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Abstract. The analysis of the aa index series presented in
this paper clearly shows that during the last century (1900 to
2000) the number of quiet days (Aa<20 nT) drastically di-
minished from a mean annual value greater than 270 days
per year at the end of the nineteenth century to a mean value
of 160 quiet days per year one hundred years later. This de-
crease is mainly due to the decrease of the number of very
quiet days (Aa<13 nT). We show that the so-evidenced de-
crease in the number of quiet days cannot be accounted for
by drift in the aa baseline resulting in a systematic underes-
timation of aa during the first quarter of the century: a 2–
3 nT overestimation in the aa increase during the 20th cen-
tury would lead to a 20–40% overestimation in the decrease
of the number of quiet days during the same period.

The quiet days and very quiet days correspond to periods
during which the Earth encounters slow solar wind streams
flowing in the heliosheet during the period where the solar
magnetic field has a dipolar geometry. Therefore, the ob-
served change in the number of quiet days is the signature of
a long term evolution of the solar coronal field topology. It
may be interpreted in terms of an increase in the magnitude
of the solar dipole, the associated decrease of the heliosheet
thickness accounting for the observed decrease in the number
of quiet days.
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Keywords. Geomagnetism and paleomagnetism (Time vari-
ations, secular and long term) – Interplanetary physics
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1 Introduction

The geomagnetic activity is one of the signatures of the
Earth’s magnetosphere forcing by the solar wind, and it is
now well accepted that long data series of geomagnetic in-
dices provide efficient tools for studying the past evolution
of solar activity and of its impact on the Earth’s environment.
The long term geomagnetic data series, and in particular the
aa indices (Mayaud, 1968, 1980; Menvielle and Berthelier,
1991) provide continuous information on geomagnetic activ-
ity from 1868 onwards, and they are used in a variety of ap-
plications ranging from long-term solar and solar wind vari-
ability to climate change (e.g., Feynman and Crooker, 1978;
Cliver et al., 1998a, b; Lockwood et al., 1999; Solanki et al.,
2000; Echer et al., 2004).

One way for characterizing geomagnetic activity and its
evolution with time is to study the occurrence of periods dur-
ing which it becomes low enough for the magnetic situation
to be considered as quiet. The identification of such periods
of magnetic quietness was actually one of the motivations for
defining the very first geomagnetic indices, at the beginning
of the twentieth century. At present, planetary geomagnetic
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Fig. 1. (a)Model of dipolar field submitted to the internal pressure
of the solar plasma flow (Pneuman and Kopp, 1971; reproduced by
Simon and Legrand, 1989);(b) Average distribution in the eclip-
tic plane of the solar wind velocity (scale on the left) in 1976 (cir-
cles) and 1977 (triangles) as a function of the angular) in degrees
to the neutral sheet (

 18 

Figure captions 
 

Figure 1: panel a: Model of dipolar field submitted to the internal pressure of 

the solar plasma flow (Pneuman and Kopp, 1971; reproduced by Simon and Legrand, 

1989); panel b: Average distribution in the ecliptic plane of the solar wind velocity 

(scale on the left) in 1976 (circles) and 1977 (triangles) as a function of the angular ) in 

degrees to the neutral sheet (distance ( = 0) (Bruno et al., 1986). Scale on the right: 

the velocity associated aa index according to Svalgaard (1977). The hatched area 

shows the slower solar wind speed (Vs ≤ 450 km.s-1) and as a consequence the 

correlated thickness of its coronal source: the “slow wind sheet”. 

 

Figure 2: Long-term variations of aa indices (12-month and 20-year running 

averages; scale on the left) and of sunspot numbers (12-month running averages; 

scale on the right) from 1868 until now. 

 

Figure 3: panel a: Annual number of quiet days (Aa < 20nT; dashed line) and 

very quiet days (Aa < 13 nT; full line) from 1868 until now; panel b: 10-year running 

average of the number of quiet days (triangles line) and very quiet days (dotted line) 

with a sliding step of one year; panel c: histograms of the Aa values (0 < Aa < 40 nT) 

during solar cycles 12 (black bars) and 20 (white bars). 

 

Figure 4: panel a: 10-year running average of the sum of the daily indices 

during quiet days (Aa < 20nT; line of triangles) and very quiet days (Aa < 13 nT; 

dotted line), with a sliding step of one year; panel b: 10-year running average of the 

sum of the daily indices during disturbed days (Aa ≥ 20nT), with a sliding step of 

one year. 

