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Moment estimates for solutions of linear stochastic
differential equations driven by analytic fractional

Brownian motion

Jérémie Unterberger

As a general rule, differential equations driven by a multi-dimensional irreg-
ular path Γ are solved by constructing a rough path over Γ. The domain of
definition – and also estimates – of the solutions depend on upper bounds
for the rough path; these general, deterministic estimates are too crude to
apply e.g. to the solutions of stochastic differential equations with linear
coefficients driven by a Gaussian process with Hölder regularity α < 1/2.

We prove here (by showing convergence of Chen’s series) that linear stochas-
tic differential equations driven by analytic fractional Brownian motion [7, 8]
with arbitrary Hurst index α ∈ (0, 1) may be solved on the closed upper half-
plane, and that the solutions have finite variance.
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0 Introduction

Assume Γt = (Γt(1), . . . ,Γt(d)) is a smooth d-dimensional path, and V1, . . . , Vd :
R

r → R
r be smooth vector fields. Then (by the classical Cauchy-Lipschitz

theorem for instance) the differential equation driven by Γ

dy(t) =
d
∑

i=1

Vi(y(t))dΓi(t) (0.1)

admits a unique solution with initial condition y(0) = y0. The usual way to
prove this is by showing (by a functional fixed-point theorem) that iterated
integrals

yn(t) → yn+1(t) := y0 +

∫ t

0

∑

i

Vi(yn(s))dΓi(s) (0.2)

converge when n → ∞.
Expanding this expression to all orders yields formally for an arbitrary

analytic function f

f(yt) = f(ys) +

∞
∑

n=1

∑

1≤i1,...,in≤d

[Vi1 . . . Vinf ] (ys)Γ
n
ts(i1, . . . , in), (0.3)

where

Γn
ts(i1, . . . , in) =:=

∫ t

s

dΓt1(i1)

∫ t1

s

dΓt2(i2) . . .

∫ tn−1

s

dΓtn(in), (0.4)

provided, of course, the series converges. By specializing to the identity
function f = Id : R

r → R
r, x → x, one gets a series expansion for the

solution (yt).
This formula, somewhat generalized, has been used in a variety of con-

texts:

1. Let

EN,t,s
V (ys) = ys +

N
∑

n=1

∑

1≤i1,...,in≤d

[Vi1 . . . VinId] (ys)Γ
n
ts(i1, . . . , in) (0.5)

be the N -th order truncation of (0.3). It may be interpreted as one
iteration of the numerical Euler scheme of order N , which is defined
by

yEuler;D
tk

:= EN,tk,tk−1

V ◦ . . . ◦ EN,t1,t0
V (y0) (0.6)
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for an arbitrary partition D = {0 = t0 < . . . < tn = T} of the interval
[0, T ]. When Γ is only α-Hölder with 1

N+1 < α ≤ 1
N

, the iterated
integrals Γn(i1, . . . , in), n = 2, . . . , N do not make sense a priori and
must be substituted with a geometric rough path over Γ. A geometric
rough path over Γ is a family
(

(Γ1
ts(i1))1≤i1≤d, (Γ

2
ts(i1, i2))1≤i1,i2≤d, . . . , (Γ

N
ts(i1, . . . , iN )1≤i1,...,iN≤d)

)

(0.7)
of functions of two variables such that:

(i) Γ1
ts = Γ1

t − Γ1
s;

(ii) (Hölder continuity) each component of Γk, k = 1, . . . , N is kα-

Hölder continuous, that is to say, sups∈R

(

supt∈R

|Γk
ts(i1,...,ik)|
|t−s|kα

)

<
∞.

(iii) (multiplicativity) letting δΓk
tus := Γk

ts − Γk
tu − Γk

us, one requires

δΓk
tus(i1, . . . , ik) =

∑

k1+k2=k

Γk1
tu(i1, . . . , ik1)Γ

k2
us(ik1+1, . . . , ik).

