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A syntactical proof of the operational equivalence of two

λ-terms

René DAVID and Karim NOUR

Abstract In this paper we present a purely syntactical proof of the operational equivalence of

I = λxx and the λ-term J that is the η -infinite expansion of I.

1 Introduction

Two λ-terms M and N are operationnely equivalent (M ≃oper N) iff for all context C : C[M ]

is solvable iff C[N ] is solvable.

Let I = λxx and J = (Y G) where Y is the Turing’s fixed point operator and G = λxλyλz(y (x z)).

J is the η-infinte expansion of I. His Bőhm tree is in fact λxλx1(x λx2(x1 λx3(x2 λx4(x3....

The following Theorem is well known (see [1],[3]).

Theorem I ≃oper J.

The usual proof is semantic : two λ-terms are operationnely equivalent iff they have the same

interpretation in the modele D∞ .

We give below an elementary and a purely syntactical proof of this result. This proof analyses

in a fine way the reductions of C[I] and C[J ] by distinguant the ”real” β -redex of ceux which

come of the η-expansion.

This proof may be generalize to prove (this result is also well known) the operationnely equiva-

lence of two λ-terms where the Bőhm tree are equal à η - infinite expansion près. The necessary

technical tool is the directed λ-calculus (see [2]).

2 Definitions and notations

• λx U represents a sequence of abstractions.

• Let T,U,U1, ..., Un be λ-terms, the application of T to U is denoted by (T U) or TU . In

the same way we write TU1...Un or TU instead of (...(T U1)...Un).

• Let us recall that a λ-term T either has a head redex [i.e. t = λx(λxU V ) V , the head

redex being (λxU V )], or is in head normal form [i.e. t =

lxx V ].

1



• The notation U →t V (resp. U →t∗ V ) means that V is obtained from U by one head

reduction (resp. some head reductions).

• A λ-term T is said solvable iff the head reduction of T terminates.

The following Lemma is well known.

Lemma 2.1 (U V ) is solvable iff U is solvable (and has U ′ as head normal form) and (U ′ V )

is solvable.

3 Proof of the Theorem

The idea of the proof is the following : we prove that, if we assimilate the reductions where I

(resp J) are in head position, C[I] and C[J ] reduse, by head reduction in the same way. For

this we add a constante H (which represente either I or J). We define on those terms the I

(resp J) head reduction, corresponding to the case where H = I (resp J). To prove that the

reductions are equivalent we prove that the terms obtained by ”removing” the constante H are

equal. This is the role of the extraction fonction E.

3.1 λH-calculus and the application E

• We add a new constante H to the λ-calculus and we call λH-terms the terms which we

obtain.

• We define (by induction) on the set of λH-terms the application E :

E(x) = x ; E(H) = H ; E(λxU) = λxE(U) ;

E(UV ) = E(U)E(V ) if U 6= HU1U2...Un ;

E(HU1U2...Un) = E(U1U2...Un) .

• A λH-term is in head normal form if it is of the forme : λx H or λx xV .

Lemma 3.1 If T is a λH-term, then E(T ) is of the forme λx H or λx xV or λx (λxU V )V .

Proof By induction on T . 2

Lemma 3.2 If T is a λH-term, then E(E(T )) = E(T ).

Proof By induction on T . 2

Lemma 3.3 Let T,U be λH-terms. E(TU) = E(E(T )E(U)).

Proof By induction on T . We distinguish the cases: T 6= HV and T = HV . 2
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Lemma 3.4 Let U, V be λH-terms and x a variable, E(U [V/x]) = E(E(U)[E(V )/x]) .

Proof By induction on U . The only interesting case is U = xU . By Lemma 3.3, E(U [V/x]) =

E(E(V )E(U [V/x])). Therefore, by induction hypothesis and Lemma 3.3,

E(U [V/x]) = E(E(V )E(E(U)[E(V )/x])) = E(E(U [E(V )/x]). 2

Lemma 3.5 Let U1, U2, V1, V2 be λH-terms such that E(U1) = E(U2) and E(V1) = E(V2).

E(U1[V1/x]) = E(U2[V2/x]).

Proof By Lemma 3.4. 2

Lemma 3.6 Let U1, U2, V1, V2 be λH-terms. If U1 →t V1, U2 →t V2, and E(U1) = E(U2), then

E(V1) = E(V2).