 

distance (

 18 

Figure captions 
 

Figure 1: panel a: Model of dipolar field submitted to the internal pressure of 

the solar plasma flow (Pneuman and Kopp, 1971; reproduced by Simon and Legrand, 

1989); panel b: Average distribution in the ecliptic plane of the solar wind velocity 

(scale on the left) in 1976 (circles) and 1977 (triangles) as a function of the angular ) in 

degrees to the neutral sheet (distance ( = 0) (Bruno et al., 1986). Scale on the right: 

the velocity associated aa index according to Svalgaard (1977). The hatched area 

shows the slower solar wind speed (Vs ≤ 450 km.s-1) and as a consequence the 

correlated thickness of its coronal source: the “slow wind sheet”. 

 

Figure 2: Long-term variations of aa indices (12-month and 20-year running 

averages; scale on the left) and of sunspot numbers (12-month running averages; 

scale on the right) from 1868 until now. 

 

Figure 3: panel a: Annual number of quiet days (Aa < 20nT; dashed line) and 

very quiet days (Aa < 13 nT; full line) from 1868 until now; panel b: 10-year running 

average of the number of quiet days (triangles line) and very quiet days (dotted line) 

with a sliding step of one year; panel c: histograms of the Aa values (0 < Aa < 40 nT) 

during solar cycles 12 (black bars) and 20 (white bars). 

 

Figure 4: panel a: 10-year running average of the sum of the daily indices 

during quiet days (Aa < 20nT; line of triangles) and very quiet days (Aa < 13 nT; 

dotted line), with a sliding step of one year; panel b: 10-year running average of the 
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=0) (Bruno et al., 1986). Scale
on the right: the velocity associated aa index according to Sval-
gaard (1977). The hatched area shows the slower solar wind speed
(Vs≤450 km s−1) and as a consequence the correlated thickness of
its coronal source: the “slow wind sheet”.

indices are used to determine periods of magnetic quietness.
For instance, many authors define as quiet days those UT
days for which the aa daily average (hereafter denoted as Aa
indices) is smaller than or equal to a given threshold, e.g.,
13 nT (K- and C-days introduced by Mayaud, 1968, 1980,
and routinely circulated by the International Service of Geo-

magnetic Indices:http://isgi.cetp.ipsl.fr/), or 20 nT (Legrand
and Simon, 1989; Simon and Legrand, 1989). In the present
study, we use the yearly number of quiet (Aa<20 nT) and
very quiet (Aa<13 nT) days to characterize the long term
evolution of geomagnetic activity from 1868 until now, and
infer conclusions on the long term evolution of the solar ac-
tivity.

The reliability of the results deduced from studies based
upon long data series dramatically depends on the homo-
geneity of the data series. In the particular case of aa, the
robustness in the observed increasing trend in the data series,
and therefore the validity of the conclusions that rely on this
secular change are at present challenged by some authors on
the basis of new indices (e.g., Svalgaard et al., 2004; Sval-
gaard and Cliver, 2007a). These authors argued that there
is an inhomogeneity in aa index and thought that aa index
needs a new calibration for better utilisation. Many authors
addressed the question of the long term homogeneity of the
aa data series (see, e.g., Clilverd et al., 2005; Svalgaard and
Cliver, 2007b; Lockwood et al., 2007). They concluded that
the uncertainty in the aa baseline determination is likely to
be on the order of 2–3 nT.

Clilverd et al. (2005) also concluded that the robustness
of the trend in the aa index supports the idea of a long-term
increase in solar coronal magnetic field strength. In particu-
lar, they showed that the long term drift that they estimated
in the aa baseline cannot account for the observed long-term
increase of geomagnetic activity over the 20th century.

In the present study, we use the yearly number of quiet and
very quiet days to characterize the long term evolution of ge-
omagnetic activity. We show that these numbers are robust
enough to make it possible to derive conclusions on the long
term evolution of the solar activity. In Sect. 2 we recall some
results concerning solar and geomagnetic activities; Sect. 3
is devoted to the data analysis and the conclusions are sum-
marized in Sect. 4.

2 Solar phenomena and geomagnetic activity

In the present paper, we follow the approach proposed by
Legrand and Simon (1981) who initiated the use of the ge-
omagnetic index series aa for studying solar activity. They
analysed geomagnetic data series over nine solar cycles and
studied the dependence of geomagnetic activity to the solar
activity.

