Karim Nour

S-STORAGE OPERATORS

Keywords: Mathematics Subject Classification : 03B40, 68Q60 Church integer, Storage operator, Call by value, Call by name, Head reduction, Solvable, Successor, S-storage operator

In 1990, J.L. Krivine introduced the notion of storage operator to simulate, for Church integers, the "call by value" in a context of a "call by name" strategy. In this present paper, we define, for every λ-term S which realizes the successor function on Church integers, the notion of S-storage operator. We prove that every storage operator is a S-storage operator. But the converse is not always true.

• The notation σ(t) represents the result of the simultaneous substitution σ to the free variables and the constants of t after a suitable renaming of the bounded variables of t.

• Let us recall that a λ-term t either has a head redex [i.e. t = λx 1 ...λx n (λxu)vw, the head redex being (λxu)v], or is in head normal form [i.e. t = λx 1 ...λx n (x)w].

• The notation u ≻ v means that v is obtained from u by some head reductions.

• If u ≻ v, we denote by h(u, v) the length of the head reduction between u and v.

• A λ-term t is said solvable iff the head reduction of t terminates.

The following results are well known (see [START_REF] Krivine | Opérateurs de mise en mémoire et traduction de Gődel[END_REF]):

1 We wish to thank René David for helpful discussions.

2 e-mail nour@univ-savoie.fr -If u is β-equivalent to a solvable λ-term, then t is solvable.

-If u ≻ v, then, for any substitution σ, σ(u) ≻ σ(v), and h(σ(u), σ(v))=h(u,v).

In particular, if for some substitution σ, σ(t) is solvable, then t is solvable.

• We define (u) n v by induction : (u) 0 v = v and (u) n+1 v = (u)(u) n v.

• For each integer n, we define the Church integer n = λf λx(f) n x.

• A closed λ-term S is called successor iff, for every k ≥ 0, (S)k ≃ β k + 1.

Examples Let S 1 = λnλf λx(f)((n)f)x and S 2 = λnλf λx((n)f)(f)x.
It is easy to check that S 1 and S 2 are successors. 2

Introduction

In λ-calculus the left reduction strategy (iteration of the head reduction) has much advantages : it always terminates when applied to a normalizable λ-term and it seems more economic since we compute a λ-term only when we need it. But the major drawback of this strategy is that a function must compute its argument every time it uses it. In 1990 J-L. Krivine introduced the notion of storage operators in order to avoid this problem and to simulate call-by-value when necessary.

Let F be a λ-term (a function), and n a Church integer. During the computation, by left reduction, of (F)θ n (where θ n ≃ β n), θ n may be computed several times (as many times as F uses it). We would like to transform (F)θ n to (F)τ n where τ n is a fixed closed λterm β-equivalent to n. We also want this transformation depends only on θ n (and not F).

Therefore the definition : A closed λ-term T is called storage operator if and only if for every n ≥ 0, there is a closed λ-term τ n ≃ β n such that for every

θ n ≃ β n, (T)θ n f ≻ (f)τ n (where f is a new variable).
Let's analyse the head reduction (T)θ n f ≻ (f)τ n , by replacing each λ-term which comes from θ n by a new variable.

If θ n ≃ β n, then θ n ≻ λgλx(g)t n-1 , t n-k ≻ (g)t n-k-1 1 ≤ k ≤ n -1, t 0 ≻ x, and
t k ≃ β (g) k x 0 ≤ k ≤ n -1.
Let x n be a new variable (x n represents θ n). (T)x n f is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to some arguments. The free variables of (T)x n f are x n and f , we then have two possibilities for its head normal form ..e k . The λterm (T)θ n f is solvable, and has (f)τ n as head normal form, so this construction always stops on (f)δ n . We can prove by a simple argument that δ n ≃ β n.

According to the previous construction, the reduction (T)θ n f ≻ (f)τ n can be divided into two parts :

-A reduction that does not depend on n :

(T)x n f ≻ (x n)a 1 ...a m ((a 1)x n-1,a 1 ,a 2)a 3 ...a m ≻ (x n-1,a 1 ,a 2)b 1 ...b r ((a 1)x n-2,a 1 ,a 2)b 1 ...b r ≻ (x n-2,a 1 ,a 2)b 1 ...b r . . .
-A transformation that depends on n (and not on θ n) :

(x n)a 1 ...a m ; ((a 1)x n-1,a 1 ,a 2)a 3 ...a m (x n-1,a 1 ,a 2)b 1 ...b r ; ((a 1)x n-2,a 1 ,a 2)c 1 ...c s . . . (x 0,d 1 ,d 2)e 1 ...e k ; (d 1)e 1 .

