
HAL Id: hal-00381633
https://hal.science/hal-00381633v1

Submitted on 6 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed Logic and Storage Operators
Karim Nour

To cite this version:
Karim Nour. Mixed Logic and Storage Operators. Archive for Mathematical Logic, 2000, 39, pp.261-
280. �hal-00381633�

https://hal.science/hal-00381633v1
https://hal.archives-ouvertes.fr

Mixed Logic and Storage Operators

Karim NOUR

LAMA - Equipe de Logique, Université de Chambéry

73376 Le Bourget du Lac

e-mail nour@univ-savoie.fr

Abstract

In 1990 J-L. Krivine introduced the notion of storage operators. They are λ-terms which simulate

call-by-value in the call-by-name strategy and they can be used in order to modelize assignment

instructions. J-L. Krivine has shown that there is a very simple second order type in AF2 type

system for storage operators using Gődel translation of classical to intuitionistic logic.

In order to modelize the control operators, J-L. Krivine has extended the system AF2 to the classical

logic. In his system the property of the unicity of integers representation is lost, but he has shown

that storage operators typable in the system AF2 can be used to find the values of classical integers.

In this paper, we present a new classical type system based on a logical system called mixed logic.

We prove that in this system we can characterize, by types, the storage operators and the control

operators. We present also a similar result in the M. Parigot’s λµ-calculus.

1 Introduction

In 1990, J.L. Krivine introduced the notion of storage operators (see [4]). They are closed λ-terms which

allow, for a given data type (the type of integers, for example), to simulate in λ-calculus the ”call by

value” in a context of a ”call by name” (the head reduction) and they can be used in order to modelize

assignment instructions. J.L. Krivine has shown that the formula ∀x{N*[x]→ ¬¬N [x]} is a specification

for storage operators for Church integers : where N [x] is the type of integers in AF2 type system, and

the operation ∗ is the simple Gődel translation from classical to intuitionistic logic which associates to

every formula F the formula F* obtained by replacing in F every atomic formula by its negation (see [3]).

The latter result suggests many questions :

• Why do we need a Gődel translation ?

• Why do we need the type N*[x] which characterize a class larger than integers ?

In order to modelize the control operators, J-L. Krivine has extended the system AF2 to the classical

logic (see [6]). His method is very simple : it consists of adding a new constant, denoted by C, with

the declaration C : ∀X{¬¬X → X} which axiomatizes classical logic over intuitionistic logic. For the

constant C, he adds a new reduction rule : (Ctt1...tn)→ (t λx(x t1...tn)) which is a particular case of

a rule given by Felleisen for control operator (see [1]). In this system the property of the unicity of inte-

gers representation is lost, but J-L. Krivine has shown that storage operators typable in the intuitionistic

system AF2 can be used to find the values of classical integers 1(see [6]).

1The idea of using storage operators in classical logic is due to M. Parigot (see [19])

1

The latter result suggests also many questions :

• What is the relation between classical integers and the type N*[x] ?

• Why do we need intuitionistic logic to modelize the assignment instruction and classical logic to

modelize the control operators ?

In this paper, we present a new classical type system based on a logical system called mixed logic. This

system allows essentially to distinguish between classical proofs and intuitionistic proofs. We prove that,

in this system, we can characterize, by types, the storage operators and the control operators. This

results give some answers to the previous questions.

We present at the end (without proof) a similar result in the M. Parigot’s λµ-calculus.

Acknowledgement. We wish to thank J.L. Krivine, and C. Paulin for helpful discussions. We don’t

forget the numerous corrections and suggestions from R. David and N. Bernard.

2 Pure and typed λ-calculus

• Let t, u, u1, ..., un be λ-terms, the application of t to u is denoted by (t)u. In the same way we write

(t)u1...un instead of (...((t)u1)...)un.

• Fv(t) is the set of free variables of a λ-term t.

• The β-reduction (resp. β-equivalence) relation is denoted by u→β v (resp. u ≃β v).

• The notation σ(t) represents the result of the simultaneous substitution σ to the free variables of t

after a suitable renaming of the bounded variables of t.

• We denote by (u)nv the λ-term (u)...(u)v where u occurs n times, and u the sequence of λ-terms

u1, ..., un. If u = u1, ..., un n ≥ 0, we denote by (t)u the λ-term (t)u1...un.

• Let us recall that a λ-term t either has a head redex [i.e. t = λx1...λxn(λxu)vv1...vm, the head

redex being (λxu)v], or is in head normal form [i.e. t = λx1...λxn(x)v1...vm]. The notation u ≻ v

means that v is obtained from u by some head reductions. If u ≻ v, we denote by h(u, v) the length

of the head reduction between u and v.

Lemma 2.1 (see[3])

1) If u ≻ v, then, for any substitution σ, σ(u) ≻ σ(v), and h(σ(u), σ(v))=h(u,v).

2) If u ≻ v, then, for every sequence of λ-terms w, there is a w, such that (u)w ≻ w, (v)w ≻ w, and

h((u)w, w) = h((v)w, w) + h(u, v).

Remark. Lemma 2.1 shows that to make the head reduction of σ(u) (resp. of (u)w) it is equivalent -

same result, and same number of steps - to make some steps in the head reduction of u, and after make

the head reduction of σ(v) (resp. of (v)w). 2

• The types will be formulas of second order predicate logic over a given language. The logical

connectives are ⊥ (for absurd), →, and ∀. There are individual (or first order) variables denoted

by x, y, z, ..., and predicate (or second order) variables denoted by X, Y, Z,

2

• We do not suppose that the language has a special constant for equality. Instead, we define the

formula u = v (where u, v are terms) to be ∀Y (Y (u)→ Y (v)) where Y is a unary predicate variable.

Such a formula will be called an equation. We denote by a ≈ b, if a = b is a consequence of a set

of equations.

• The formula F1 → (F2 → (... → (Fn → G)...)) is also denoted by F1, F2, ..., Fn → G. For every

formula A, we denote by ¬A the formula A →⊥. If v = v1, ..., vn is a sequence of variables, we

denote by ∀vA the formula ∀v1...∀vnA.

• Let t be a λ-term, A a type, Γ = x1 : A1, ..., xn : An a context, and E a set of equations. We define

by means of the following rules the notion ”t is of type A in Γ with respect to E” ; this notion is

denoted by Γ ⊢AF2 t : A :

(1) Γ ⊢AF2 xi : Ai 1 ≤ i ≤ n.

(2) If Γ, x : A ⊢AF2 t : B, then Γ ⊢AF2 λxt : A→ B.

(3) If Γ ⊢AF2 u : A→ B, and Γ ⊢AF2 v : A, then Γ ⊢AF2 (u)v : B.

(4) If Γ ⊢AF2 t : A, and x is not free in Γ, then Γ ⊢AF2 t : ∀xA.

(5) If Γ ⊢AF2 t : ∀xA, then, for every term u, Γ ⊢AF2 t : A[u/x].

(6) If Γ ⊢AF2 t : A, and X is not free in Γ, then Γ ⊢AF2 t : ∀XA.

(7) If Γ ⊢AF2 t : ∀XA, then, for every formulas G, Γ ⊢AF2 t : A[G/X].

(8) If Γ ⊢AF2 t : A[u/x], and u ≈ v, then Γ ⊢AF2 t : A[v/x].

This typed λ-calculus system is called AF2 (for Arithmétique Fonctionnelle du second ordre).

Theorem 2.1 (see [2]) The AF2 type system has the following properties :

1) Type is preserved during reduction.

2) Typable λ-terms are strongly normalizable.

We present now a syntaxical property of system AF2 that we will use afterwards.

Theorem 2.2 (see [8]) If in the typing we go from Γ ⊢AF2 t : A to Γ ⊢AF2 t : B, then we may assume

that we begin by the ∀-elimination rules, then by the equationnal rule, and finally by the ∀-introduction

rules.

• We define on the set of types the two binary relations � and ≈ as the least reflexive and transitive

binary relations such that :

- ∀xA � A[u/x], if u is a term of language ;

- ∀XA � A[F/X], if F is a formula of language ;

- A ≈ B if and only if A = C[u/x], B = C[v/x], and u ≈ v.

3

3 Pure and typed λC-calculus

3.1 The C2 type system

We present in this section the J-L. Krivine’s classical type system.

• We add a constant C to the pure λ-calculus and we denote by ΛC the set of new terms also called

λC-terms. We consider the following rules of reduction, called rules of head C-reduction.

1) (λxu)tt1...tn → (u[t/x])t1...tn for every u, t, t1, ..., tn ∈ ΛC.

2) (C)tt1...tn → (t)λx(x)t1 ...tn for every t, t1, ..., tn ∈ ΛC, x being a λ-variable not appearing

in t1, ..., tn.

