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S-STORAGE OPERATORS

Karim NOUR 1

LAMA - Equipe de Logique, Université de Savoie - 73376 Le Bourget du Lac cedex 2

Abstract In 1990, J.L. Krivine introduced the notion of storage operator to simulate,
for Church integers, the “call by value” in a context of a “call by name” strategy. In
this present paper, we define, for every λ-term S which realizes the successor function on
Church integers, the notion of S-storage operator. We prove that every storage operator
is a S-storage operator. But the converse is not always true.

Mathematics Subject Classification : 03B40, 68Q60
Keywords : Church integer ; Storage operator ; Call by value ; Call by name ; Head
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1 Definitions and notations

• We denote by Λ the set of λ-terms modulo α-equivalence, and by V the set of
λ-variables.

• Let t, u, u1, ..., un be λ-terms, the application of t to u is denoted by (t)u. In the
same way we write (t)u1...un instead of (...((t)u1)...)un.

• The sequence of λ-terms u1, ..., un is denoted u.

• If u = u1, ..., un, we denote by (t)u the λ-term (t)u1...un.

• The β-equivalence relation is denoted by u ≃β v.

• The notation σ(t) represents the result of the simultaneous substitution σ to the free
variables and the constants of t after a suitable renaming of the bounded variables
of t.

• Let us recall that a λ-term t either has a head redex [i.e. t = λx1...λxn(λxu)vw, the
head redex being (λxu)v], or is in head normal form [i.e. t = λx1...λxn(x)w].

• The notation u ≻ v means that v is obtained from u by some head reductions.

• If u ≻ v, we denote by h(u, v) the length of the head reduction between u and v.

• A λ-term t is said solvable iff the head reduction of t terminates.

The following results are well known (see [3]):

1We wish to thank René David for helpful discussions.
2e-mail nour@univ-savoie.fr
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–If u is β-equivalent to a solvable λ-term, then t is solvable.

–If u ≻ v, then, for any substitution σ, σ(u) ≻ σ(v), and h(σ(u), σ(v))=h(u,v).
In particular, if for some substitution σ, σ(t) is solvable, then t is solvable.

• We define (u)nv by induction : (u)0v = v and (u)n+1v = (u)(u)nv.

• For each integer n, we define the Church integer n = λfλx(f)nx.

• A closed λ-term S is called successor iff, for every k ≥ 0, (S)k ≃β k + 1.

Examples Let S1 = λnλfλx(f)((n)f)x and S2 = λnλfλx((n)f)(f)x.
It is easy to check that S1 and S2 are successors. 2

2 Introduction

In λ-calculus the left reduction strategy (iteration of the head reduction) has much ad-
vantages : it always terminates when applied to a normalizable λ-term and it seems more
economic since we compute a λ-term only when we need it. But the major drawback of
this strategy is that a function must compute its argument every time it uses it. In 1990
J-L. Krivine introduced the notion of storage operators in order to avoid this problem
and to simulate call-by-value when necessary.

Let F be a λ-term (a function), and n a Church integer. During the computation, by left
reduction, of (F )θn (where θn ≃β n), θn may be computed several times (as many times
as F uses it). We would like to transform (F )θn to (F )τn where τn is a fixed closed λ-
term β-equivalent to n. We also want this transformation depends only on θn (and not F ).

Therefore the definition : A closed λ-term T is called storage operator if and only if for
every n ≥ 0, there is a closed λ-term τn ≃β n such that for every θn ≃β n, (T )θnf ≻ (f)τn

(where f is a new variable).

Let’s analyse the head reduction (T )θnf ≻ (f)τn, by replacing each λ-term which comes
from θn by a new variable.

If θn ≃β n, then θn ≻ λgλx(g)tn−1, tn−k ≻ (g)tn−k−1 1 ≤ k ≤ n − 1, t0 ≻ x, and
tk ≃β (g)kx 0 ≤ k ≤ n − 1.