Proof By Lemmas 3.3 and 3.5. 2

3.2 The I-reduction

• We define on the λH-terms a new head reduction :

HU1...Un →I U1U2...Un

• We denote by →I∗ the reflexive and transitive closure of →I .

• A λH-term U is I-t-solvable iff a finite sequence of I-reductions and t-reductions of U

gives a head normal form.

Lemma 3.7 Let U, V be λH-terms. If U →I∗ V , then E(U) = E(V ).

Proof By induction on the reduction of U . 2

Lemma 3.8 Each I-reduction is finite.

Proof The I-reduction decreases the complexity of a λH-term. 2

Lemma 3.9 Let U be λH-term. U is I-t-solvable iff U [I/H] is solvable.

Proof Immediate. 2
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3.3 The J-reduction

• We define on the λH-terms a new head reduction :

HU1...Un →J U1(H U2)U3...Un

• We denote by →J∗ the reflexive and transitive closure of →J .

• A λH-term U is J-t-solvable iff a finite sequence of J-reductions and t-reductions of U

gives a head normal form.

Lemma 3.10 Let U, V be λH-terms. If U →J∗ V , then E(U) = E(V ).

Proof It is enough to do the proof for one step of J-reduction. The only interesting case is U =

(H)U1U2U . In this case U →J U1(H U2)U , and, by induction hypothesis, E((U1(H U2)U ) =

E(V ), therefore -by Lemma 3.3- E(U) = E(V ). 2

Lemma 3.11 Let U, V be λH-terms. If U →J∗ V , then, for each sequence W = W1...Wn, there

is a sequence W ′ = W ′

1...W
′

n such that UW →J∗ V W ′ and for, all 1 ≤ k ≤ n, W ′

k →J∗ Wk.

Proof By induction on the reduction of U . It enough to do the proof for one step of J-

reduction. The only interesting case is U = HU ′ and W = W1W ′. In this case V = U ′,

UW1W ′ →J V (H W1)W ′ and HW1 →J W1. 2

Lemma 3.12 Each J-reduction is finite.

Proof By induction on U . The only interesting case is U = HV1...Vn (n ≥ 2). We prove,

by recurrence on n, that if the reductions of V1, ..., Vn are finite, then so is for U = HV1...Vn.

U →J V1(H V2) V3...Vn and V1 →J∗ V ′

1 . By Lemma 3.11, U →J V ′

1W2W3...Wn where W2 →J

H V2 →J V2 and Wi →J Vi, therefore the reductions of Wi are finite.

- If E(V1) 6= H. V ′

1 begin soit by λ, soit by a β-redex, soit by a variable. Therefore, by Lemma

3.11, the J-reduction of U is finite.

- If E(V1) = H. By Lemma 3.11, U →J∗ HW2...Wn and the recurrence hypothesis allows to

conclude. 2

Lemma 3.13 Let U be a λH-term. U is J-t-solvable iff U [J/H]) is solvable.

Proof The only difficulty is to prove that : if U is J-t-solvable, then U [J/H] is solvable.

We prove that by induction on the reduction of U . The only interesting case is U = λx HV . In

this case, U →J λx V and U [J/H] →t λx λyV [J/H] (J y). By induction hypothesis V [J/H]

is solvable, and, by Lemma 2.1, we may begin to reduse V [J/H] in λx λyV [J/H] (J y). If the

head normal form of V [J/H] is not of the forme λxλz xW , the result is true. If not the head

reduction of U [J/H] gives λx λz (J y)W which is solvable. 2
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3.4 The proof of the Theorem

U →(I∗,k) V (resp. U →(J∗,k) V ) means that V is obtained from U by I-reductions (resp.

J-reductions) and k t-reductions.

Lemma 3.14 Let U1, U2, V1, V2 be λH-terms. If U1 →(I∗,k) V1, U2 →(J∗,k) V2, and E(U1) =

E(U2), then E(V1) = E(V2).

Proof Consequence of Lemmas 3.6, 3.7 and 3.10. 2

Lemma 3.15 Let U be a λH-term. U is I-t-solvable iff U is J-t-solvable.

Proof Consequence of Lemmas 3.8, 3.12 and 3.14. 2

Proof of the Theorem Consequence of Lemmas 3.9, 3.13 and 3.15. 2
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