• For any λC-terms t, t′, we shall write t ≻C t′ if t′ is obtained from t by applying these rules finitely

many times. We say that t′ is obtained from t by head C-reduction.

• A λC-term t is said β-normal if and only if t does not contain a β-redex.

• A λC-term t is said C-solvable if and only if t ≻C (f)t1, ..., tn where f is a variable.

It is easy to prove that : if t ≻C t′, then, for any substitution σ, σ(t) ≻C σ(t′).

• We add to the AF2 type system the new following rule :

(0) Γ ⊢ C : ∀X{¬¬X → X}

This rule axiomatizes the classical logic over the intuitionistic logic. We call C2 the new type

system, and we write Γ ⊢C2 t : A if t is of type A in the context Γ.

It is clear that Γ ⊢C2 t : A if and only if Γ, C : ∀X{¬¬X → X} ⊢AF2 t : A.

Theorem 3.1 (see [6])

1) If Γ ⊢C2 t : A, and t→β t′, then Γ ⊢C2 t′ : A.

2) If Γ ⊢C2 t :⊥, and t ≻C t′, then Γ ⊢C2 t′ :⊥.

3) If A is an atomic type, and Γ ⊢C2 t : A, then t is C-solvable.

3.2 The M2 type system

In this section, we present the system M2. This system allows essentialy to distinguish between classical

proofs and intuitionistic proofs

We assume that for every integer n, there is a countable set of special n-ary second order variables de-

noted by XC , YC , ZC, and called classical variables.

Let X be an n-ary predicate variable or predicate symbol. A type A is said to be ending with X if and

only if A is obtained by the following rules :

- X(t1, ..., tn) ends with X ;

4

- If B ends with X , then A→ B ends with X for every type A ;

- If A ends with X , then ∀vA ends with X for every variable v.

A type A is said to be a classical type if and only if A ends with ⊥ or a classical variable.

We add to the AF2 type system the new following rules :

(0′) Γ ⊢ C : ∀XC{¬¬XC → XC}

(6′) If Γ ⊢ t : A, and XC has no free occurence in Γ, then Γ ⊢ t : ∀XCA.

(7′) If Γ ⊢ t : ∀XCA, and G is a classical type, then Γ ⊢ t : A[G/XC].

We call M2 the new type system, and we write Γ ⊢M2 t : A if t is of type A in the context Γ.

We extend the definition of � by : ∀XCA � A[G/XC] if G is a classical type.

Lemma 3.1 If A is a classical type and A � B (or A ≈ B), then B is a classical type.

Proof Easy. 2

3.3 The logical properties of M2

We denote by LAF2, LC2, and LM2 the underlying logic systems of respectively AF2, C2, and M2

type systems.

With each classical variable XC , we associate a special variable X∗ of AF2 having the same arity as XC .

For each formula A of LM2, we define the formula A* of LAF2 in the following way :

- If A = D(t1, ..., tn) where D is a predicate symbol or a predicate variable, then A*=A ;

- If A = XC(t1, ..., tn), then A*= ¬X∗(t1, ..., tn) ;

- If A = B → C, then A*= B*→ C* ;

- If A = ∀xB, then A*=∀xB*.

- If A = ∀XB, then A*=∀XB*.

- If A = ∀XCB, then A*=∀X∗B*.

A* is called the Gődel translation of A.

Lemma 3.2 If G is a classical type of LM2, then ⊢LAF2 ¬¬G*←→ G*.

Proof It is easy to prove that ⊢LAF2 G*→ ¬¬G*.

We prove ⊢LAF2 ¬¬G*→ G* by induction on G.

- If G =⊥, then G*=⊥, and ⊢LAF2 ((⊥→⊥)→⊥)→⊥.

5

- If G = XC(t1, ..., tn), then G*=¬X∗(t1, ..., tn), and ⊢LAF2 ¬¬¬X
∗(t1, ..., tn)→ ¬X∗(t1, ..., tn).

- If G = A → B, then B is a classical type and G* = A* → B*. By the induction hypothesis,

we have ⊢LAF2 ¬¬B*→ B*. Since ⊢LAF2 ¬¬(A*→ B*) → (¬¬A*→ ¬¬B*), we check easily that

⊢LAF2 ¬¬(A* → B*) → (A* → B*).

- If G = ∀vG′ where v = x or v = X , then G′ is a classical type and G*=∀vG′*. By the induction

hypothesis, we have ⊢LAF2 ¬¬G
′*→ G′*. Since ⊢LAF2 ¬¬∀vG′* → ∀v¬¬G′*, we check easily that

⊢LAF2 ¬¬∀vG′* → ∀vG′*.

- If G = ∀XCG′, then G′ is a classical type and G*=∀X∗G′*. By the induction hypothesis, we

have ⊢LAF2 ¬¬G
′*→ G′*. Since ⊢LAF2 ¬¬∀X

∗G′* → ∀X∗¬¬G′*, we check easily that ⊢LAF2

¬¬∀X∗G′* → ∀X∗G′*. 2

Lemma 3.3 Let A, G be formulas of LM2, t a term, x a first order variable, and X a second order

variable. We have :

1) (A[t/x])*= A*[t/x].

2) (A[G/X])*= A*[G*/X].

Proof By induction on A. 2

Lemma 3.4 Let A be a formula of LM2, G a classical type, and XC a classical variable.

⊢LAF2 (A[G/XC])*←→ A*[¬G*/XC].

Proof By induction on A.

- If A = D(t1, ..., tn) where D is a predicate variable or a predicate symbol, then A*=A, and

⊢LAF2 A←→ A.

- If A = XC(t1, ..., tn), then A*=¬X∗(t1, ..., tn), and, by Lemma 3.2, ⊢LAF2 ¬¬G*←→ G*.

- If A = B → C, then A* = B*→ C*. By the induction hypothesis, we have ⊢LAF2 (B[G/XC])*←→

B*[¬G*/XC] and ⊢LAF2 (C[G/XC])*←→ C*[¬G*/XC]. Therefore ⊢LAF2 {(B[G/XC])*→ (B[G/XC])*} ←→

{B*[¬G*/XC]→ C*[¬G*/XC]}.

- If A = ∀vA′, where v = x or v = X , then A*=∀vA′*. By the induction hypothesis, we have

⊢LAF2 (A′[G/XC])*←→ A′*[¬G*/XC]. Therefore ⊢LAF2 (∀vA′[G/XC])*←→ ∀vA′*[¬G*/XC].

- If A = ∀YCA′, then A*=∀Y ∗A′*. By the induction hypothesis, we have ⊢LAF2 (A′[G/XC])*

←→ A′*[¬G*/XC]. Therefore ⊢LAF2 (∀YCA′[G/XC])*←→ (∀YCA′)*[¬G*/XC]. 2

Theorem 3.2 If A1, ..., An ⊢LM2 A, then A1*, ..., An* ⊢LAF2 A*.

Proof By induction on the proof of A and using Lemmas 3.2, 3.3, and 3.4. 2

Corollary 3.1 Let A, A1, ..., An be formulas of LAF2.

A1, ..., An ⊢LM2 A if and only if A1, ..., An ⊢LAF2 A.

Proof We use Theorem 3.2. 2

With each predicate variable X of C2, we associate a classical variable XC having the same arity as X .

For each formula A of LC2, we define the formula AC of M2 in the following way :

6

- If A = D(t1, ..., tn) where D is a constant symbol, then AC = A ;

- If A = X(t1, ..., tn) where X is a predicate symbol, then AC = XC(t1, ..., tn) ;

- If A = B → C, then AC = BC → CC ;

- If A = ∀xB, then AC = ∀xBC ;

- If A = ∀XB, then AC = ∀XCBC .

AC is called the classical translation of A.

Theorem 3.3 Let A1, ..., An, A be formulas of LC2.

A1, ..., An ⊢LC2 A if and only if AC
1 , ..., AC

n ⊢LM2 AC .

Proof By induction on the proof of A. 2

4 Properties of M2 type system

By corollary 3.1, we have that a formula is provable in system LAF2 if and only if it is provable in system

LC2. This resultat is not longer valid if we decorate the demonstrations by terms. We will give some

conditions on the formulas in order to obtain such a result.

We define two sets of types of AF2 type system : Ω+ (set of ∀-positive types), and Ω− (set of ∀-negative

types) in the following way :

- If A is an atomic type, then A ∈ Ω+, and A ∈ Ω− ;

- If T ∈ Ω+, and T ′ ∈ Ω−, then, T ′ → T ∈ Ω+, and T → T ′ ∈ Ω− ;

- If T ∈ Ω+, then ∀xT ∈ Ω+ ;

- If T ∈ Ω−, then ∀xT ∈ Ω− ;

- If T ∈ Ω+, then ∀XT ∈ Ω+ ;

- If T ∈ Ω−, and X has no free occurence in T , then ∀XT ∈ Ω−.