They identified four classes of magnetic activity that they
associated with different solar wind contexts: 1) magnetic
quietness due to slow solar wind (V <450 km/h) speed es-
caping from the heliosheet, 2) Shock events resulting from
Coronal Mass Ejection, 3) recurrent activity caused by fast
solar wind streams from polar coronal holes, and 4) fluctuat-
ing activity due to the irregular fluctuations of solar neutral
sheet. Since each class of activity refers to solar wind be-
haviour at the Earth orbit, their long term evolution bears
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information on the long term evolution of solar activity. The
reader is referred to Legrand and Simon (1989) and Simon
and Legrand (1989) for further details on the definition and
occurrence of geomagnetic classes activity.

In this section, we focus on the solar wind conditions as-
sociated to magnetic quietness.

Figure 1a (from Pneuman and Kopp, 1971) presents a
scheme of the geometry of the solar dipolar magnetic field
lines submitted to the internal pressure of the solar plasma
flow. The dipolar magnetic field controls the solar wind.
Many authors studied the links between the distribution of
the wind velocity and the neutral sheet (Borrini et al., 1981;
Feldman et al., 1981; Gosling et al., 1981; Zhao and Hund-
hausen, 1981, 1983; Hoeksema, 1984; Newkirk and Fisk,
1985; Bruno et al., 1986). Bruno et al. (1986) showed that
the solar wind velocity is minimal at the neutral sheet, and
increases with increasing distance to it; it has an almost sym-
metric behaviour with respect to the neutral sheet (Fig. 1b).
This result is confirmed by Ulysses observations, and it is
now well established that magnetic quietness corresponds to
slow solar wind flows. Figure 1b shows that the 20 nT thresh-
old used by Legrand and Simon to define magnetic quiet-
ness corresponds to a solar wind velocityVs of ∼450 km s−1,
namely the “slow solar wind” according to Svalgaard (1977).
The width of the slow solar wind layer increases with de-
creasing intensity of the solar dipolar magnetic field, and ac-
cordingly with decreasing solar activity.

These results lead to the following:

1. The thickness of the Heliosheet is related to the solar
poloidal magnetic component i.e. a change in the he-
liosheet thickness is related to a change of the solar
magnetic dipole component which regulates 91.5% of
the geomagnetic activity (slow solar wind, high wind
speed solar wind and fluctuating activity). The miss-
ing 8.5% of geomagnetic activity is related to CME,
which occurred mainly around the sunspot solar max-
imum (toroidal magnetic component of the sun).

2. A change in the poloidal component of the solar mag-
netic field impact on the solar wind velocity at the orbit
of the Earth.

Kunetsova and Tsirulnik (2008) analysed the solar wind ve-
locity near the Earth’s orbit for the period 1964–1997 and
found that the trend in the solar wind speedV demonstrates a
55% increase in the solar wind velocity for the period 1964–
1997. Besides, Svalgaard and Cliver (2007b) showed that the
yearly mean solar wind speed varied from a low (inferred) of
303 km/s in 1902 to a high (observed) value of 545 km/s. The
increase of the solar wind speedV implies also an increase of
the electric fieldV ×Bi , (Bi : interplanetary magnetic field)
transferred continuously to the magnetosphere by the solar
wind / magnetosphere dynamo process (Axford and Hines,
1961) by the solar wind flowing around the magnetospheric
cavity. The increase of theV ×Bi electric field gives rise to

Fig. 2. Long-term variations of aa indices (12-month and 20-year
running averages; scale on the left) and of sunspot numbers (12-
month running averages; scale on the right) from 1868 until now.

an increase in the Energy transferred from the solar wind to
the Earth environment.

A magnetic quiet day corresponds to a UT day during
which the Earth is most of the time inside the slow solar
wind layer. The number of magnetic quiet days accordingly
increases with an increasing average width of the slow so-
lar wind layer and, thus, with decreasing solar activity. The
long term evolution of the yearly number of magnetic quiet
days, therefore, monitors the long term evolution of the solar
activity. It is worth noting here that the difference between
the origin of magnetic quietness (crossings of the slow so-
lar wind layer by the Earth along its orbit) and magnetic ac-
tivity (change in the solar wind parameters because of solar
events) results in a difference between statistical properties
of the distribution of quiet and disturbed days. In particular,
as shown in the next section, the yearly number of quiet days
is robust with regard to the uncertainty about few nT in the
long term variation of the aa data series.