.e k

We add new constants x i and x i,a,b,c in λ-calculus, and we consider the following set of head reduction rules :

(λxu)vw ≻ (u[v/x])w (x i+1)abc ≻ ((a)x i,a,b,c)c (x 0)abc ≻ (b)c (x i+1,a,b,c)w ≻ ((a)x i,a,b,w)w (x 0,a,b,c)w ≻ (b)w
We write t ≻ x t ′ if t ′ is obtained from t by applying these rules finitely many times.

With this formalisme we have the following result (see [START_REF] David | Nour Storage operators and directed λ-calculus[END_REF] and [START_REF] Nour | Opérateurs de mise en mémoire en lambda-calcul pur et typé[END_REF]):

A closed λ-term T is a storage operator iff for every n ≥ 0, (T)x n f ≻ x (f)τ n and where τ n is a closed λ-term β-equivalent to n.

The constants x i and x i,a,b,c represent intuitively the λ-terms which come from a non calculated Church integer. The uniform shape of Church integers allows to describe the behaviour of these constants when they are in the head position. However, another method to describe a Church integer is simply to say that it is zero or a successor.

Formally, we add new constants X i et X i,a,b,c in λ-calculus, and we consider, for every successor S, the following set of head reduction rules :

(λxu)vw ≻ (u[v/x])w (X i+1)abc ≻ ((S)X i,a,b,c)abc (X 0)abc ≻ (0)abc (X i+1,a,b,c)uvw ≻ ((S)X i,u,v,w)uvw (X 0,a,b,c)uvw ≻ (0)uvw
We write t ≻ X t ′ if t ′ is obtained from t by applying these rules finitely many times.

A S-storage operator is defined as follows :

A closed λ-term T is a S-storage operator iff for every n ≥ 0, (T)X n f ≻ X (f)τ n where τ n is a closed λ-term β-equivalent to n.
This paper studies the link betwen the storage operators and the S-storage operators. We prove that every storage operator is a S-storage operator. But the converse is not always true.

3 Storage operators and S-storage operators Definition Let T be a closed λ-term. We say that T is a storage operator iff for every n ≥ 0, there is a closed3 λ-term τ n ≃ β n, such that for every

θ n ≃ β n, (T)θ n f ≻ (f)τ n .
Remark Let F be any λ-term (for a function), and θ n a λ-term β-equivalent to n. During the computation of (F)θ n , θ n may be computed each time it comes in head position. Instead of computing (F)θ n , let us look at the head reduction of (T)

θ n F . Since it is {(T)θ n f }[F/f],
we shall first reduce (T)θ n f to its head normal form, which is (f)τ n , and then compute (F)τ n . The computation has been decomposed into two parts, the first being independent of F . This first part is essentially a computation of θ n , the result being τ n , which is a kind of normal form of θ n . So, in the computation of (T)θ n F , θ n is computed first, and the result is given to F as an argument, T has stored the result, before giving it, as many times as needed, to any function. 2

Examples Let S be a successor. If we take :

T 1 = λn((n)G)δ where G = λxλy(x)λz(y)(S)z and δ = λf (f)0 T 2 = λnλf (((n)F)f)0 where F = λxλy(x)(S)y,
then it is easy to check that (see [START_REF] David | Nour Storage operators and directed λ-calculus[END_REF] and [START_REF] Krivine | Opérateurs de mise en mémoire et traduction de Gődel[END_REF]): for every

θ n ≃ β n, (T i)θ n f ≻ (f)(S) n 0 (i = 1 or 2).
Therefore T 1 and T 2 are storage operators. 2

Let {x i } i≥0 be a set of different constants. We define a set of terms (denoted by Λ x) in the following way :

-

If x ∈ V {x i } i≥0 , then x ∈ Λ x ; -If x ∈ V, and u ∈ Λ x , then λxu ∈ Λ x ; -If u ∈ Λ x , and v ∈ Λ x , then (u)v ∈ Λ x ; -If n ∈ IN, and a, b, c ∈ Λ x , then x n,a,b,c ∈ Λ x .
x n,a,b,c is considered as a constant which does not appear in a, b, c. The terms of the set Λ x are called λx-terms.