Lemma 4.1 1) If A ∈ Ω+ (resp. A ∈ Ω−) and A ≈ B, then B ∈ Ω+ (resp. B ∈ Ω−).

2) If A ∈ Ω− and A � B → C, then B ∈ Ω+ and C ∈ Ω−.

Proof Easy. 2

Theorem 4.1 Let A1, ..., An be ∀-negative types, A a ∀-positive type of AF2 which does not end with ⊥,

B1, ..., Bm classical types, and t a β-normal λC-term.

If Γ = x1 : A1, ..., xn : An, y1 : B1, ..., ym : Bm ⊢M2 t : A, then t is a normal λ-term, and x1 : A1, ..., xn :

An ⊢AF2 t : A.

Proof We argue by induction on t.

- If t is a variable, we have two cases :

7

- If t = xi 1 ≤ i ≤ n, this is clear.

- If t = yj 1 ≤ j ≤ m, then A = ∀vB where Bj � B′
j and B′

j ≈ B. Therefore, by Lemma 3.1,

A is a classical type. A contradiction.

- If t = λxu, then Γ, x : E ⊢M2 u : F , and A = ∀v(E′ → F ′) where E ≈ E′, F ≈ F ′ and v does not

appear in Γ. First, by Lemma 4.1, E ∈ Ω− and F ∈ Ω+, and then, by the induction hypothesis, u

is a normal λ-term, and x1 : A1, ..., xn : An, x : E ⊢AF2 u : F . Therefore t is a normal λ-term, and

x1 : A1, ..., xn : An ⊢AF2 t : A.

- If t = (x)u1...ur r ≥ 1, we have two cases :

- If t = xi 1 ≤ i ≤ n, then Ai � B1 → C1, C′
i � Bi+1 → Ci+1 1 ≤ i ≤ r− 1, C′

r � D, A = ∀vD′,

where C′
i ≈ Ci 1 ≤ i ≤ r, D′ ≈ D, and Γ ⊢M2 ui : Bi 1 ≤ i ≤ r. Since Ai is a ∀-negative types,

we prove (by induction and using Lemma 4.1) that for all 1 ≤ i ≤ r Bi is a ∀-positive types. By

the induction hypothesis we have ui is a normal λ-term, and x1 : A1, ..., xn : An ⊢AF2 ui : Bi.

Therefore t is a normal λ-term, and x1 : A1, ..., xn : An ⊢AF2 t : A.

- If t = yj 1 ≤ j ≤ m, then Bj �B1 → C1, C′
i �Bi+1 → Ci+1 1 ≤ i ≤ r−1, C′

r �D, A = ∀vD′,

where C′
i ≈ Ci 1 ≤ i ≤ r, D′ ≈ D, and Γ ⊢M2 ui : Bi 1 ≤ i ≤ r. Therefore, by Lemma 3.1, A

is a classical type. A contradiction.

- If t = (C)uu1...ur r ≥ 0, then there is a classical type E such that Γ ⊢M2 u : ¬¬E, E � B1 → C1,

C′
i � Bi+1 → Ci+1 1 ≤ i ≤ r − 1, C′

r � D, A = ∀vD′, where C′
i ≈ Ci 1 ≤ i ≤ r, D′ ≈ D, and

Γ ⊢M2 ui : Bi 1 ≤ i ≤ r. Therefore, by Lemma 3.1, A is a classical type. A contradiction. 2

Corollary 4.1 Let A be a ∀-positive type of AF2 and t a β-normal λC-term.

If ⊢M2 t : A, then t is a normal λ-term, and ⊢AF2 t : A.

Proof We use Theorem 4.1. 2

As for relation betwen the systems C2 and M2, we have the following result.

Theorem 4.2 Let A1, ..., An, A be types of C2, and t a λC-term.

A1, ..., An ⊢C2 t : A if and only if AC
1 , ..., AC

n ⊢M2 t : AC .

Proof By induction on the typing of t. 2

5 The integers

• Each data type can be defined by a second order formula. For example, the type of integers is the

formula : N [x] = ∀X{X(0), ∀y(X(y) → X(sy)) → X(x)} where X is a unary predicate variable,

0 is a constant symbol for zero, and s is a unary function symbol for successor. The formula N [x]

means semantically that x is an integer if and only if x belongs to each set X containing 0 and

closed under the successor function s.

The λ-term 0 = λxλfx is of type N [0] and represents zero.

The λ-term s = λnλxλf(f)((n)x)f is of type ∀y(N [y] → N [s(y)]) and represents the successor

function.

8

• A set of equations E is said to be adequate with the type of integers if and only if :

- s(a) 6≈ 0 ;

- If s(a) ≈ s(b) , then so is a ≈ b.

In the rest of the paper, we assume that all sets of equations are adequate with the type of integers.

• For each integer n, we define the Church integer n by n = λxλf(f)nx.

5.1 The integers in AF2

The system AF2 has the property of the unicity of integers representation.

Theorem 5.1 (see [2]) Let n be an integer. If ⊢AF2 t : N [sn(0)], then t ≃β n.

The propositional trace N = ∀X{X, (X → X)→ X} of N [x] also defines the integers.

Theorem 5.2 (see [2]) If ⊢AF2 t : N , then, for a certain n, t ≃β n.

Remark A very important property of data type is the following (we express it for the type of integers)

: in order to get a program for a function f : N → N it is sufficient to prove ⊢ ∀x(N [x]→ N [f(x)]). For

example a proof of ⊢ ∀x(N [x] → N [p(x)]) from the equations p(0) = 0, p(s(x)) = x gives a λ-term for

the predecessor in Church intergers (see [2]). 2

5.2 The integers in C2

The situation in system C2 is more complex. In fact, in this system the property of unicity of integers

representation is lost and we have only one operational characterization of these integers.

Let n be an integer. A classical integer of value n is a closed λC-term θn such that ⊢C2 θn : N [sn(0)].

Theorem 5.3 (see [6] and [12]) Let n be an integer, and θn a classical integer of value n.

- if n = 0, then, for every distinct variables x, g, y : (θn)xgy ≻C (x)y ;

- if n 6= 0, then there is m ≥ 1 and a mapping I : {0, ..., m} → N , such that for every distinct

variables x, g, x0, x1, ..., xm :

(θn)xgx0 ≻C (g)t1xr0
;

(ti)xi ≻C (g)ti+1xri
1 ≤ i ≤ m ;

(tm)xm ≻C (x)xrm
;

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

We will generalize this result.

Let O be a particular unary predicate symbol. The typed system C2O is the typed system C2 where we

replace the rules (2) and (7) by :

9

(2O) If Γ, x : A ⊢C2O
t : B, A and B are not ending with O, then Γ ⊢C2O

λxt : A→ B.

(7O) If Γ ⊢C2O
t : ∀XA, and G is not ending with O, then Γ ⊢C2O

t : A[G/X].

We define on the types of C2O a binary relation �O as the least reflexive and transitive binary relation

such that :

∀xA �O A[u/x] if u is a term of language ;

∀XA �O A[G/X] if G is a type which is not ending with O.

Lemma 5.1 a) If Γ ⊢C2O
t :⊥, and t ≻C t′, then Γ ⊢C2O

t′ :⊥.

b) If Γ ⊢C2O
t : A, and A is an atomic type, then t is C-solvable.

Proof a) It is enough to do the proof for one step of reduction. We have two cases :

- If t = (λxu)vv1...vm, then t′ = (u[v/x])v1...vm, Γ, x : F ⊢C2O
u : G, F and G are not ending

with O, G′
�O F1 → G1, G′

j �O Fj+1 → Gj+1 1 ≤ j ≤ m − 1, Gm ≈⊥, Gj ≈ G′
j 1 ≤ j ≤ m − 1,

Γ ⊢C2O
v : F , and Γ ⊢C2O

vj : Fj 1 ≤ j ≤ m. It is easy to check that Γ ⊢C2O
u[v/x] : G, then

Γ ⊢C2O
t′ :⊥.