Let xn be a new variable (xn represents θn). (T )xnf is solvable, and its head normal
form does not begin by λ, therefore it is a variable applied to some arguments. The free
variables of (T )xnf are xn and f , we then have two possibilities for its head normal form
: (f)δn (in this case we stop) or (xn)a1...am.
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Assume we obtain (xn)a1...am. The variable xn represents θn, and θn ≻ λgλx(g)tn−1,
therefore (θn)a1...am and ((a1)tn−1[a1/x, a2/g])a3...am have the same head normal form.
The λ-term tn−1[a1/g, a2/x] comes from θn. Let xn−1,a1,a2

be a new variable (xn−1,a1,a2

represents tn−1[a1/g, a2/x]). The λ-term ((a1)xn−1,a1,a2
)a3...am is solvable, and its head

normal form does not begin by λ, therefore it is a variable applied to some arguments.
The free variables of ((a1)xn−1,a1,a2

)a3...am are among xn−1,a1,a2
, xn, and f , we then have

three possibilities for its head normal form : (f)δn (in this case we stop) or (xn)b1...br or
(xn−1,a1,a2

)b1...br.

Assume we obtain (xn−1,a1,a2
)b1...br. The variable (xn−1,a1,a2

represents tn−1[a1/g, a2/x],
and tn−1 ≻ (g)tn−2, therefore (tn−1[a1/g, a2/x])b1...br and ((a1)tn−2[a1/g, a2/x])b1...br have
the same head normal form. The λ-term tn−2[a1/g, a2/x] comes from θn. Let xn−2,a1,a2

be
a new variable (xn−2,a1,a2

represents tn−2[a1/g, a2/x]). The λ-term ((a1)xn−2,a1,a2
)b1...br is

solvable, and its head normal form does not begin by λ, therefore it is a variable applied
to arguments. The free variables of ((a1)xn−2,a1,a2

)b1...br are among xn−2,a1,a2
, xn−1,a1,a2

,
vn, and f , therefore we have four possibilities for its head normal form : (f)δn (in this
case we stop) or (xn)c1...cs or (xn−1,a1,a2

)c1...cs or (xn−2,a1,a2
)c1...cs ... and so on...

Assume we obtain (x0,d1,d2
)e1...ek during the construction. The variable x0,d1,d2

represents
t0[d1/g, d2/x], and t0 ≻ x, therefore (t0[d1/g, d2/x])e1...ek and (d2)e1...ek have the same
head normal form ; we then follow the construction with the λ-term (d2)e1...ek. The λ-
term (T )θnf is solvable, and has (f)τn as head normal form, so this construction always
stops on (f)δn. We can prove by a simple argument that δn ≃β n.

According to the previous construction, the reduction (T )θnf ≻ (f)τn can be divided into
two parts :

- A reduction that does not depend on n :

(T )xnf ≻ (xn)a1...am

((a1)xn−1,a1,a2
)a3...am ≻ (xn−1,a1,a2

)b1...br

((a1)xn−2,a1,a2
)b1...br ≻ (xn−2,a1,a2

)b1...br

.

.

.

- A transformation that depends on n (and not on θn) :

(xn)a1...am ; ((a1)xn−1,a1,a2
)a3...am

(xn−1,a1,a2
)b1...br ; ((a1)xn−2,a1,a2

)c1...cs

.

.
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.

(x0,d1,d2
)e1...ek ; (d1)e1..ek

We add new constants xi and xi,a,b,c in λ-calculus, and we consider the following set of
head reduction rules :

(λxu)vw ≻ (u[v/x])w

(xi+1)abc ≻ ((a)xi,a,b,c)c

(x0)abc ≻ (b)c

(xi+1,a,b,c)w ≻ ((a)xi,a,b,w)w

(x0,a,b,c)w ≻ (b)w

We write t ≻x t′ if t′ is obtained from t by applying these rules finitely many times.

With this formalisme we have the following result (see [1] and [4]):
A closed λ-term T is a storage operator iff for every n ≥ 0, (T )xnf ≻x (f)τn and where
τn is a closed λ-term β-equivalent to n.

The constants xi and xi,a,b,c represent intuitively the λ-terms which come from a non
calculated Church integer. The uniform shape of Church integers allows to describe the
behaviour of these constants when they are in the head position. However, another method
to describe a Church integer is simply to say that it is zero or a successor.