We have the following result (see [START_REF] David | Nour Storage operators and directed λ-calculus[END_REF] and [START_REF] Nour | Opérateurs de mise en mémoire en lambda-calcul pur et typé[END_REF]) :

A closed λ-term T is a storage operator iff for every n ≥ 0, there is a finite sequence of head reduction {U i ≻ V i } 1≤i≤r such that :

1) U i and V i are λx-terms ;

2) U 1 = (T)x n f and V r = (f)τ n where τ n is closed λ-term β-equivalent to n ;

3

) V i = (x n)abc or V i = (x l,a,b,c)d 0 ≤ l ≤ n -1; 4) If V i = (x n)abc, then U i+1 = (b)c if n = 0 and U i+1 = ((a)x n-1,a,b,c)c if n = 0 ; 5) If V i = (x l,a,b,c)d 0 ≤ l ≤ n-1, then U i+1 = (b)d if l = 0 and U i+1 = ((a)x l-1,a,b,d)d if l = 0. Definitions 1)
Let {X i } i≥0 be a set of different constants. We define a set of terms (denoted by Λ X) in the following way :

-If x ∈ V {X i } i≥0 , then x ∈ Λ X ; -If x ∈ V, and u ∈ Λ X , then λxu ∈ Λ X ; -If u ∈ Λ X , and v ∈ Λ X , then (u)v ∈ Λ X ; -If n ∈ IN, and a, b, c ∈ Λ X , then X n,a,b,c ∈ Λ X .
X n,a,b,c is considered as a constant which does not appear in a, b, c. The terms of the set Λ X are called λX-terms.

2) Let S be a successor. A closed λ-term T is called a S-storage operator iff for every n ≥ 0, there is a finite sequence of head reduction {U i ≻ V i } 1≤i≤r such that :

1) U i and V i are λX-terms ;

2) U 1 = (T)X n f and V r = (f)τ n where τ n is closed λ-term β-equivalent to n ;

3)

V i = (X n)abc or V i = (X l,a,b,c)uvw 0 ≤ l ≤ n -1; 4) If V i = (X n)abc, then U i+1 = (0)abc if n = 0 and U i+1 = ((S)X n-1,a,b,c)abc if n = 0 ; 5) If V i = (X l,a,b,c)uvw 0 ≤ l ≤ n -1, then U i+1 = (0)uvw if l = 0 and U i+1 = ((S)X l-1,u,v,w)uvw if l = 0.
Examples It is easy to check that, for 1 ≤ i, j ≤ 2, the above operator T i is an S j -storage operator. We check here (for example) that T 2 is an S 2 -storage operator:

Let n be an integer.

If n = 0, then we check that (T 2)X n f ≻ (X n)F f 0 and (0) F f 0 ≻ (f)0.

If n = 0, then we check that:

(T)X n f ≻ (X n) F f 0 ((S 2)X n-1,F,f,0) F f 0 ≻ (X n-1,F,f,0) F (F)f 0 . . . ((S 2)X 0,F,(F) n-1 f,0) F (F) n-1 f 0 ≻ (X 0,F,(F) n-1 f,0) F (F) n f 0 (0) F (F) n f 0 ≻ (F) n f 0
We prove (by induction on k) that, for every λ-term u, and for every 0

≤ k ≤ n, we have (F) k f u ≻ (f)(S 2) k u.
-For k = 0, it is true.

-Assume that is true for k, and prove it for

k + 1. (F) k+1 f u = (F)(F) k f u ≻ (F) k f (S 2)u.
By induction hypothesis we have that for every λ-term v, (F)

k f v ≻ (f)(S 2) k v, then (F) k+1 f u ≻ (f)(S 2)(S 2) k u = (f)(S 2) k+1 u.
In particular, for u = 0 and k = n, we have (F

) n f 0 ≻ (f)(S 2) n 0. Therefore T 2 is a S 2 -storage operator. 2
A question arizes : Is there a link between the storage operators and the Sstorage operators ?

4 Link between the storage operators and the S-storage operators Theorem 1 If T is a storage operator, then, for every successor S, T is a S-storage operator.