- If t = (C)vv1...vm, then t′ = (v)λx(x)v1 ...vm, and there is a type A which is not ending with O such

that : A′
�O F1 → G1, G′

j �O Fj+1 → Gj+1 1 ≤ j ≤ m− 1, Gm ≈⊥, A ≈ A′, Gj ≈ G′
j 1 ≤ j ≤ m,

Γ ⊢C2O
v : ¬¬A, and Γ ⊢C2O

vj : Fj 1 ≤ j ≤ m. It is easy to check that Γ, x : A ⊢C2O
(x)v1...vm :⊥,

but A is not ending with O, then Γ ⊢C2O
λx(x)v1...vm : ¬A, and Γ ⊢C2O

t′ :⊥.

b) Indeed, a typing of C2O may be seen as a typing of C2. 2

Lemma 5.2 a) If Γ ⊢C2O
t : O(a), and t ≻C t′, then t = t′.

b) If Γ = y1 : A1, ..., yn : An, x1 : O(a1), ..., xm : O(am) ⊢C2O
t : O(a), and all Ai 1 ≤ i ≤ n are not

ending with O, then t is one of xi, and ai ≈ a 1 ≤ i ≤ n.

Proof a) It is enough to do the proof for one step of reduction. We have two cases :

- If t = (λxu)vv1...vm, then t′ = (u[v/x])v1...vm, Γ, x : F ⊢C2O
u : G, F and G are not ending with

O, G′
�O F1 → G1, G′

j �O Fj+1 → Gj+1 1 ≤ j ≤ m − 1, Gm ≈ O(a), Gj ≈ G′
j 1 ≤ j ≤ m − 1,

Γ ⊢C2O
v : F , and Γ ⊢C2O

vj : Fj 1 ≤ j ≤ m. Therefore Gj 1 ≤ j ≤ m is not ending with O, which

is impossible since Gm ≈ O(a).

- If t = (C)vv1...vm, then t′ = (v)λx(x)v1 ...vm, and there is a type A which is not ending with O

such that : A′
�O F1 → G1, G′

j �O Fj+1 → Gj+1 1 ≤ j ≤ m − 1, Gm ≈ O(a), A ≈ A′, Gj ≈ G′
j

1 ≤ j ≤ m, Γ ⊢C2O
v : ¬¬A, and Γ ⊢C2O

vj : Fj 1 ≤ j ≤ m. A is not ending with O, therefore Gj

1 ≤ j ≤ m is not ending with O, which is impossible since Gm ≈ O(a).

b) By Lemma 5.1, we have t ≻C (f)t1...tr, and, by a), t = (f)t1...tr. Therefore Γ ⊢C2O
(f)t1...tr : O(a).

- If f = xi 1 ≤ i ≤ m, then r = 0, t = xi, and O(ai) ≈ O(a), then ai ≈ a.

- If f = yj 1 ≤ j ≤ k, then Aj �O F1 → G1, G′
k �O Fk+1 → Gk+1 1 ≤ k ≤ r − 1, Gr ≈ O(a),

Gk ≈ G′
k 1 ≤ k ≤ r, and Γ ⊢C2O

tk : Fk 1 ≤ k ≤ r. Since Aj is not ending with O, then Gk

1 ≤ k ≤ r is not ending with O, which is impossible since Cr ≈ O(a). 2

10

Let V be the set of variables of λC-calculus.

Let P be an infinite set of constants called stack constants 2.

We define a set of λC-terms ΛCP by :

- If x ∈ V , then x ∈ ΛCP ;

- If t ∈ ΛCP , and x ∈ V , then λxt ∈ ΛCP ;

- If t ∈ ΛCP , and u ∈ ΛCP
⋃

P , then (t)u ∈ ΛCP .

In other words, t ∈ ΛCP if and only if the stack constants are in argument positions in t.

Let σ be a function defined on V
⋃

P such that :

- If x ∈ V , then σ(x) ∈ ΛCP ;

- If p ∈ P , then σ(p) = t = t1, ..., tn, n ≥ 0, ti ∈ ΛCP
⋃

P 1 ≤ i ≤ n.

We define σ(t) for all t ∈ ΛCP by :

- σ((u)v) = (σ(u))σ(v) if v 6∈ P ;

- σ(λxu) = λxσ(u) ;

- σ((t)p) = (t)t if σ(p) = t.

σ is said to be a P -substitution.

We consider, on the set ΛCP , the following rules of reduction :

1) (λxu)tt1...tn → (u[t/x])t1...tn for all u, t ∈ ΛCP and t1, ..., tn ∈ ΛCP
⋃

P ;

2) (C)tt1...tn → (t)λx(x)t1...tn for all t ∈ ΛCP and t1, ..., tn ∈ ΛCP
⋃

P , and x being λ-variable

not appearing in t1, ..., tn.

For any t, t′ ∈ ΛCP , we shall write t �C t′, if t′ is obtained from t by applying these rules finitely many

times.

Lemma 5.3 If t �C t′, then σ(t) �C σ(t′) for all P -substitution σ.

Proof Easy. 2

Lemma 5.4 Let t ∈ ΛCP such that the stack constants of t are among p1, ..., pm.

If t ≻C t′, and Γ = Γ′, p1 : O(a1), ..., pm : O(am) ⊢C2O
t :⊥, then t′ ∈ ΛCP and t �C t′.

Proof It is enough to do the proof for one step of reduction. We have two cases :

- If t = (λxu)vv1...vm, then, t′ = (u[v/x])v1...vm, Γ, x : F ⊢C2O
u : G, F and G is not ending with

O, and Γ ⊢C2O
v : F . Therefore u, v ∈ ΛCP , and so t′ ∈ ΛCP and t �C t′.

2The notion of stack constants taken from a manuscript of J-L. Krivine

11

- If t = (C)vv1...vm, then, t′ = (v)λx(x)v1 ...vm, and there is a type A which is not ending with O

such that Γ ⊢C2O
v : ¬¬A. Therefore v ∈ ΛCP , and so t′ ∈ ΛCP and t �C t′. 2

Theorem 5.4 Let n be an integer, θn a classical integer of value n, and x, g two distinct variables.

- If n = 0, then for every stack constant p, we have : (θn)xgp ≻C (x)p.

- If n 6= 0, then there is m ≥ 1, and a mapping I : {0, ..., m} → N , such that for all distinct stack

constants p0, p1, ..., pm, we have :

(θn)xgp0 ≻C (g)t1pr0
;

(ti)pi ≻C (g)ti+1pri
1 ≤ i ≤ m− 1 ;

(tm)pm ≻C (x)prm

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

Proof We denote, in this proof, the term si(0) by i.

If ⊢C2 θn : N [n], then ⊢C2O
θn : [O(0) →⊥], ∀y{[O(y) →⊥] → [O(sy) →⊥]}, O(n) →⊥, then Γ1 = x :

O(0) →⊥, g : ∀y{[O(y) →⊥] → [O(sy) →⊥]}, p0 : O(n) ⊢C2O
(θn)xgp0 :⊥, therefore, by Lemma 5.1,

(θn)xgp0 is C-solvable, and three cases may be seen :

- If (θn)xgp0 ≻C (p0)t1...tr, then r = 0, and there is a term a, such that O(a) ≈⊥. This is

impossible.

- If (θn)xgp0 ≻C (x)t1...tr, then r = 1, and Γ1 ⊢C2O
t1 : O(0). Therefore, by Lemma 5.2, t1 = p0,

and so n = 0.

- If (θn)xgp0 ≻C (g)t1...tr, then r = 2, Γ1 ⊢C2O
t1 : O(a) →⊥, Γ1 ⊢C2O

t2 : O(s(a′)), and a ≈ a′.

By Lemma 5.2, we have t2 = p0, and s(a′) ≈ n, then a ≈ n − 1. Therefore (θn)xgp0 ≻C (g)t1p0,

and Γ1 ⊢C2O
t1 : O(n − 1)→⊥. Let I(0) = n.

We prove that : if Γi = g : ∀y{[O(y) →⊥] → [O(sy) →⊥]}, x : O(0) →⊥, p0 : O(I(0)),, pi :

O(I(i)) ⊢C2O
(ti)pi :⊥, then :

(ti)pi ≻C (g)ti+1pri
, and Γi ⊢C2O

ti+1 : O(I(ri)− 1)→⊥

or

(ti)pi ≻C (x)pri
, and I(ri) = 0.

Γi ⊢C2O
(ti)pi :⊥, therefore, by Lemma 5.1, (ti)pi est C-solvable, and three cases may be seen :

- If (ti)pi ≻C (pj)u1...ur 0 ≤ j ≤ i, then r = 0, and there is a term a, such that O(a) ≈⊥. This is

impossible.

- If (ti)pi ≻C (x)u1...ur, then r = 1, and Γi ⊢C2O
u1 : O(0). Therefore, by Lemma 5.2, u1 = pri

,

and I(ri) = 0.