(0.8)

(iii) (geometricity)

Γn1
ts (i1, . . . , in1)Γ

n2
ts (j1, . . . , jn2) =

∑

k∈Sh(i,j)

Γn1+n2(k1, . . . , kn1+n2)

(0.9)
where Sh(i, j) is the subset of permutations of i1, . . . , in1 , j1, . . . , jn2

which do not change the orderings of (i1, . . . , in1) and (j1, . . . , jn2).

Properties (i)-(iv) are true when Γ is regular; the multiplicative prop-
erty measures in some sense the defect of additivity of iterated inte-
grals, which is easy to measure when one represents these as geometric
quantities (areas, volumes, etc.) Under these conditions, it is possible
to integrate a 1-form along the path Γ (or, more precisely, along the
rough path Γ); we refer the reader either to [2] or to [3].

It is also possible to solve differential equations driven by Γ like (0.1),
either by using eq. (0.2) and a fixed-point theorem in a class of
Γ-controlled processes [3], or by using the above Euler scheme [2].
Assuming either (i) the vector fields V and their derivatives up to
order N are bounded or (ii) they are linear 1, then the solution is

1Similar results are also expected when the vector fields V are uniformly Lipschitz on
R [4]. See also [5] for investigations on the same subject using a fixed point method.
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globally defined, and the solution at time T is bounded (i) by a
polynomial in |||Γ||| or (ii) by something like exp C|||Γ|||N , where

|||Γ||| = maxn=1,...,N sup1≤i1,...,in≤d sup0≤s,t≤T
|Γn

ts(i1,...,in)|
|t−s|nα is the max-

imum of the Hölder norms. It seems there is no way (using either
approach) to improve these bounds in the general deterministic set-
ting. Unfortunately, they do not give a control of the solution as a
stochastic process in the linear case (ii) when Γ is a Gaussian pro-
cess (such as fBm or analytic fBm, see below) with Hölder regularity
α < 1

2 , since E exp C(Γt − Γs)
2 = ∞ for C large enough, and in any

case E exp C|Γt − Γs|N = ∞ if N ≥ 3.

2. Assume Γ is a stochastic process, and let Pt(f) = Ef(yt). When (0.1)
is a diffusion driven by usual Brownian motion, Pt is the associated
semi-group operator. Assume now Γ is more general, for instance
fBm or analytic fBm. Even though the process in not Markov, the
operator Pt is interesting in itself. The small-time expansion of Pt

(corresponding to an arbitrary truncation of the above series) has been
studied [1] when Γ is fBm with Hurst index α > 1/3. When α > 1/2,
it has been proved [6] that the series converges for functions and vector
fields V satisfying somewhat drastic conditions.

In any case, it seems difficult to get moment estimates for the solutions
of stochastic differential equations driven by stochastic processes Γ with
Hölder regularity α < 1

2 . One of the reasons [6] is the difficulty of getting
estimates for the iterated integrals Γ; another reason lies in the essence of
the rough path method which relies on pathwise estimates; a third reason
is, of course, that the Chen series diverges even in the simplest cases (one-
dimensional usual Brownian motion for instance) as soon as the vector fields
are unbounded and non-linear, e.g. quadratic.

In this article, we prove convergence of the series (0.3) when the vector
fields Vi are linear and Γ is analytic fBm (afBm for short). This process –
first defined in [8] –, depending on an index α ∈ (0, 1), is a complex-valued
process, a.s. κ-Hölder for every κ < α, which has an analytic continuation
to the upper half-plane Π+ := {z = x + iy | x ∈ R, y > 0}. Its real part
(2Re Γt, t ∈ R) has the same law as fBm with Hurst index α. Trajectories
of Γ on the closed upper half-plane Π̄+ = Π+ ∪ R have the same regularity
as those of fBm, namely, they are κ-Hölder for every κ < α. As shown in
[7], the regularized rough path – constructed by moving inside the upper
half-plane through an imaginary translation t → t + iε – converges in the
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limit ε → 0 to a geometric rough path over Γ for any α ∈ (0, 1), which
makes it possible to produce strong, local pathwise solutions of stochastic
differential equations driven by Γ with analytic coefficients.