Formally, we add new constants Xi et Xi,a,b,c in λ-calculus, and we consider, for every
successor S, the following set of head reduction rules :

(λxu)vw ≻ (u[v/x])w

(Xi+1)abc ≻ ((S)Xi,a,b,c)abc

(X0)abc ≻ (0)abc

(Xi+1,a,b,c)uvw ≻ ((S)Xi,u,v,w)uvw

(X0,a,b,c)uvw ≻ (0)uvw

We write t ≻X t′ if t′ is obtained from t by applying these rules finitely many times.

A S-storage operator is defined as follows :
A closed λ-term T is a S-storage operator iff for every n ≥ 0, (T )Xnf ≻X (f)τn where τn

is a closed λ-term β-equivalent to n.

This paper studies the link betwen the storage operators and the S-storage operators. We
prove that every storage operator is a S-storage operator. But the converse is not always
true.
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3 Storage operators and S-storage operators

Definition Let T be a closed λ-term. We say that T is a storage operator iff for every
n ≥ 0, there is a closed 3 λ-term τn ≃β n, such that for every θn ≃β n, (T )θnf ≻ (f)τn.

Remark Let F be any λ-term (for a function), and θn a λ-term β-equivalent to n. Dur-
ing the computation of (F )θn, θn may be computed each time it comes in head position.
Instead of computing (F )θn, let us look at the head reduction of (T )θnF . Since it is
{(T )θnf}[F/f ], we shall first reduce (T )θnf to its head normal form, which is (f)τn, and
then compute (F )τn. The computation has been decomposed into two parts, the first
being independent of F . This first part is essentially a computation of θn, the result
being τn, which is a kind of normal form of θn. So, in the computation of (T )θnF , θn

is computed first, and the result is given to F as an argument, T has stored the result,
before giving it, as many times as needed, to any function. 2

Examples Let S be a successor. If we take :
T1 = λn((n)G)δ where G = λxλy(x)λz(y)(S)z and δ = λf(f)0
T2 = λnλf(((n)F )f)0 where F = λxλy(x)(S)y,
then it is easy to check that (see [1] and [3]):
for every θn ≃β n, (Ti)θnf ≻ (f)(S)n0 (i = 1 or 2).
Therefore T1 and T2 are storage operators. 2

Let {xi}i≥0 be a set of different constants. We define a set of terms (denoted by Λx) in
the following way :

- If x ∈ V
⋃
{xi}i≥0, then x ∈ Λx ;

- If x ∈ V, and u ∈ Λx, then λxu ∈ Λx ;

- If u ∈ Λx, and v ∈ Λx, then (u)v ∈ Λx ;

- If n ∈ IN, and a, b, c ∈ Λx, then xn,a,b,c ∈ Λx.

xn,a,b,c is considered as a constant which does not appear in a, b, c.
The terms of the set Λx are called λx-terms.

We have the following result (see [1] and [4]) :
A closed λ-term T is a storage operator iff for every n ≥ 0, there is a finite sequence of
head reduction {Ui ≻ Vi}1≤i≤r such that :

1) Ui and Vi are λx-terms ;

3In his definition of storage operator, J.L. Krivine autorizes the τn to contain free variables which are

replaced by terms depend of θn. The results of this paper remain valid with this definition but the proofs

will be too technical.
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2) U1 = (T )xnf and Vr = (f)τn where τn is closed λ-term β-equivalent to n ;

3) Vi = (xn)abc or Vi = (xl,a,b,c)d 0 ≤ l ≤ n − 1;

4) If Vi = (xn)abc, then Ui+1 = (b)c if n = 0 and Ui+1 = ((a)xn−1,a,b,c)c if n 6= 0 ;

5) If Vi = (xl,a,b,c)d 0 ≤ l ≤ n−1, then Ui+1 = (b)d if l = 0 and Ui+1 = ((a)xl−1,a,b,d)d
if l 6= 0.

Definitions
1) Let {Xi}i≥0 be a set of different constants. We define a set of terms (denoted by ΛX)
in the following way :

- If x ∈ V
⋃
{Xi}i≥0, then x ∈ ΛX ;

- If x ∈ V, and u ∈ ΛX , then λxu ∈ ΛX ;

- If u ∈ ΛX , and v ∈ ΛX , then (u)v ∈ ΛX ;

- If n ∈ IN, and a, b, c ∈ ΛX , then Xn,a,b,c ∈ ΛX .