Proof Let S be a successor and T a storage operator. Then for every n ≥ 0, there is a closed λ-term τ n ≃ β n such that for every

θ n ≃ β n, (T)θ n f ≻ (f)τ n . In particular ((T)(S) n 0)f ≻ (f)τ n .
Let σ : Λ X → Λ the simultaneous substitution defined by :

σ(X n) = (S) n 0 for every 0 ≤ k ≤ n -1, σ(X k,a,b,c) = (S) k 0 σ(x) = x if x = X n , X k,a,b,c
For every n ≥ 0, we construct a set of head equation {U i ≻ V i } 1≤i≤r such that :

1) U i and V i are λX-terms ;

2) V r = (f)δ n ;

3) for every 1

≤ i ≤ r -1, V i = (X n)abc or V i = (X l,a,b,c)uvw ; 4) σ(V i) is solvable.
Let U 1 = (T)X n f . We have σ(U 1) = ((T)(S) n 0)f is solvable, then U 1 is solvable and

U 1 ≻ V 1 where V 1 = (f)δ n or V 1 = (X n)abc. It is clear that σ(V 1) is solvable. Assume that we have the head reduction U k ≻ V k and V k = (f)δ n . -If V k = (X n)abc, then, by induction hypothesis, σ(V k) = ((S) n)0)σ(a)σ(b)σ(c) is solvable. -If n = 0, let U k+1 = (0)abc. Then σ(U k+1) = (0)σ(b)σ(b)σ(c) is solvable. -If n = 0, let U k+1 = ((S)X n-1,a,b,c)abc. Then σ(U k+1) = ((S)(S) n-1)0)σ(a)σ(b)σ(c) = σ(V k) is solvable. -If V k = (X l,a,b,c)uvw, then, by induction hypothesis, σ(V k) = ((S) l)0)σ(u)σ(v)σ(w) is solvable. -If l = 0, let U k+1 = (0)uvw. Then σ(U k+1) = (0)σ(u)σ(v)σ(w) is solvable. -If l = 0, let U k+1 = ((S)X l-1,u,v,w)uvw. Then σ(U k+1) = ((S)(S) l-1)0)σ(u)σ(v)σ(w) = σ(V k) is solvable.
Therefore U k+1 is solvable and

U k+1 ≻ V k+1 where V k+1 = (f)δ n or V k+1 = (X n)a ′ b ′ c ′ or V k+1 = (X r,a ′ ,b ′ ,c ′)a ′′ b ′′ c ′′ . Since σ(U k+1) is solvable, then σ(V k+1
) is also solvable. This constraction always terminates (i.e there is a r ≥ 0 such that V r = (f)δ n). Indeed, if not, we check easily that the λ-term ((T)(S) n 0)f is not solvable.

Let y be a variable, Ŝ = (λxS)y, and 0 = (λx0)y. Let σ : Λ X → Λ the simultaneous substitution defined by :

σ(X n) = (Ŝ) n 0 for every 0 ≤ k ≤ n -1, σ(X k,a,b,c) = (Ŝ) k 0 σ(x) = x if x = X n , X k,a,b,c
Since (Ŝ)t ≻ (S)t and 0 ≻ 0, we check easily that ((T)(Ŝ

) n 0)f ≻ (f)σ(δ n). But (Ŝ) n 0 ≃ β n, then ((T)(Ŝ) n 0)f ≻ (f)τ n . Therefore σ(δ n) = τ n . Since τ n is closed, then δ n is also closed and δ n = τ n ≃ β n.
Therefore T is a S-storage operator. 2 Definition We say that a λX-term U satisfies the property (P) iff for each constant X l,a,b,c of U we have :

3) V i = (X n)abc or V i = (X l,a,b,c)uvw 0 ≤ l ≤ n -1 ; 4) If V i = (X n)abc, then U i+1 = (0)abc if n = 0 and U i+1 = ((S 1)X n-1,a,b,c)abc if n = 0 ; 5) If V i = (X l,a,b,c)uvw 0 ≤ l ≤ n -1, then U i+1 = (0)uvw if l = 0 and U i+1 = ((S 1)X l-1,u,v,w)uvw if l = 0.
We prove (by induction on i) that, for every 1 ≤ i ≤ r, V i satisfies (P).

-For i = 1, it is true.

-Assume that is true for i, and prove it for i + 1.

If V i = (X n)abc, we have two cases :

-if n = 0, then U i+1 = (0)abc. By induction hypothesis V i satisfies (P), then a, b, c satisfy (P), therefore U i+1 and V i+1 satisfy (P).

-if n = 0, then U i+1 = ((S)X n-1,a,b,c)abc. By induction hypothesis V i satisfies (P), then a, b, c satisfy (P). Since U i+1 ≻ ((a)(X n-1,a,b,c)ab)c, then V i+1 satisfies (P).

If V i = (X l,a,b,c)uvw 0 ≤ l ≤ n -1, then u = a, v = b,
and w = c since, by induction hypothesis, V i satisfies (P). We have two cases :

-if n = 0, then U i+1 = (0)abc. By induction hypothesis V i satisfies (P), then a, b, c satisfy (P), therefore U i+1 and V i+1 satisfy (P).