We do not enquire about the convergence of the series (0.3) in the general
case (as mentioned before, it diverges e.g. when V is quadratic), but only
in the linear case. One obtains:

Main theorem.
Let V1, . . . , Vd be linear vector fields on C

r. Then the series (0.3) con-
verges in L2(Ω) on the closed upper half-plane Π̄+ = Π+ ∪ R. Furthermore,
the solution (yt)t∈Π̄+ , defined as the limit of the series, has finite variance.
More precisely, there exists a constant C such that

E|yt − ys|2 ≤ C|t − s|2α, s, t ∈ Π̄+. (0.10)

Notation. Constants (possibly depending on α) are generally denoted
by C,C ′, C1, cα and so on.

1 Definition of afBm and first estimates

We briefly recall to begin with the definition of the analytic fractional Brow-
nian motion Γ, which is a complex-valued process defined on the closed upper
half-plane Π̄+ [7]. Its introduction was initially motivated by the possibility
to construct quite easily iterated integrals of Γ by a contour deformation.
Alternatively, its Fourier transform is supported on R+, which makes the
regularization procedure in [9, 10] void.

Proposition 1.1 Let {ξ1
k, ξ2

k; k ≥ 0} be two families of independent stan-
dard Gaussian random variables, defined on a complete probability space
(Ω,F , P), and for k ≥ 0, set ξk = ξ1

k + iξ2
k. Consider the process Γ′ defined

for z ∈ Π+ by Γ′
z =

∑

k≥0 fk(z)ξk. Then:

(1) Γ′ is a well-defined analytic process on Π+, with Hermitian covariance
kernel

EΓ′
zΓ

′
w = 0, EΓ′

zΓ̄
′
w =

α(1 − 2α)

2 cos πα
(−i(z − w̄))2α−2. (1.1)

(2) Let γ : (0, 1) → Π+ be any continuous path with endpoints γ(0) = 0
and γ(1) = z, and set Γz =

∫

γ
Γ′

u du. Then Γ is an analytic process on Π+.

Furthermore, as z runs along any path in Π+ going to t ∈ R, the random
variables Γz converge almost surely to a random variable called again Γt.
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(3) The family {Γt; t ∈ R} defines a Gaussian centered complex-valued pro-
cess, whose covariance function is given by:

E[ΓsΓt] = 0, E[ΓsΓ̄t] =
e−iπα sgn(s)|s|2α + eiπα sgn(t)|t|2α − eiπα sgn(t−s)|s − t|2α

4 cos(πα)
.

The paths of this process are almost surely κ-Hölder for any κ < α.

(4) Both real and imaginary parts of {Γt; t ∈ R} are (non independent)
fractional Brownian motions indexed by R, with covariance given by

E[Re ΓsIm Γt] = −tan πα

8

[

−sgn(s)|s|2α + sgn(t)|t|2α − sgn(t − s)|t − s|2α
]

.

(1.2)

Definition 1.2 Let Yt := Re Γit, t ∈ R+. More generally, Yt = (Yt(1), . . . , Yt(d))
is a vector-valued process with d independent, identically distributed compo-
nents.

The above results imply that Yt is real-analytic on R
∗
+.

Lemma 1.3 The infinitesimal covariance function of Yt is:

EY ′
sY

′
t =

α(1 − 2α)

4 cos πα
(s + t)2α−2. (1.3)

Proof. Let Xt := Im Γit. Since EΓsΓt = 0, (Ys, s ≥ 0) and (Xs, s ≥ 0)
have same law, with covariance kernel EYsYt = EXsXt = 1

2Re ΓisΓ̄it. Hence

E[Y ′
sY

′
t ] =

1

2
Re EΓ′

isΓ̄
′
it =

α(1 − 2α)

4 cos πα
(s + t)2α−2. (1.4)

2

Note that EY ′
sY

′
t > 0. From this simple remark follows (see proof of a

similar statement in [6] concerning usual fractional Brownian motion with
Hurst index α > 1/2):

Lemma 1.4 Let Yn
ts(i1, . . . , in), n ≥ 2 be the iterated integrals of Y . Then

there exists a constant C > 0 such that

VarYn
ts(i1, . . . , in) ≤ C

(C|t − s|)2nα

n!
. (1.5)
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Proof. Let Π be the set of all pairings π of the set {1, . . . , 2n} such that

((k1, k2) ∈ π) ⇒
(

ik′

1
= ik′

2

)

, where k′
1 = k1 if k1 ≤ n, k1 −n otherwise, and

similarly for k′
2. By Wick’s formula,

VarYn
ts(i1, . . . , in)

=
∑

π∈Π

(
∫ t

s

dx1 . . .