Xn,a,b,c is considered as a constant which does not appear in a, b, c.
The terms of the set ΛX are called λX-terms.

2) Let S be a successor. A closed λ-term T is called a S-storage operator iff for every
n ≥ 0, there is a finite sequence of head reduction {Ui ≻ Vi}1≤i≤r such that :

1) Ui and Vi are λX-terms ;

2) U1 = (T )Xnf and Vr = (f)τn where τn is closed λ-term β-equivalent to n ;

3) Vi = (Xn)abc or Vi = (Xl,a,b,c)uvw 0 ≤ l ≤ n − 1;

4) If Vi = (Xn)abc, then Ui+1 = (0)abc if n = 0 and Ui+1 = ((S)Xn−1,a,b,c)abc if
n 6= 0 ;

5) If Vi = (Xl,a,b,c)uvw 0 ≤ l ≤ n − 1, then Ui+1 = (0)uvw if l = 0 and Ui+1 =
((S)Xl−1,u,v,w)uvw if l 6= 0.

Examples It is easy to check that, for 1 ≤ i, j ≤ 2, the above operator Ti is an Sj-storage
operator. We check here (for example) that T2 is an S2-storage operator:
Let n be an integer.
If n = 0, then we check that (T2)Xnf ≻ (Xn)F f 0 and (0) F f 0 ≻ (f)0.
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If n 6= 0, then we check that:

(T )Xnf ≻ (Xn) F f 0

((S2)Xn−1,F,f,0) F f 0 ≻ (Xn−1,F,f,0) F (F )f 0

.

.

.

((S2)X0,F,(F )n−1f,0) F (F )n−1f 0 ≻ (X0,F,(F )n−1f,0) F (F )nf 0

(0) F (F )nf 0 ≻ (F )nf 0

We prove (by induction on k) that, for every λ-term u, and for every 0 ≤ k ≤ n, we have
(F )kf u ≻ (f)(S2)

ku.

- For k = 0, it is true.

- Assume that is true for k, and prove it for k + 1.
(F )k+1f u = (F )(F )kf u ≻ (F )kf (S2)u. By induction hypothesis we have that
for every λ-term v, (F )kf v ≻ (f)(S2)

kv, then (F )k+1f u ≻ (f)(S2)(S2)
ku =

(f)(S2)
k+1u.

In particular, for u = 0 and k = n, we have (F )nf 0 ≻ (f)(S2)
n0.

Therefore T2 is a S2-storage operator. 2

A question arizes : Is there a link between the storage operators and the S-
storage operators ?

4 Link between the storage operators and the S-storage

operators

Theorem 1 If T is a storage operator, then, for every successor S, T is a S-storage
operator.

Proof Let S be a successor and T a storage operator.
Then for every n ≥ 0, there is a closed λ-term τn ≃β n such that for every θn ≃β n,
(T )θnf ≻ (f)τn. In particular ((T )(S)n0)f ≻ (f)τn.
Let σ : ΛX → Λ the simultaneous substitution defined by :

σ(Xn) = (S)n0
for every 0 ≤ k ≤ n − 1, σ(Xk,a,b,c) = (S)k0

σ(x) = x if x 6= Xn, Xk,a,b,c

For every n ≥ 0, we construct a set of head equation {Ui ≻ Vi}1≤i≤r such that :

1) Ui and Vi are λX-terms ;
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2) Vr = (f)δn ;

3) for every 1 ≤ i ≤ r − 1, Vi = (Xn)abc or Vi = (Xl,a,b,c)uvw ;

4) σ(Vi) is solvable.

Let U1 = (T )Xnf . We have σ(U1) = ((T )(S)n0)f is solvable, then U1 is solvable and
U1 ≻ V1 where V1 = (f)δn or V1 = (Xn)abc. It is clear that σ(V1) is solvable.
Assume that we have the head reduction Uk ≻ Vk and Vk 6= (f)δn.

- If Vk = (Xn)abc, then, by induction hypothesis, σ(Vk) = ((S)n)0)σ(a)σ(b)σ(c) is
solvable.