- If (ti)pi ≻C (g)u1...ur, then r = 2, Γi ⊢C2O
u1 : O(a)→⊥, Γi ⊢C2O

u2 : O(s(a′)), and a ≈ a′. By

Lemma 5.2, we have u2 = pri
, and s(a′) ≈ I(ri), then a ≈ I(ri)−1. Therefore (ti)pi ≻C (g)ti+1pri

,

and Γi ⊢C2O
ti+1 : O(I(ri)− 1)→⊥. Let I(i + 1) = I(ri)− 1.

This construction always terminates. Indeed, if not, the λC-term (((θn)λxx)λxx)p0 is not C-solvable.

This is impossible, since p0 :⊥⊢C2 (((θn)λxx)λxx)p0 :⊥. 2

12

Corollary 5.1 Let n be an integer, θn a classical integer of value n, and x, g two distinct variables.

- If n = 0, then, for every stack constant p, we have : (θn)xgp �C (x)p.

- If n 6= 0, then there is m ≥ 1, and a mapping I : {0, ..., m} → N , such that for all distinct stack

constants p0, p1, ..., pm, we have :

(θn)xgp0 �C (g)t1pr0
;

(ti)pi �C (g)ti+1pri
1 ≤ i ≤ m− 1 ;

(tm)pm �C (x)prm

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

Proof We use Lemma 5.4. 2

Corollary 5.2 Let n be an integer, and θn a classical integer of value n.

- If n = 0, then, for every λC − terms a, F, u, we have : (θn)aFu ≻C (a)u.

- If n 6= 0, then there is m ≥ 1, and a mapping I : {0, ..., m} → N , such that for all λC − terms

a, F, u0, u1, ..., um, we have :

(θn)aFu0 ≻C (g)t1ur0
;

(ti)ui ≻C (g)ti+1uri
1 ≤ i ≤ m− 1 ;

(tm)um ≻C (a)urm

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

Proof We use Lemma 5.3. 2

5.3 The integers in M2

According to the results of section 4, we can obtain some results concerning the integers in the system

M2.

Theorem 5.5 Let n be an integer. If ⊢M2 t : N [sn(0)], then, t ≃β n.

Proof We use Theorem 4.1. 2

Let n be an integer. By Theorem 4.2, a classical integer of value n is a closed λC-term θn such that

⊢M2 θn : NC [sn(0)].

Theorem 5.6 Let n be an integer, θn a classical integer of value n, and x, g two distinct variables.

- If n = 0, then, for every stack constant p, we have : (θn)xgp �C (x)p.

- If n 6= 0, then there is m ≥ 1, and a mapping I : {0, ..., m} → N , such that for all distinct stack

constants p0, p1, ..., pm, we have :

(θn)xgp0 �C (g)t1pr0
;

13

(ti)pi �C (g)ti+1pri
1 ≤ i ≤ m− 1 ;

(tm)pm �C (x)prm

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

Proof We use Theorem 4.2. 2

6 Storage operators

6.1 Storage operators for Church integers

Let T be a closed λ-term. We say that T is a storage operator for Church integers if and only if for every

n ≥ 0, there is a λ-term τn ≃β n, such that for every λ-term θn ≃β n, there is a substitution σ, such that

(T)θnf ≻ (f)σ(τn).

Examples If we take :

T1 = λn((n)δ)G where G = λxλy(x)λz(y)(s)z and δ = λf(f)0

T2 = λnλf(((n)f)F)0 where F = λxλy(x)(s)y,

then it is easy to check that : for every θn ≃β n, (Ti)θnf ≻ (f)(s)n0 (i = 1 or 2) (see [3] and [8]).

Therefore T1 and T2 are storage operators for Church integers. 2

It is a remarkable fact that we can give simple types to storage operators for Church integers. We first

define the simple Gődel translation F* of a formula F : it is obtained by replacing in the formula F ,

each atomic formula A by ¬A. For example :

N*[x] = ∀X{¬X(0), ∀y(¬X(y)→ ¬X(sy))→ ¬X(x)}

It is well known that, if F is provable in classical logic, then F* is provable in intuitionistic logic.

We can check that ⊢AF2 T1, T2 : ∀x{N*[x]→ ¬¬N [x]}. And, in general, we have the following Theorem

:

Theorem 6.1 (see [3] and [10]) If ⊢AF2 T : ∀x{N*[x] → ¬¬N [x]}, then T is a storage operator for

Church integers.

6.2 Storage operators for classical integers

The storage operators play an important role in classical type systems. Indeed, they can be used to find

the value of a classical integer.

Theorem 6.2 (see [6] and [7]) If ⊢AF2 T : ∀x{N*[x] → ¬¬N [x]}, then for every n ≥ 0, there is a

λ-term τn ≃β n, such that for every classical integer θn of value n, there is a substitution σ, such that

(T)θnf ≻C (f)σ(τn).

Corollary 6.1 If ⊢AF2 T : ∀x{N*[x] → ¬¬N [x]}, then for every n ≥ 0 and for every classical integer

θn of value n, there is a λ-term τn, such that (T)θnλxx ≻C τn →β n.

14

Proof We use Theorem 6.2. 2

Remark. Theorem 6.2 cannot be generalized for the system C2. Indeed, let T = λνλf(f)(C)(Ti)ν

(i = 1 or 2).

ν : N*[x], f : ¬N [x] ⊢C2 (Ti)ν : ¬¬N [x] =⇒

ν : N*[x], f : ¬N [x] ⊢C2 (C)(Ti)ν : N [x] =⇒

ν : N*[x], f : ¬N [x] ⊢C2 (f)(C)(Ti)ν :⊥=⇒

⊢C2 T : ∀x{N*[x]→ ¬¬N [x]}

Since for every λC-term θ, (T)θf ≻C (f)(C)(Ti)θ, then it is easy to check that there is not a λC-

term τn ≃β n such that for every classical integer θn of value n, there is a substitution σ, such that

(T)θnf ≻C (f)σ(τn). 2

We will see that in system M2 we have a similar result to Theorem 6.2.

Let T be a closed λC-term. We say that T is a storage operator for classical integers if and only if for

every n ≥ 0, there is a λC-term τn ≃β n, such that for every classical integers θn of value n, there is a

substitution σ, such that (T)θnf ≻C (f)σ(τn).

Theorem 6.3 If ⊢M2 T : ∀x{NC [x]→ ¬¬N [x]}, then T is a storage operator for classical integers.

The type system M is the subsystem of M2 where we only have propositional variables and constants

(predicate variables or predicate symbols of arity 0). So, first order variable, function symbols, and finite

sets of equations are useless. The rules for typed are 0′) 1), 2), 3), 6), 6′), 7) and 7′) restricted to propo-

sitional variables. With each predicate variable (resp. predicate symbol) X , we associate a predicate

variable (resp. a predicate symbol) X⋄ of M type system. For each formula A of M2, we define the

formula A⋄ of FC obtained by forgetting in A the first order part. If Γ = x1 : A1, ..., xn : An is a context

of M2, then we denote by Γ⋄ the context x1 : A⋄
1, ..., xn : A⋄

n of M . We write Γ ⊢M t : A if t is typable

in M of type A in the context Γ.

We have obviously the following property : if Γ ⊢M2 t : A, then Γ⋄ ⊢M t : A⋄.

Theorem 6.3 is a consequence of the following Theorem.

Theorem 6.4 If ⊢M T : NC → ¬¬N , then for every n ≥ 0, there is an m ≥ 0 and a λC-term τm ≃β m,

such that for every classical integer θn of value n, there is a substitution σ, such that (T)θnf ≻C (f)σ(τm).

Indeed, if ⊢M2 T : ∀x{NC [x] → ¬¬N [x]}, then ⊢M T : NC → ¬¬N . Therefore for every n ≥ 0, there is

an m ≥ 0 and τm ≃β m, such that for every classical integer θn of value n, there is a substitution σ, such

that (T)θnf ≻C (f)σ(τm). We have ⊢M2 n : NC [sn(0)], then f : ¬N [sn(0)] ⊢M2 (T)nf :⊥, therefore

f : ¬N [sn(0)] ⊢M2 (f)m :⊥ and ⊢M2 m : N [sn(0)]. Therefore n = m. and T is a storage operator for

classical integers. 2

In order to prove Theorem 6.4, we shall need some Lemmas.

15

Lemma 6.1 If Γ, ν : NC ⊢M (ν)d :⊥, then d = a, b, d1, ..., dr and there is a classical type F , such that :

Γ, ν : NC ⊢M a : F ; Γ, ν : NC ⊢M b : F → F ; F � E1 → F1, Fi � Ei+1 → Fi+1 1 ≤ i ≤ r− 1 ; Fr� ⊥ ;

and Γ, ν : NC ⊢M ci : Ei 1 ≤ i ≤ r.