∫ xn−1

s

dxn

)(
∫ t

s

dxn+1 . . .

∫ x2n−1

s

dx2n

)

∏

(k1,k2)∈π

E[Y ′
xk1

Y ′
xk2

]. (1.6)

Since the process Y ′ is positively correlated, and Π is largest when all indices
i1, . . . , in are equal, one gets VarYn

ts(i1, . . . , in) ≤ VarYn
ts(1, . . . , 1). On the

other hand, Yn
ts(1, . . . , 1) = 1

n!(Yt − Ys)
n, hence

VarYn
ts(1, . . . , 1) =

[Var(Yt − Ys)]
n

(n!)2
.

(2n)!

2n . n!
≤ [2Var(Yt − Ys)]

n

n!
. (1.7)

Now (assuming for instance 0 < s < t)

Var(Yt − Ys) = cα

∫ t

s

∫ t

s

(u + v)2α−2dudv ≤ cαs2α−2(t − s)2 ≤ cα(t − s)2α

(1.8)
if t

2 ≤ s ≤ t, and

Var(Yt−Ys) =
cα

2α(2α − 1)

[

(2t)2α + (2s)2α − 2(t + s)2α
]

≤ Ct2α ≤ C ′(t−s)2α

(1.9)
if s < t/2. Hence the result. 2

2 Estimates for iterated integrals of Γ

The main tool for the study of Γ is the use of contour deformation. Iterated
integrals of Γ are particular cases of analytic iterated integrals, see [8] or [7].
In particular, the following holds:

Lemma 2.1 Let γ : (0, 1) → Π+ be the piecewise linear contour with affine
parametrization defined by :

(i) γ([0, 1/3]) = [s, s + i|Re (t − s)|];

(ii) γ([1/3, 2/3]) = [s + i|Re (t − s)|, t + i|Re (t − s)|];
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(iii) γ([2/3, 1]) = [t + i|Re (t − s)|, t].

If z = γ(x) ∈ γ([0, 1]), we let γz be the same path stopped at z, i.e.

γz = γ([0, x]), with the same parametrization. Then (letting cα = α(1−2α)
2 cos πα

)

VarΓn
ts(i1, . . . , in) =

cn
α

∑

σ∈ΣI

∫

γ

dz1

∫

γ̄

dw̄1(−i(z1 − w̄σ(1)))
2α−2 .

∫

γz1

dz2

∫

γ̄w̄1

dw̄2(−i(z2 − w̄σ(2)))
2α−2 . . .

∫

γzn−1

dzn

∫

γ̄w̄n−1

dw̄n(−i(zn − w̄σ(n)))
2α−2 (2.1)

where ΣI is the subset of permutations of {1, . . . , n} such that (ij =
ik) ⇒ (σ(j) = σ(k)).

Proof. Note first that, similarly to eq. (1.6),

VarΓn
ts(i1, . . . , in) =

∑

σ∈ΣI

(
∫ t

1
dz1 . . .

∫ zn−1

s

dzn

)

(

∫ t̄

s̄

dw̄1 . . .

∫ w̄n−1

s̄

dw̄n

)

n
∏

j=1

E

[

Γ′
zj

Γ̄′
w̄σ(j)

]

(2.2)

(the difference with respect to eq. (1.6) comes from the fact that contractions
only operate between Γ’s and Γ̄’s, since E[Γzj

Γzk
] = E[Γ̄w̄j

Γ̄w̄k
] = 0 by

Proposition 1.1). Now the result comes from a deformation of contour, see
[8]. 2

Lemma 2.2 There exists a constant C ′ such that, for every s, t ∈ Π̄+ =
Π+ ∪ R,

VarΓn
ts(i1, . . . , in) ≤ (C ′|t − s|)2nα

n!
. (2.3)