- If n = 0, let Uk+1 = (0)abc. Then σ(Uk+1) = (0)σ(b)σ(b)σ(c) is solvable.

- If n 6= 0, let Uk+1 = ((S)Xn−1,a,b,c)abc. Then σ(Uk+1) =
((S)(S)n−1)0)σ(a)σ(b)σ(c) = σ(Vk) is solvable.

- If Vk = (Xl,a,b,c)uvw, then, by induction hypothesis, σ(Vk) = ((S)l)0)σ(u)σ(v)σ(w)
is solvable.

- If l = 0, let Uk+1 = (0)uvw. Then σ(Uk+1) = (0)σ(u)σ(v)σ(w) is solvable.

- If l 6= 0, let Uk+1 = ((S)Xl−1,u,v,w)uvw. Then σ(Uk+1) =
((S)(S)l−1)0)σ(u)σ(v)σ(w) = σ(Vk) is solvable.

Therefore Uk+1 is solvable and Uk+1 ≻ Vk+1 where Vk+1 = (f)δn or Vk+1 = (Xn)a′b′c′ or
Vk+1 = (Xr,a′,b′,c′)a

′′b′′c′′. Since σ(Uk+1) is solvable, then σ(Vk+1) is also solvable.

This constraction always terminates (i.e there is a r ≥ 0 such that Vr = (f)δn). Indeed,
if not, we check easily that the λ-term ((T )(S)n0)f is not solvable.

Let y be a variable, Ŝ = (λxS)y, and 0̂ = (λx0)y.
Let σ̂ : ΛX → Λ the simultaneous substitution defined by :

σ̂(Xn) = (Ŝ)n0̂
for every 0 ≤ k ≤ n − 1, σ̂(Xk,a,b,c) = (Ŝ)k0̂

σ̂(x) = x if x 6= Xn, Xk,a,b,c

Since (Ŝ)t ≻ (S)t and 0̂ ≻ 0, we check easily that ((T )(Ŝ)n0̂)f ≻ (f)σ̂(δn). But
(Ŝ)n0̂ ≃β n, then ((T )(Ŝ)n0̂)f ≻ (f)τn. Therefore σ̂(δn) = τn. Since τn is closed, then δn

is also closed and δn = τn ≃β n.

Therefore T is a S-storage operator. 2

Definition We say that a λX-term U satisfies the property (P ) iff for each constant
Xl,a,b,c of U we have :
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- a, b, c satisfy (P )

- Xl,a,b,c is applied to a and b ;

- a, b do not contain free variables which are bounded in U .

Lemma 1 Let U, V be λX-terms which do not begin by λ. If U satisfies (P ) and U ≻ V ,
then V satisfies (P ).

Proof It is enough to do the proof for one step of head reduction. We have U = (λxu)vw
and V = (u[v/x])w. Since U satisfies (P ), then u, v, w satisfy (P ) and x is not free in a, b
if the constant Xl,a,b,d appears in u. Therefore u[v/x], u1, ..., um satisfy (P ) and V satisfies
(P ). 2

Let △ : Λx → ΛX the simultaneous substitution defined by :

△(xn) = Xn

for every 0 ≤ k ≤ n − 1, △(xk,a,b,c) = (X
k,△(a),△(b),△(c))△(a)△(b)

σ(x) = x if x 6= xn, xk,a,b,c

Lemma 2 If U is a λX-term satisfies (P ), then there is a λx-term U ′ such that △(U ′) =
U .

Proof By induction on U .

- For U = x, it is true.

- If U = λxV , then V satisfies (P ), and, by induction hypothesis, there is a λx-term
V such that △(V ′) = V . We put U ′ = λxV ′. We have △(U ′) = U .

- If U = (U1)U2 (where U1 does not begin by a constant), then U1, U2 satisfy (P ),
and, by induction hypothesis, there are λx-terms U ′

1, U
′
2 such that △(U ′

1) = U1 and
△(U ′

1) = U1. We put U ′ = (U ′
1)U

′
2. We have △(U ′) = U .