Proof We use Theorem 2.2. 2

Lemma 6.2 If F is a classical type and Γ, x : F ⊢M (x)d :⊥, then d = d1, ..., dr ; F � E1 → F1 ;

Fi � Ei+1 → Fi+1 1 ≤ i ≤ r − 1 ; Fr� ⊥ ; and Γ, x : F ⊢M ci : Ei 1 ≤ i ≤ r.

Proof We use Theorem 2.2. 2

Lemma 6.3 Let t be a β-normal λC-term, and A1, ..., An a sequence of classical types.

If x1 : A1, ..., xn : An ⊢M t : N , then there is an m ≥ 0 such that t = m.

Proof We use Theorems 4.1 and 5.2. 2

Let ν and f be two fixed variables.

We denote by xn,a,b,c (where n is an integer, a, b two λ-terms, and c a finite sequence of λ-terms) a

variable which does not appear in a, b, c.

Theorem 6.5 Let n be an integer. There is an integer m and a finite sequence of head reductions

{Ui ≻C Vi}1≤i≤r such that :

1) U1 = (T)νf and Vr = (f)τm where τm ≃β m ;

2) Vi = (ν)abc or Vi = (xl,a,b,c)d 0 ≤ l ≤ n− 1;

3) If Vi = (ν)abc, then Ui+1 = (a)c if n = 0 and Ui+1 = ((b)xn−1,a,b,c)c if n 6= 0 ;

4) If Vi = (xl,a,b,c)d 0 ≤ l ≤ n− 1, then Ui+1 = (a)d if l = 0 and Ui+1 = ((b)x
l−1,a,b,d

)d if l 6= 0.

Proof A good context Γ is a context of the form ν : NC , f : ¬N, xn1,a1,b1,c1
: F1, ..., xnp,ap,bp,cp

: Fp

where Fi is a classical type, 0 ≤ ni ≤ n− 1, and 1 ≤ i ≤ p .

We will prove that there is an integer m and a finite sequence of head reductions {Ui ≻C Vi}1≤i≤r such

that we have 1), 2), 3), 4), and there is a good context Γ such that Γ ⊢M Vi :⊥ 1 ≤ i ≤ r.

We have ⊢M T : NC → ¬¬N , then ν : NC , f : ¬N ⊢M (T)νf :⊥, and by Lemmas 6.1 and 6.2,

(T)νf ≻C V1 where V1 = (f)τ or V1 = (ν)abc.

Assume that we have the head reduction Uk ≻C Vk and Vk 6= (f)τ .

- If Vk = (ν)abc, then, by the induction hypothesis, there is a good context Γ such that Γ ⊢M

(ν)abc :⊥. By Lemma 6.1, there is a classical type F , such that Γ ⊢M a : F ; Γ ⊢M b : F → F ;

c = c1, ..., cs ; F � E1 → F1 ; Fi � Ei+1 → Fi+1 1 ≤ i ≤ s− 1 ; Fs� ⊥ ; and Γ ⊢M ci : Ei 1 ≤ i ≤ s.

- If n = 0, let Uk+1 = (a)c. We have Γ ⊢M Uk+1 :⊥.

- If n 6= 0, let Uk+1 = ((b)xn−1,a,b,c)c. The variable xn−1,a,b,c is not used before. Indeed, if

it is, we check easily that the λC-term (T)nf is not solvable; but that is impossible because

f : ¬N ⊢M (T)nf :⊥. Therefore Γ′ = Γ, xn−1,a,b,c : F is a good context and Γ′ ⊢M Uk+1 :⊥.

- If Vk = (xl,a,b,c)d, then, by the induction hypothesis, there is a good context Γ such that Γ ⊢M

(xl,a,b,c)d :⊥. Then there is a classical type F such that xl,a,b,c : F is in the context Γ. By Lemma

6.2, c = d1, ..., ds ; F � E1 → F1 ; Fi � Ei+1 → Fi+1 1 ≤ i ≤ s − 1 ; Fs� ⊥ ; and Γ ⊢M ci : Ei

1 ≤ i ≤ s.

16

- If l = 0, let Uk+1 = (a)c. We have Γ ⊢M Uk+1 :⊥.

- If l 6= 0, Let Uk+1 = ((b)x
l−1,a,b,d

)d. The variable x
l−1,a,b,d

is not used before. Indeed,

if it is, we check that the λC-term (T)nf is not solvable; but this is impossible because

f : ¬N ⊢M (T)nf :⊥. Then Γ′ = Γ, x
l−1,a,b,d

: F is a good context and Γ′ ⊢M Uk+1 :⊥.

Therefore there is a good context Γ′ such that Γ′ ⊢M Uk+1 :⊥. Then, by Lemmas 6.1 and 6.2,

Uk+1 ≻C Vk+1 where Vk+1 = (f)τ or Vk+1 = (ν)abc or Vk+1 = (xl,a,b,c)d 0 ≤ l ≤ n− 1.

This construction always terminates. Indeed, if not, we check that the λC-term (T)nf is not solvable;

but this is impossible because f : ¬N ⊢M (T)nf :⊥.

Therefore there is r ≥ 0 and a good context Γ such that Γ ⊢M Vr = (f)τ :⊥, and Γ ⊢M τ : N . Therefore,

by Lemma 6.3, there is an m ≥ 0 such that τ ≃β m. 2

Let T be a λC-term such that ⊢M T : NC → ¬¬N . By Theorem 6.5, there is an integer s and a finite

sequence of head reductions {Ui ≻C Vi}1≤i≤r such that :

1) U1 = (T)νf and Vr = (f)τs where τs ≃β s;

2) Vi = (ν)abc or Vi = (xl,a,b,c)d 0 ≤ l ≤ n− 1;

3) If Vi = (ν)abc, then Ui+1 = (a)c if n = 0 and Ui+1 = ((b)xn−1,a,b,c)c if n 6= 0 ;

4) If Vi = (xl,a,b,c)d 0 ≤ l ≤ n− 1, then Ui+1 = (a)d if l = 0 and Ui+1 = ((b)x
l−1,a,b,d

)d if l 6= 0.

Let θn be a classical integer of value n, and x, g two distinct variables. By Theorem 5.6 we have :

If n = 0, then for every stack constant p, we have : (θn)xgp �C (x)p.

If n 6= 0, then there is m ≥ 1, and a mapping I : {0, ..., m} → N , such that for all distinct stack constants

p0, p1, ..., pm, we have :

(θn)xgp0 �C (g)t1pr0
;

(ti)pi �C (g)ti+1pri
1 ≤ i ≤ m− 1 ;

(tm)pm �C (x)prm

where I(0) = n, I(rm) = 0, and I(i + 1) = I(ri)− 1 0 ≤ i ≤ m− 1.

Lemma 6.4 If n = 0, then (T)θnf ≻C (f)τ [θn/ν].

Proof We prove by induction that for every 1 ≤ i ≤ r, we have (T)θnf ≻C Vi[θn/ν].

For i = 1, (T)θnf = {(T)νf}[θn/ν] = U1[θn/ν] ≻C V1[θn/ν].

Assume it is true for i, and prove it for i + 1.

(T)θnf ≻C Vi[θn/ν] = {(ν)abc}[θn/ν] = {(θn)abc}[θn/ν] = {(θn)xgp}[a/x, b/g, c/p][θn/ν]. Since (θn)xgp ≻C

(x)p, then (T)θnf ≻C {(a)c}[θn/ν] = Ui+1[θn/ν] ≻C Vi+1[θn/ν].

So, for i = r, we have (T)θnf ≻C Vr[θn/ν] = {(f)τ}[θn/ν] = (f)τ [θn/ν]. 2

We assume now that n ≥ 1.

A k − λC-term is a λC-term of the forme Vk[τ1/y1]...[τp/yp][θn/ν] such that :

- Fv(Vk) ⊆ {ν, f, y1, ..., yp}

- for every 1 ≤ i ≤ p, yi = xni,ai,bi,ci
and τi = tmi

[ai/x, bi/g, d0/p0, ..., dmi−1/pmi−1] where I(mi) = ni

- for every 0 ≤ k ≤ mi − 1, there is 1 ≤ l ≤ r such that Ul = (ai)dk if I(k) = 0 and Ur =

17

(bi)xI(k)−1,ai,bi,dk
dk if I(k) > 0.

To simplify, a k − λC-term is denoted by Vk[].

Lemma 6.5 Let 1 ≤ i ≤ r − 1 and Vi[] an i− λC-term. If (T)θnf ≻C Vi[], then there is 1 ≤ j ≤ r and

a j − λC-term Vj [] such that Vj [] ≻C Vj [] and either Vi[] 6= Vj [] or i < j

Proof There are only two possibilities. 1) Vi = (ν)abc ; 2) Vi = (xα,a,b,c)d.