3 Long term change in geomagnetic activity

Figure 2 presents the 12-month running average curve of
the aa indices from 1868 until now, together with the 12-
month running variations of the sunspot number (the so-
called smoothed sunspot number). This figure clearly illus-
trates the behaviour of the geomagnetic activity during the
11-year sunspot cycle. In both aa and sunspot data series,
undecennial (11-year) minima occur either simultaneously
or with one year difference, but there is no correlation be-
tween the values of the minima in both curves. Peaks in the
geomagnetic activity are more or less clearly observed al-
most simultaneously with the undecennial (11-year) sunspot
maxima, and they are followed by another peak during the
descending phase of each sunspot cycle. The relative inten-
sity of these two peaks varies from one cycle to the other:
the peak during the descending phase actually corresponds
to the recurrent activity that is generated by solar phenom-
ena related to the forthcoming sunspot solar cycle (see, e.g.,
Legrand and Simon, 1991).

www.ann-geophys.net/27/2045/2009/ Ann. Geophys., 27, 2045–2051, 2009
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Fig. 3. (a) Annual number of quiet days (Aa<20 nT; dashed line)
and very quiet days (Aa<13 nT; full line) from 1868 until now;
(b) 10-year running average of the number of quiet days (triangles
line) and very quiet days (dotted line) with a sliding step of one
year; (c) histograms of the Aa values (0<Aa<40 nT) during solar
cycles 12 (black bars) and 20 (white bars).

Figure 2 also highlights a global increase in the level of
the geomagnetic activity as described by the aa indices: it is
clearly seen when comparing the level of the activity during
the first and last thirty years of the data series. The long
term trend of this increase is clearly illustrated by the 10-year
running (because solar cycle period is∼10 or ∼11 years)
average curve, also presented on Fig. 2.
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Fig. 4. (a)10-year running average of the sum of the daily indices
during quiet days (Aa<20 nT; line of triangles) and very quiet days
(Aa<13 nT; dotted line), with a sliding step of one year;(b) 10-year
running average of the sum of the daily indices during disturbed
days (Aa≥20 nT), with a sliding step of one year.

As already stated, the existence of such a long-term in-
crease in the geomagnetic activity is challenged by some au-
thors. We, therefore, consider another quantity, the yearly
number of the quiet days, in order to get a robust enough
monitoring of the long term variation of the geomagnetic ac-
tivity from the aa indices data series.

In Fig. 3a are plotted the variations of the annual number
of quiet days (Aa<20 nT; dotted curve) and very quiet days
(Aa<13 nT; continuous curve) from 1868 until now. As ex-
pected, the number of very quiet days is minimum when the
geomagnetic activity is maximum (e.g., 1931, 1952, 1957,
1981, 2003), and it is maximum when the activity is min-
imum (e.g., 1878, 1902, 1913, 1996); it significantly de-
creases during the twentieth century. A similar behaviour
is observed for the number of quiet days; however, the de-
crease observed in the number of very quiet days is signifi-
cantly greater than the one observed in the number of quiet
days.

Ann. Geophys., 27, 2045–2051, 2009 www.ann-geophys.net/27/2045/2009/
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Figure 3a also shows the decrease in the number of quiet
days at solar minima during the last century. Figure 3b shows
the 10-year running average of the numbers of quiet days (tri-
angles) and very quiet days (dots) with a sliding step of one
year. The two curves have the same behaviour and clearly
illustrate the decrease of the number of quiet and very quiet
days. The number of quiet days decreases from more than
270 per year in 1900 to less than 160 per year in 2000; the
same trend is observed in the number of very quiet days that
decreases from more than 220 in 1900 to less than 75 in 2000.

Let us now assess the robustness of this number with re-
gard to the uncertainty on the long term aa variation, esti-
mated to 2–3 nT (see above).

Consider the observed empirical histograms of the Aa in-
dices during each solar cycle. It varies from one cycle to the
other, but it is always a unimodal one that peaks at a val-
ues smaller than 13 nT. Figure 3c shows the histogram of Aa
values during solar cycle 12 (maximum in December 1883,
black colour) and solar cycle 20 (maximum in November
1968, white colour). Overestimating by 2 nT the increase
in the aa value between solar cycles 11 and 20 leads to un-
derestimating by about 25 days (i.e.∼23%) the change in the
yearly number of quiet days between these two solar cycles;
overestimating by 3 nT this increase reduces the difference in
the number of quiet days between cycles 11 and 20 by about
40 days (i.e. less than 40% of the observed change). There-
fore, the decrease observed in the number of very quiet days
during the 20th century cannot be accounted for by inconsis-
tency of the long term aa.

