Orbits of Triples in the Shilov Boundary
of a Bounded Symmetric Domain, Transformation Groups 11 (2006)
387-426.

[10] Clerc J-L. and Ørsted B., The Maslov Index Revisited, Transformation
Groups 6 (2001) 303-320.

[11] Clerc J-L. and Ørsted B., The Gromov Norm of the Kaehler Class and
the Maslov Index, Asian J. Math. 7 (2003) 269-296.

[12] Domic A. and Toledo D., The Gromov Norm of the Kaehler Class of
Symmetric Domains, Math. Annal. 276 (1987) 425-432.
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