-if n = 0, then U i+1 = ((S)X l-1,a,b,c)abc. By induction hypothesis V i satisfies (P), then a, b, c satisfy (P). Since U i+1 ≻ ((a)(X l-1,a,b,c)ab)c, then V i+1 satisfies (P).

Therefore there is a finite sequence of head reduction {M i ≻ N i } 1≤i≤r such that : 1) M i and N i are λX-terms ;

2) M 1 = (T)X n f and N r = (f)τ n where τ n is closed λ-term β-equivalent to n ; 3) N i = (X n)abc or N i = (X l,a,b,c)abd 0 ≤ l ≤ n -1; 4) If N i = (X n)abc, then M i+1 = (b)c if n = 0 and M i+1 = ((a)(X n-1,a,b,c)ab)c if n = 0 ; 5) If N i = (X l,a,b,c)abd 0 ≤ l ≤ n -1, then M i+1 = (b)d if l = 0 and M i+1 = ((a)(X l-1,a,b,d)ab)d if l = 0.
Since, for every 1 ≤ i ≤ r, M i and N i satisfy (P), let M ′ i and N ′ i the λx-terms such that : △(M ′ i) = M i and △(N ′ i) = N i . We have :

1) M ′ i and N ′ i are λx-terms ;

2) M ′ 1 = (T)x n f and N ′ r = (f)τ ′ n where τ ′ n is closed λ-term β-equivalent to n ;

3) We define two sequences of λ-terms (P i) 0≤i≤n and (Q i) 0≤i≤n by : Q 0 = S, and, for every 0 ≤ k ≤ n -1, we put Q k+1 = λx(S)(Q k)x P 0 = 0, and, for every 0 ≤ k ≤ n -1, we put P k+1 = (Q k)((a) n-k-1 b)IIλx0

N ′ i = (x n)a ′ b ′ c ′ or N ′ i = (x l,a ′ ,b ′ ,c ′)d ′ 0 ≤ l ≤ n -1; 4) If N ′ i = (x n)a ′ b ′ c ′ ,
It is easy to check that, for every 1 ≤ k ≤ n, Q k ≃ β λx(S) k+1 x. We prove (by induction on k) that, for every 0 ≤ k ≤ n, we have (a) n b 0 S f ≻ (a) n-k b P k Q k f .

-For k = 0, it is true.

2 Theorem 3

 23 then M ′ i+1 = (b ′)c ′ if n = 0 and M ′ i+1 = ((a ′)x n-1,a ′ ,b ′ ,c ′)c ′ if n = 0 ; 5) If N ′ i = (x l,a ′ ,b ′ ,c ′)d ′ 0 ≤ l ≤ n -1, then M ′ i+1 = (b ′)d ′ if l = 0 and M ′ i+1 = ((a ′)x l-1,a ′ ,b ′ ,d ′)d ′ if l = 0.Therefore T is a storage operator. There is a S 2 -storage operator which is a no storage operator.Proof Let T = λx(x) a b 0 S where a = λxλyλz((x)(z)(x)IIλx0)λx(S)(z)x, b = λxλyλz(z)x,and S a successor.Let n be an integer. n = 0, then we check that :(T) X n f ≻ (X n) a b 0 S f (0) a b 0 S f ≻ (f)0If n = 0, then we check that :(T) X n f ≻ (X n) a b 0 S f ((S 2)X n-1,a,b,0,S,f) a b 0 S f ≻ (X n-1,a,b,0,S,f) a (a)b 0 S f . . . ((S 2)X 0,a,(a) n-1 b,0,S,f) a (a) n-1 b 0 S f ≻ (X 0,a,(a) n-1 b,0,S,f) a (a) n b 0 S f (0) a (a) n b 0 S f ≻ (a) n b 0 S f