- If U = (Xk,a,b,c)abV , then a, b, c, V satisfy (P ), and, by induction hypothesis, there
are λx-terms a′, b′, c′, V ′ such that △(a′) = a, △(b′) = b, △(c′) = c, and △(V ′) = V .
We put U ′ = (xk,a′,b′,c′)V

′. We have △(U ′) = U . 2

Theorem 2 T is a S1-storage operator iff T is a storage operator.

Proof Let n ≥ 0. If T is a S1-storage operator, then there is a finite sequence of head
reduction {Ui ≻ Vi}1≤i≤r such that :

1) Ui and Vi are λX-terms ;

2) U1 = (T )Xnf and Vr = (f)τn where τn is closed λ-term β-equivalent to n ;

9



3) Vi = (Xn)abc or Vi = (Xl,a,b,c)uvw 0 ≤ l ≤ n − 1 ;

4) If Vi = (Xn)abc, then Ui+1 = (0)abc if n = 0 and Ui+1 = ((S1)Xn−1,a,b,c)abc if
n 6= 0 ;

5) If Vi = (Xl,a,b,c)uvw 0 ≤ l ≤ n − 1, then Ui+1 = (0)uvw if l = 0 and Ui+1 =
((S1)Xl−1,u,v,w)uvw if l 6= 0.

We prove (by induction on i) that, for every 1 ≤ i ≤ r, Vi satisfies (P ).

- For i = 1, it is true.

- Assume that is true for i, and prove it for i + 1.

If Vi = (Xn)abc, we have two cases :

- if n = 0, then Ui+1 = (0)abc. By induction hypothesis Vi satisfies (P ),
then a, b, c satisfy (P ), therefore Ui+1 and Vi+1 satisfy (P ).

- if n 6= 0, then Ui+1 = ((S)Xn−1,a,b,c)abc. By induction hypothesis Vi

satisfies (P ), then a, b, c satisfy (P ). Since Ui+1 ≻ ((a)(Xn−1,a,b,c)ab)c,
then Vi+1 satisfies (P ).

If Vi = (Xl,a,b,c)uvw 0 ≤ l ≤ n − 1, then u = a, v = b, and w = c since, by
induction hypothesis, Vi satisfies (P ). We have two cases :

- if n = 0, then Ui+1 = (0)abc. By induction hypothesis Vi satisfies (P ),
then a, b, c satisfy (P ), therefore Ui+1 and Vi+1 satisfy (P ).

- if n 6= 0, then Ui+1 = ((S)Xl−1,a,b,c)abc. By induction hypothesis Vi

satisfies (P ), then a, b, c satisfy (P ). Since Ui+1 ≻ ((a)(Xl−1,a,b,c)ab)c, then
Vi+1 satisfies (P ).

Therefore there is a finite sequence of head reduction {Mi ≻ Ni}1≤i≤r such that :

1) Mi and Ni are λX-terms ;

2) M1 = (T )Xnf and Nr = (f)τn where τn is closed λ-term β-equivalent to n ;

3) Ni = (Xn)abc or Ni = (Xl,a,b,c)abd 0 ≤ l ≤ n − 1;

4) If Ni = (Xn)abc, then Mi+1 = (b)c if n = 0 and Mi+1 = ((a)(Xn−1,a,b,c)ab)c if
n 6= 0 ;

5) If Ni = (Xl,a,b,c)abd 0 ≤ l ≤ n − 1, then Mi+1 = (b)d if l = 0 and Mi+1 =
((a)(Xl−1,a,b,d)ab)d if l 6= 0.

Since, for every 1 ≤ i ≤ r, Mi and Ni satisfy (P ), let M ′
i and N ′

i the λx-terms such that
: △(M ′

i) = Mi and △(N ′
i) = Ni. We have :

1) M ′
i and N ′

i are λx-terms ;
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2) M ′
1 = (T )xnf and N ′

r = (f)τ ′
n where τ ′

n is closed λ-term β-equivalent to n ;

3) N ′
i = (xn)a′b′c′ or N ′

i = (xl,a′,b′,c′)d
′ 0 ≤ l ≤ n − 1;

4) If N ′
i = (xn)a′b′c′, then M ′

i+1 = (b′)c′ if n = 0 and M ′
i+1 = ((a′)xn−1,a′,b′,c′)c

′ if
n 6= 0 ;

5) If N ′
i = (xl,a′,b′,c′)d

′ 0 ≤ l ≤ n − 1, then M ′
i+1 = (b′)d′ if l = 0 and M ′

i+1 =

((a′)xl−1,a′,b′,d′)d
′ if l 6= 0.