Proof. We assume (without loss of generality) that Im s ≤ Im t. If
|Im (t−s)| ≥ cRe |t−s| for some positive constant c (or equivalently |Re (t−
s)| ≤ c′|t − s| for some 0 ≤ c′ < 1) then it is preferable to integrate along
the straight line [s, t] = {z ∈ C | z = (1 − u)s + ut, 0 ≤ u ≤ 1} instead of
γ, and use the parametrization y = Im z. If z1, z2 ∈ [s, t], y1 = Im z1, y2 =
Im z2, then |(−i(z1 − z̄2))

2α−2| ≤ C(y1 +y2)
2α−2, hence VarΓn

ts(i1, . . . , in) ≤
C ′nVarYn

y2,y1
(i1, . . . , in), which yields the result by Lemma 1.4. So we shall

assume that |Re (t − s)| > c|t − s| for some constant c > 0.
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Let us use as new variable the parametrization coordinate x along γ.
Then formula (2.1) reads

VarΓn
ts(i1, . . . , in) = cn

α

∑

σ∈ΣI

∫ 1

0
dx1

∫ 1

0
dy1K

′(x1, yσ(1)) .

∫ x1

0
dx2

∫ y1

0
dy2K

′(x2, yσ(2)) . . .

∫ xn−1

0
dxn

∫ xn

0
dynK ′(xn, yσ(n)), (2.4)

where K ′(x, y) = (3|Re (t − s)|)2(3(x + y)|Re (t − s)| + 2Im s)2α−2 if 0 <
x, y < 1/3, (3|Re (t − s)|)2(3((1 − x) + (1 − y))|Re (t − s)| + 2Im t)2α−2

if 2/3 < x, y < 1, and is bounded by a constant times |t − s|2α otherwise
thanks to the condition |Re (t − s)| > c|t − s|. Note that (x + y)2α−2 >
22α−2 if 0 < x, y < 1. Hence (if 0 < x, y < 1) |K ′(x, y)| ≤ (C1|t −
s|)2α

[

(x + y)2α−2 + ((1 − x) + (1 − y))2α−2
]

, which is (up to a coefficient)

the infinitesimal covariance of |t − s|α(Yx + Ỹ1−x, 0 < x < 1) if Ỹ
(law)
= Y

is independent of Y . A slight modification of the argument of Lemma 1.4
yields

VarΓn
ts(i1, . . . , in) ≤ (C1|t − s|)2nα [Var(Y1 − Y0) + Var(Ỹ1 − Ỹ0)]

n

(n!)2
.

(2n)!

2n . n!

≤ C2nα
1 .

(2C|t − s|)2nα

n!
. (2.5)

2

3 Proof of main theorem

We now prove the theorem stated in the introduction, which is really a
simple corollary of Lemma 2.2.

Let C be the maximum of the matrix norms |||Vi||| = sup||x||∞=1 ||Vix||∞
for the supremum norm ||x||∞ = sup(|x1|, . . . , |xr|). Rewrite eq. (0.5) as

EN,t,s
V (ys) = ys +

N
∑

n=1

∑

1≤i1,...,in≤d

ai1,...,inΓ
n
ts(i1, . . . , in). (3.1)

Then ||ai1,...,in ||∞ ≤ Cn and E|Γn
ts(i1, . . . , in)|2 ≤ (C|t−s|)2nα

n! . Hence (by
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the Cauchy-Schwarz inequality)

E

(

EN,t,s
V (ys) − ys

)2
≤

N
∑

m,n=1

(C ′′|t − s|)(m+n)α

√
m!n!

=

(

N
∑

m=1

(C ′′|t − s|)mα

√
m!

)2

≤ C ′′′.|t − s|2α (3.2)

independently of N . The series obviously converges and yields eq. (0.10)
for p = 1. 2

It should be easy to prove along the same lines that the series defining
E|yt − ys|2p converges for every p ≥ 1, and that there exists a constant Cp

such that E|yt − ys|2p ≤ Cp|t − s|2αp for every s, t ∈ Π̄+.
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