 : (f)δ n (in this case we stop) or (x n)a 1 ...a m .Assume we obtain (x n)a 1 ...a m . The variable x n represents θ n , and θ n ≻ λgλx(g)t n-1 , therefore (θ n)a 1 ...a m and ((a 1)t n-1 [a 1 /x, a 2 /g])a 3 ...a m have the same head normal form. The λ-term t n-1 [a 1 /g, a 2 /x] comes from θ n . Let x n-1,a 1 ,a 2 be a new variable (x n-1,a 1 ,a 2 represents t n-1 [a 1 /g, a 2 /x]). The λ-term ((a 1)x n-1,a 1 ,a 2)a 3 ...a m is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to some arguments. The free variables of ((a 1)x n-1,a 1 ,a 2)a 3 ...a m are among x n-1,a 1 ,a 2 , x n , and f , we then have three possibilities for its head normal form : (f)δ n (in this case we stop) or (x n)b 1 ...b r or (x n-1,a 1 ,a 2)b 1 ...b r . Assume we obtain (x n-1,a 1 ,a 2)b 1 ...b r . The variable (x n-1,a 1 ,a 2 represents t n-1 [a 1 /g, a 2 /x], and t n-1 ≻ (g)t n-2 , therefore (t n-1 [a 1 /g, a 2 /x])b 1 ...b r and ((a 1)t n-2 [a 1 /g, a 2 /x])b 1 ...b r have the same head normal form. The λ-term t n-2 [a 1 /g, a 2 /x] comes from θ n . Let x n-2,a 1 ,a 2 be a new variable (x n-2,a 1 ,a 2 represents t n-2 [a 1 /g, a 2 /x]). The λ-term ((a 1)x n-2,a 1 ,a 2)b 1 ...b r is solvable, and its head normal form does not begin by λ, therefore it is a variable applied to arguments. The free variables of ((a 1)x n-2,a 1 ,a 2)b 1 ...b r are among x n-2,a 1 ,a 2 , x n-1,a 1 ,a 2 , v n , and f , therefore we have four possibilities for its head normal form : (f)δ

n (in this case we stop) or (x n)c 1 ...c s or (x n-1,a 1 ,a 2)c 1 ...c s or (x n-2,a 1 ,a 2)c 1 ...c s ... and so on... Assume we obtain (x 0,d 1 ,d 2)e 1 ...e k during the construction. The variable x 0,d 1 ,d 2 represents t 0 [d 1 /g, d 2 /x], and t 0 ≻ x, therefore (t 0 [d 1 /g, d 2 /x])e 1 ...e k and (d 2)e 1 ...e k have the same head normal form ; we then follow the construction with the λ-term (d 2)e 1 .

In his definition of storage operator, J.L. Krivine autorizes the τ n to contain free variables which are replaced by terms depend of θ n . The results of this paper remain valid with this definition but the proofs will be too technical.

a, b, c satisfy (P) -X l,a,b,c is applied to a and b ; a, b do not contain free variables which are bounded in U.

Lemma 1 Let U, V be λX-terms which do not begin by λ. If U satisfies (P) and U ≻ V , then V satisfies (P).

Proof It is enough to do the proof for one step of head reduction. We have U = (λxu)vw and V = (u[v/x])w. Since U satisfies (P), then u, v, w satisfy (P) and x is not free in a, b if the constant X l,a,b,d appears in u. Therefore u[v/x], u 1 , ..., u m satisfy (P) and V satisfies (P). 2 Let △ : Λ x → Λ X the simultaneous substitution defined by :

Proof By induction on U.

-For U = x, it is true.

-If U = λxV , then V satisfies (P), and, by induction hypothesis, there is a λx-term V such that △(V ′) = V . We put U ′ = λxV ′ . We have △(U ′) = U.

-If U = (U 1)U 2 (where U 1 does not begin by a constant), then U 1 , U 2 satisfy (P), and, by induction hypothesis, there are λx-terms

-If U = (X k,a,b,c)abV , then a, b, c, V satisfy (P), and, by induction hypothesis, there are λx-terms a

Proof Let n ≥ 0. If T is a S 1 -storage operator, then there is a finite sequence of head reduction {U i ≻ V i } 1≤i≤r such that :

1) U i and V i are λX-terms ;

2) U 1 = (T)X n f and V r = (f)τ n where τ n is closed λ-term β-equivalent to n ; -Assume that is true for k, and prove it for

In particular, for k = n, we have (a

Therefore T is a S 2 -storage operator.

We define a sequence of λ-terms (P ′ i) 0≤i≤n by : P ′ 0 = 0, and for every 0 ≤ k ≤ n -1, we put

)IIJ We check (as before) that :

Note that P ′ n ≃ β (S) n (X 0,a,b,P ′ n-1 ,Q n-1 ,f)IIλx0 ≃ β n. Indeed, if (S) n (X 0,a,b,P ′ n-1 ,Q n-1 ,f)IIλx0 ≃ β n, then (S) n (λx 1 λx 2 λx 3 (S)0)IIλx0 ≃ β n, therefore n + 1 ≃ β n. A contradiction.

Therefore T is a no storage operator. 2