Therefore T is a storage operator. 2

Theorem 3 There is a S2-storage operator which is a no storage operator.

Proof Let T = λx(x) a b 0 S where
a = λxλyλz((x)(z)(x)IIλx0)λx(S)(z)x,
b = λxλyλz(z)x,
and S a successor.

Let n be an integer.
If n = 0, then we check that :

(T ) Xn f ≻ (Xn) a b 0 S f

(0) a b 0 S f ≻ (f)0

If n 6= 0, then we check that :

(T ) Xn f ≻ (Xn) a b 0 S f

((S2)Xn−1,a,b,0,S,f) a b 0 S f ≻ (Xn−1,a,b,0,S,f) a (a)b 0 S f

.

.

.

((S2)X0,a,(a)n−1b,0,S,f) a (a)n−1b 0 S f ≻ (X0,a,(a)n−1b,0,S,f) a (a)nb 0 S f

(0) a (a)nb 0 S f ≻ (a)nb 0 S f

We define two sequences of λ-terms (Pi)0≤i≤n and (Qi)0≤i≤n by :

Q0 = S, and, for every 0 ≤ k ≤ n − 1, we put Qk+1 = λx(S)(Qk)x
P0 = 0, and, for every 0 ≤ k ≤ n − 1, we put Pk+1 = (Qk)((a)n−k−1b)IIλx0

It is easy to check that, for every 1 ≤ k ≤ n, Qk ≃β λx(S)k+1x.
We prove (by induction on k) that, for every 0 ≤ k ≤ n, we have (a)nb 0 S f ≻
(a)n−kb Pk Qk f .

- For k = 0, it is true.

11



- Assume that is true for k, and prove it for k + 1.
(a)n−kb Pk Qk f = (a) (a)n−k−1b Pk Qk f ≻
((a)n−k−1b) (Qk)((a)n−k−1b)IIλx0 λx(S)(Qk)x f = (a)n−k+1b Pk+1 Qk+1 f .

In particular, for k = n, we have (a)nb 0 S f ≻ (b) Pn Qn f ≻ (f)Pn.
Pn = (Qn−1)(b)IIλx0 ≃β (λx(S)nx)(b)IIλx0 ≃β (S)n(λx0)I ≃β (S)n0 ≃β n.

Therefore T is a S2-storage operator.

We define a sequence of λ-terms (P ′
i )0≤i≤n by :

P ′
0 = 0, and for every 0 ≤ k ≤ n − 1, we put P ′

k+1 = (Qk)(xn−k−1,a,b,P ′

n−k
,Qn−k,f)IIJ

We check (as before) that :

(T ) xn f ≻ (xn) a b P ′
0 Q0 f

(a)xn−1,a,b,P ′

0
,Q0,f P ′

0 Q0 f ≻ (xn−1,a,b,P ′

0
,Q0,f) P ′

1 Q1 f

.

.

.

(a)x0,a,b,P ′

n−1
,Qn−1,f) P ′

n−1 Qn−1 f ≻ (x0,a,b,P ′

n−1
,Qn−1,f) P ′

n Qn f

(b) P ′
n Qn f ≻ (f)P ′

n

But P ′
n = (Qn−1)(x0,a,b,P ′

n−1
,Qn−1,f)IIλx0 is not closed.

Note that P ′
n ≃β (S)n(X0,a,b,P ′

n−1
,Qn−1,f)IIλx0 6≃β n. Indeed, if (S)n(X0,a,b,P ′

n−1
,Qn−1,f)IIλx0 ≃β

n, then (S)n(λx1λx2λx3(S)0)IIλx0 ≃β n, therefore n + 1 ≃β n. A contradiction.

Therefore T is a no storage operator. 2
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[4] K. Nour Opérateurs de mise en mémoire en lambda-calcul pur et typé
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