Another point of interest is the integral of the aa indices
over the set of quiet, very quiet, or disturbed days. Let us
calculate for each year the quiet and disturbed components
of the geomagnetic activity defined as:

Aaq =6Aa (quiet days; Aa≤20 nT)
Aad =6Aa (disturbed days; Aa>20 nT)

and also the component of the Aa corresponding to very quiet
days:

Aavq =6Aa(very quiet days; Aa<13 nT)
Figure 4a shows the 10-year running average of Aaq (tri-

angles) and Aavq (dots), for the period 1868 to 2000 with a
sliding step of one year. As already noticed by Legrand and
Simon (1981), Aaq does no depend on the number of quiet
days: it remains quasi constant around 2400 nT, except for
the period around 1950 where it decreases down to around
2000 nT. On the contrary, Aavq almost regularly decreases
from ∼1500 nT, in 1868 (161 very quiet days) to∼1000 nT
in 2000 (92 very quiet days) that corresponds to an almost
constant (∼10 nT) average Aa value per very quiet day.

Table 1 gives the years for which Aaq is smaller than
2000 nT or Aaq is smaller than 1800 nT. This table shows
that the years for which Aaq is smaller than 2000 nT are in
majority after 1950 (16 over 20), while the years for which
Aaq is smaller than 1800 nT are in majority after 1960 (7
over 9). This is consistent with an increase of magnetic ac-
tivity during the twentieth century. Note that the year 2003

Table 1. Years from 1868 until now with Aaq values smaller than
2000 nT (column 2) and 1800 nT (column 4); columns 1 and 3 are
years (see text for further explanations).

Year Aaquiet<2000 nT Year Aaquiet<1800 nT

1901 1840 1930 1571
1902 1980 1959 1689
1930 1571 1960 1687
1943 1967 1974 1521
1951 1804 1982 1411
1952 1809 1983 1696
1956 1950 1984 1795
1957 1991 1991 1739
1958 1954 2003 1207
1959 1689
1960 1687
1973 1903
1974 1521
1982 1411
1983 1696
1984 1795
1991 1739
1993 1989
1994 1901
2003 1207

corresponds to the smallest value of Aaq over the whole aa
data series (see Table 1), but not to the smallest number of
quiet or very quiet days (Fig. 3) this suggests that Aa values
for very quiet days are particularly low during this year.

Figure 4b shows the 10-year running mean value of the
sum of the daily disturbed component (Aad) for the period
1868 until now, with a sliding step of one year. From 1868
until now Aad increases from∼2200 nT until ∼7000 nT,
with a decrease down to∼4600 nT around years 1950–1958.

In our opinion, these results provide clear evidence for
the change in the dipole field independently of the 11-year
sunspot variation. This change has been shown by Rouillard
et al. (2007). In fact, they show that a mean interplanetary
magnetic field strength increases and makes solar wind speed
grow by 14%±0.7%. Moreover, these authors affirm that
on annual timescales, the accumulation of open field lines in
coronal holes should force lower expansion rates of magnetic
flux tubes. This, in turn, should increase the probability of
the Earth intersecting the fast solar wind, thereby raising the
average measured solar wind speed. Consequently Rouillard
et al. (2007) highlight the decreasing of quiet days number.
The above quoted Svalgaard and Cliver (2007b) results on
the increase of the solar wind speed over the 20th century
are consistent with the observed decreasing of the quiet days
number during the 20th century.

www.ann-geophys.net/27/2045/2009/ Ann. Geophys., 27, 2045–2051, 2009
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4 Conclusion

In this paper, we analyzed the occurrence of magnetic quiet
days (Aa<20 nT) and very quiet days (Aa<13 nT) during the
whole Aa indices data base from 1868–2007. During the last
century 1900–2000 a large decrease of the number of mag-
netic quiet days and very quiet days is observed. Magnetic
quiet days decreased from a mean annual value of 270 days
per year to a mean annual value of 160 days per years. This
strong decrease is mainly due to the decrease of very quiet
days. It is a true phenomenon, since the potential effect due
to drift in the Aa indices is not likely to account for more
than 40% of the observed decrease.

Magnetic quiet and very quiet days occurred when the
Earth is under the influence of slow solar wind speed
(V <450 km/s) flowing out of the Sun from the Heliosheet.
Therefore, the decrease of the number of magnetic quiet and
very quiet days is the signature of a change in the heliosheet
thickness. The larger the heliosheet thickness is, the larger
the number of magnetic quiet and very quiet days is (see
Fig. 12, bottom panel from Simon and Legrand, 1989).

This paper demonstrates the importance of the analysis of
the Earth’s geomagnetic activity which is directly related to
the evolution of the large scale magnetic components of the
solar magnetic field.
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