We now examine each of this cases.

1) If Vi = (ν)abc, then Vi[] = {(θn)abc}[] = {(θn)xgp0}[a/x, b/g, c/p0][]. Since (θn)xgp0 �C (g)t1pr0
=

(g)t1p0, then Vi[] ≻C {(b)t1[a/x, b/g, c/p0]c}[] =

{(b)xn−1,a,b,cc}[t1[a/x, b/g, c/p0/xn−1,a,b,c][] = Ui+1[] ≻c Vi+1[]. Let j = i + 1. We have i < j and

I(1) = I(r0)− 1 = I(0)− 1 = n− 1.

2) If Vi = (xα,a,b,c)d, then Vi[] = {(tβ[a/x, b/g, d0/p0, ..., dβ−1/pβ−1])d}[] where I(β) = α.

If I(β) = α 6= 0, then Ui+1 = (b)x
α−1,a,b,d

d = (b)x
I(β)−1,a,b,d

d, and if I(β) = α 6= 0, then Ui+1 = (a)d.

We consider the following two cases.

- If β ≤ m, then (tβ)pβ �C (g)tβ+1prβ
, so that

Vi[] ≻C {(g)tβ+1prβ
}[a/x, b/g, d0/p0, ..., dβ−1/pβ−1, d/pβ][] =

{(b)tβ+1drβ
}[a/x, b/g, d0/p0, ..., dβ−1/pβ−1, d/pβ][].

Since β 6= m, then I(rβ) 6= 0. By the hypothesis there is 1 ≤ j ≤ r such that Uj = (b)x
I(rβ)−1,a,b,drβ

drβ
.

Therefore

Vi[] ≻C Uj [tβ+1[a/x, b/g, d0/p0, ..., dβ−1/pβ−1, d/pβ]/x
I(rβ)−1,a,b,drβ

][] = Uj [] ≻C Vj [].

If Vi[] = Vj [], then the head C-reduction (tβ)pβ �C (g)tβ+1prβ
must be an identity, in other words

(tβ)pβ = (g)tβ+1prβ
and therefore β = rβ . And so j = i + 1 > i.

- If β = m, then (tβ)pβ = (tm)pm �C (x)prm
, so that

Vi[] ≻C {(x)prm
}[a/x, b/g, d0/p0, ..., dm−1/pm−1][] = (a)trm

}[].

Since I(rm) = 0, then by the hypothesis there is 1 ≤ j ≤ r such that Uj = (a)trm
. Therefore

Vi[] ≻C Uj [] ≻C Vj [].

If Vi[] = Vj [], then the head C-reduction (tm)pm �C (x)prm
must be an identity, in other words

(tm)pm �C (x)prm
and therefore m = rm. And so j = i + 1 > i. 2

Corollary 6.2 There is a substitution σ such that (T)θnf ≻C (f)σ(τ).

Proof (T)θnf = {(T)νf}[θn/ν] = U1[θn/ν] ≻C V1[θn/ν]. By Lemma 6.5 we obtaine a sequence Vi1 [] ,

Vi2 [] , ... , Vik
[] , ... such that (T)θnf ≻C Vis

[] and if Vis
[] 6= Vis+1

[] then is ≤ is+1. This sequence is nec-

essarily finite, indeed f : ¬N ⊢M (T)θnf :⊥. If Vis
[] = Vis+1

[] = ... = Vis+α
[], then is < is+1 < ... < is+α

and α ≤ r. Therefore there is s such that Vis
= (f)τ , then (T)θnf ≻C Vis

[] = {(f)τ}[] = (f)τ []. 2

Then, by Lemma 6.4 and Corollary 6.2, T is a storage operator for classical integers.

6.3 General Theorem

In this subsection, we give (without proof) a generalization of Theorem 6.3.

18

Let T be a closed λC-term, and D, E two closed types of AF2 type system. We say that T is a storage

operator for the pair of types (D, E) iff for every λ-term ⊢AF2 t : D, there is λ-term τ ′
t and λC-term

τt, such that τ ′
t ≃β τt, ⊢AF2 τ ′

t : E, and for every ⊢C2 θt : D, there is a substitution σ, such that

(T)θtf ≻C (f)σ(τt).

Theorem 6.6 Let D, E two ∀-positive closed types of AF2 type system, such that E does not contain

⊥. If ⊢M2 T : DC → ¬¬E, then T is a storage operator for the pair (D, E).

7 Operational characterization of λC-terms of type ∀XC{⊥→

XC} and ∀XC{¬¬XC → XC}

Let A (for Abort) the λC-term λx(C)λyx.

Behaviour of A :

(A)tt1...tn ≻C ((C)λyt)t1...tn ≻C (λyt)λx(x)t1...tn ≻C t.

Typing of A :

x :⊥⊢M2 λyx : ¬¬XC =⇒ x :⊥⊢M2 (C)λyx : XC =⇒⊢M2 A : ∀XC{⊥→ XC}

Theorem 7.1 If ⊢M2 T : ∀XC{⊥→ XC}, then for every integer n, and for all λC − terms t, t1, ..., tn,

(T)tt1...tn ≻C t.

Proof. Let O1, ..., On be new predicate symbols of arity 0 different from ⊥. Let A = O1, ..., On →⊥.

If ⊢M2 T : ∀XC{⊥→ XC}, then ⊢M2 T :⊥→ A, and Γ = x :⊥, x1 : O1, ..., xn : On ⊢M2 (T)xx1...xn :⊥.

Therefore (T)xx1...xn ≻C (f)u1...ur and Γ ⊢M2 (f)u1...ur :⊥.

- If f = xi 1 ≤ i ≤ n, then r = 0, and Oi =⊥. A contradiction.

- If f = x, then r = 0, and (T)xx1...xn ≻C x, therefore, for every integer n, and for all λC-terms

t, t1, ..., tn, (T)tt1...tn ≻C t. 2

The constant C satisfies the following relations :

(C)tt1...tn ≻C (t)U and

(U)y ≻C (y)t1...tn where y is a new variable.

Let C′ = λx(C)λd(x)λy(x)λz(d)y.

x : ¬¬XC , y : XC , z : XC , d : ¬XC ⊢M2 (d)y :⊥=⇒

x : ¬¬XC , y : XC , d : ¬XC ⊢M2 (x)λz(d)y :⊥=⇒

x : ¬¬XC , d : ¬XC ⊢M2 (x)λy(x)λz(d)y :⊥=⇒

x : ¬¬XC ⊢M2 (C)λd(x)λy(x)λz(d)y : XC =⇒

⊢M2 C′ : ∀XC{¬¬XC → XC}.

The λC-term C′ satisfies the following relations :

(C′)tt1...tn ≻C (t)U ,

19

(U)y ≻C (t)V , and

(V)z ≻C (y)t1...tn where y, z are new variables.

In general, we have the following characterization.

Theorem 7.2 If ⊢M2 T : ∀XC{¬¬XC → XC}, then there is an integer m, such that, for every integer

n, and for all λC-terms t, t1, ..., tn :

(T)tt1...tn ≻C (t)V1,

(Vi)yi ≻C (t)Vi+1 1 ≤ i ≤ m− 1, and

(Vm)ym ≻C (yi)t1...tn where y1, ..., ym are new variables.

Proof Let O be a new predicate symbol of arity 0 different from ⊥. We define as in section 3, the system

M2O. And we check easily that this system has the same results as Lemmas 5.1, 5.2, 5.3 and 5.4.

Let p be a stack constant and A = O →⊥. If ⊢M2 T : ∀XC{¬¬XC → XC}, then ⊢M2O
T : ¬¬A → A,

and Γ = x : ¬¬A, p : O ⊢M2O
(T)xp :⊥. Therefore (T)xp ≻C (f)u1...ur, and Γ ⊢M2O

(f)u1...ur :⊥.

- If f = p, then r = 0, and O =⊥. A contradiction.

- If f = x, then, (T)xp �C (x)U1, and Γ ⊢M2O
U1 : ¬A.

We prove (by induction) that if Γ, y1 : A, ..., yi−1 : A ⊢M2O
Ui : ¬A, then [(Ui)yi �C (x)Ui+1, and

Γ, y1 : A, ..., yi : A ⊢M2O
Ui+1 : ¬A] or [(Ui)yi �C (yj)p 1 ≤ j ≤ i].

The sequence (Ui)i≥0 is not infinite. Indeed, if it is, the λC-term ((T)λx(x)z)p is not C-solvable; but

this is impossible, because z : A, p : O ⊢M2 ((T)λx(x)z)p :⊥.

To obtain the Theorem, we replace the constant p by the sequence t = t1, ..., tn and we put Vi = Ui[t/p].

2

8 The λµ-calculus

In this section, we give a similar version to Theorem 6.3 in the M. Parigot’s λµ-calculus.

8.1 Pure and typed λµ-calculus

λµ-calculus has two distinct alphabets of variables : the set of λ-variables x, y, z, ..., and the set of

µ-variables α, β, γ,.... Terms are defined by the following grammar :

t := x | λxt | (t)t | µα[β]t

Terms of λµ-calculus are called λµ-terms.

The reduction relation of λµ-calculus is induced by fives different notions of reduction :

The computation rules

(C1) (λxu)v → u[v/x]

20

(C2) (µαu)v → µαu[v/*α]

where u[v/*α] is obtained from u by replacing inductively each subterm of the form [α]w by [α](w)v.

The simplification rules

(S1) [α]µβu→ u[α/β]

(S2) µα[α]u→ u, if α has no free occurence in u

(S3) µαu→ λxµαu[x/*α], if u contains a subterm of the form [α]λyw.

Theorem 8.1 (see [18]) In λµ-calculus, reduction is confluent.

The notation u ≻µ v means that v is obtained from u by some head reductions.

The head equivalence relation is denoted by : u ∼µ v if and only if there is a w, such that u ≻µ w and

v ≻µ w.

Proofs are written in a natural deduction system with several conclusions, presented with sequents. One

deals with sequents such that :

- Formulas to the left of ⊢ are labelled with λ-variables ;

- Formulas to the right of ⊢ are labelled with µ-variables, except one formula which is labelled with a

λµ-term ;

- Distinct formulas never have the same label.

The right and the left parts of the sequents are considered as sets and therefore contraction of formulas

is done implicitly.

Let t be a λµ-term, A a type, Γ = x1 : A1, ..., xn : An, and △ = α1 : B1, ..., αm : Bm. We define by means

of the following rules the notion ”t is of type A in Γ and △”. This notion is denoted by Γ ⊢FD2 t : A,△.

The rules (1),...,(8) of AF2 type system.

(9) If Γ ⊢FD2 t : A, β : B,△, then Γ ⊢FD2 µβ[α]t : B, α : A,△.

Weakenings are included in the rules (2) and (9).

As in typed λ-calculus on can define ¬A as →⊥ and use the previous rules with the following special

interpretation of naming for ⊥ : for α a µ-variable, α :⊥ is not mentioned.

Example Let C =λxµα[φ](x)λyµβ[α]y.

x : ¬¬X, y : X ⊢FD2 y : X =⇒

x : ¬¬X, y : X ⊢FD2 µβ[α]y :⊥, α : X =⇒

x : ¬¬X ⊢FD2 λyµβ[α]y : ¬X, α : X =⇒

x : ¬¬X ⊢FD2 µα[φ](x)λyβ[α]y : X =⇒

⊢FD2C : ∀X{¬¬X → X}.

Theorem 8.2 (see [18] and [20]) The FD2 type system has the following properties :

1) Type is preserved during reduction.

2) Typable λµ-terms are strongly normalizable.

21

8.2 Classical integers

Let n be an integer. A classical integer of value n is a closed λµ-term θn such that ⊢FD2 θn : N [sn(0)].

Let x and f fixed variables, and Nx,f be the set of λµ-terms defined by the following grammar :

u := x | (f)u | µα[β]x | µα[β]u

We define, for each u ∈ Nx,f the set rep(u), which is intuitively the set of integers potentially repesented

by u :

- rep(x) = {0}

- rep((f)u) = {n + 1 if n ∈ rep(u)}

- rep(µα[β]u) =
⋂

rep(v) for each subterm [α]v of [β]u

The following Theorem characterizes the normal forms of classical integers.

Theorem 8.3 (see [19]) The normal classical integers of value n are exactly the λµ-terms of the form

λxλfu with u∈ Nx,f without free µ-variable and such that rep(u)={n}.

8.3 General Theorem

In order to define, in this framework, the equivalent of system M2, the demonstration of ¬¬A → A

should not be allowed for all formulas A, and thus we should prevent the occurrence of some formulas on

the right. Thus the following definition.

Let t be a λµ-term, A a type, Γ = x1 : A1, ..., xn : An, and △ = α1 : B1, ..., αm : Bm where Bi 1 ≤ i ≤ m

is a classical type. We define by means of the following rules the notion ”t is of type A in Γ and △”, this

notion is denoted by Γ ⊢M2 t : A,△.

The rules of DL2 type system.

(6′) If Γ ⊢ t : A,△, and XC has no free occurence in Γ, then Γ ⊢ t : ∀XCA,△.

(7′) If Γ ⊢ t : ∀XCA,△, and G is a classical type, then Γ ⊢ t : A[G/XC],△.

Let T be a closed λµ-term. We say that T is a storage operator for classical integers if and only if for

every n ≥ 0, there is λµ-term τn ≃β n, such that for every classical integers θn of value n, there is a

substitution σ, such that (T)θnf ∼µ µα[α](f)σ(τn).

Theorem 8.4 If ⊢M2 T : ∀x{NC [x]→ ¬¬N [x]}, then T is a storage operator for classical integers.

References

[1] M. Felleisein The Calculi of λv−CS conversion: a syntactic theory of control and state in imperative

higher order programming.

Ph. D. dissertation, Indiana University, 1987.

22

[2] J.L. Krivine Lambda-calcul, types et modèles

Masson, Paris 1990.

[3] J.L. Krivine Opérateurs de mise en mémoire et traduction de Gődel

Archiv for Mathematical Logic 30, 1990, pp. 241-267.

[4] J.L. Krivine Lambda-calcul, évaluation paresseuse et mise en mémoire

Thearetical Informatics and Applications. Vol. 25,1 p. 67-84 , 1991.

[5] J.L. Krivine Mise en mémoire (preuve générale)

Manuscript, 1993.

[6] J.L. Krivine Classical logic, storage operators and 2nd order lambda-calculus

Ann. Pure and Applied Logic 68 (1994) p. 53-78.

[7] J.L. Krivine A general storage theorem for integers in call-by-name λ-calculus

Th. Comp. Sc. (to appear).

[8] K. Nour Opérateurs de mise en mémoire en lambda-calcul pur et typé

Thèse de Doctorat, Université de Chambéry, 1993.

[9] K. Nour and R. David Storage operators and directed λ-calculus

Journal of symbolic logic, vol 60, n 4, p. 1054-1086, 1995.

[10] K. Nour Une preuve syntaxique d’un Théorème de J.L. Krivine sur les opérateurs de mise en mémoire

C.R. Acad. Sci Paris, t. 318, Série I, p. 201-204, 1994.

[11] K. Nour Opérateurs de mise en mémoire et types ∀-positifs

Thearetical Informatics and Applications (to appear).

[12] K. Nour Entiers intuitionnistes et entiers classiques en λC-calcul

Thearetical Informatics and Applications, vol 29, n 4, p. 293-313, 1995.

[13] K. Nour Quelques résultats sur le λC-calcul

C.R. Acad. Sci Paris, t. 320, Série I, p. 259-262, 1995.

[14] K. Nour A general type for storage operators

Mathematical Logic Quarterly, 41 p. 505-514, 1995.

[15] K. Nour La valeur d’un entier classique en λµ-calcul

Submitted to Archive for Mathematical Logic.

[16] K. Nour Caractérisation opérationnelle des entiers classiques en λC-calcul

C.R. Acad. Sci Paris, t. 320, Série I, p. 1431-1434, 1995.

[17] M. Parigot Free deduction : an analyse of computations in classical logic

Proc. Russian Conference on Logic Programming, St Petersburg (Russia), 1991, Springer LNCS 592,

pp. 361-380.

[18] M. Parigot λµ-calculus : an algorithm interpretation of classical natural deduction

Proc. International Conference on Logic Programming and Automated Reasoning, St Petersburg

(Russia), 1992, Springer LNCS 624, pp. 190-201.

23

[19] M. Parigot Classical proofs as programs

To appear in Proc. 3rd Krut Gődel Colloquium KGC’93, Springer Lectures Notes in Computer

Science.

[20] M. Parigot Strong normalization for second order classical deduction

To appear in Proc.LICS 1993.

24

	Introduction
	Pure and typed -calculus
	Pure and typed C-calculus
	The C2 type system
	The M2 type system
	The logical properties of M2

	Properties of M2 type system
	The integers
	The integers in AF2
	The integers in C2
	The integers in M2

	Storage operators
	Storage operators for Church integers
	Storage operators for classical integers
	General Theorem

	Operational characterization of C-terms of type XC {XC } and XC { XC XC }
	The -calculus
	Pure and typed -calculus
	Classical integers
	General Theorem

