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We give arithmetical proofs of the strong normalization of two symmetric λ-calculi corresponding to classical logic. The first one is the λµμ-calculus introduced by Curien & Herbelin. It is derived via the Curry-Howard correspondence from Gentzen's classical sequent calculus LK in order to have a symmetry on one side between "program" and "context" and on other side between "call-by-name" and "call-by-value". The second one is the symmetric λµ-calculus. It is the λµ-calculus introduced by Parigot in which the reduction rule µ ′ , which is the symmetric of µ, is added. These results were already known but the previous proofs use candidates of reducibility where the interpretation of a type is defined as the fix point of some increasing operator and thus, are highly non arithmetical.

Introduction

Since it has been understood that the Curry-Howard correspondence relating proofs and programs can be extended to classical logic (Felleisen [13], Griffin [START_REF] Griffin | A formulae-as-types notion of control[END_REF]), various systems have been introduced: the λ c -calculus (Krivine [START_REF] Krivine | Classical logic, storage operators and 2nd order lambda-calculus[END_REF]), the λ exn -calculus (de Groote [START_REF] De Groote | A simple calculus of exception handling[END_REF]), the λµ-calculus (Parigot [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF]), the λ Sym -calculus (Barbanera & Berardi [START_REF] Barbanera | A symmetric lambda-calculus for classical program extraction[END_REF]), the λ ∆ -calculus (Rehof & Sorensen [29]), the λµμ-calculus (Curien & Herbelin [START_REF] Curien | The Duality of Computation[END_REF]), the dual calculus (Wadler [START_REF] Wadler | Call-by-value is dual to Call-by-name. Re-loaded[END_REF]), ... Only a few of them have computation rules that correspond to the symmetry of classical logic.

We consider here the λµμ-calculus and the symmetric λµ-calculus and we give arithmetical proofs of the strong normalization of the simply typed calculi. Though essentially the same proof can be done for the λ Sym -calculus, we do not consider here this calculus since it is somehow different from the previous ones: its main connector is not the arrow but the connectors or and and and the symmetry of the calculus comes from the de Morgan laws. This proof will appear in Battyanyi's PhD thesis [START_REF] Battyanyi | Normalization results for the symmetric λµcalculus[END_REF] who will also consider the dual calculus. Note that Dougherty & all [START_REF] Dougherty | Strong normalization of the classical dual sequent calculus[END_REF] have shown the strong normalization of this calculus by the reducibility method using the technique of the fixed point construction.

The first proof of strong normalization for a symmetric calculus is the one by Barbanera & Berardi for the λ Sym -calculus. It uses candidates of reducibility but, unlike the usual construction (for example for Girard's system F ), the definition of the interpretation of a type needs a rather complex fix-point operation. Yamagata [START_REF] Yamagata | Strong Normalization of Second Order Symmetric Lambda-mu Calculus[END_REF] has used the same technic to prove the strong normalization of the symmetric λµ-calculus where the types are those of system F and Parigot, again using the same ideas, has extended Barbanera & Berardi's result to a logic with second order quantification. Polonovsky, using the same technic, has proved in [START_REF] Polonovsky | Substitutions explicites, logique et normalisation[END_REF] the strong normalization of the λµμ-reduction. These proofs are highly non arithmetical.

The two proofs that we give are essentially the same but the proof for the λµμcalculus is much simpler since some difficult problems that appear in the λµ-calculus do not appear in the λµμ-calculus. In the λµμ-calculus, a µ or a λ cannot be created at the root of a term by a reduction but this is not the case for the symmetric λµ-calculus. This is mainly due to the fact that, in the former, there is a right-hand side and a lefthand side whereas, in the latter, this distinction is impossible since a term on the right of an application can go on the left of an application after some reductions.

The idea of the proofs given here comes from the one given by the first author for the simply typed λ-calculus : assuming that a typed term has an infinite reduction, we can define, by looking at some particular steps of this reduction, an infinite sequence of strictly decreasing types. This proof can be found either in [START_REF] David | Normalization without reducibility[END_REF] (where it appears among many other things) or as a simple unpublished note on the web page of the first author (www.lama.univ-savoie.fr/~david ).

We also show the strong normalization of the µμ-reduction (resp. the µµ ′ -reduction) for the un-typed calculi. The first result was already known and it can be found in [START_REF] Polonovsky | Substitutions explicites, logique et normalisation[END_REF]. The proof is done (by using candidates of reducibility and a fix point operator) for a typed calculus but, in fact, since the type system is such that every term is typable, the result is valid for every term. It was known that, for the un-typed λµ-calculus, the µ-reduction is strongly normalizing (see [START_REF] Py | Confluence en λµ-calcul[END_REF]) but the strong normalization of the µµ ′reduction was an open problem raised long ago by Parigot. Studying this reduction by itself is interesting since a µ (or µ ′ )-reduction can be seen as a way "to put the arguments of the µ where they are used" and it is useful to know that this is terminating. This paper is an extension of [START_REF] David | Arithmetical proofs of some strong normalization results for the symmetric λµ-calculus[END_REF]. In particular, section 4 essentially appears there. It is organized as follows. Section 2 gives the syntax of the terms of the λµμ-calculus and the symmetric λµ-calculus and their reduction rules. Section 3 is devoted to the proof of the normalization results for the λµμ-calculus and section 4 for the symmetric λµ-calculus. We conclude in section 5 with some remarks and future work.

The calculi

The λµμ-calculus

The un-typed calculus

There are three kinds of terms, defined by the following grammar, and there are two kinds of variables. In the literature, different authors use different terminology. Here, we will call them either c-terms, or l-terms or r-terms. Similarly, the variables will be called either l-variables (and denoted as x, y, ...) or r-variables (and denoted as α, β, ...).

In the rest of the paper, by term we will mean any of these three kind of terms.

c : (Γ ⊢ α : A, △) Γ ⊢ µα c : A , △ c : (Γ, x : A ⊢ △) Γ, µx c : A ⊢ △

The reduction rules

The cut-elimination procedure (on the logical side) corresponds to the reduction rules (on the terms) given below.

• λx t l , t ′ l .t r ⊲ λ t ′ l , µx t l , t r • t ′ r .t l , λα t r ⊲ λ µα t l , t r , t ′ r • µα c, t r ⊲ µ c[α := t r ] • t l , µx c ⊲ μ c[x := t l ] • µα t l , α ⊲ s l t l if α ∈ F v(t l ) • µx x, t r ⊲ sr t r if x ∈ F v(t r ) Remark 2.2.
It is easy to show that the µμ-reduction is not confluent. For example µα x, β , µy x, α reduces both to x, β and to x, α .

Definition 2.1.

• We denote by ⊲ l the reduction by one of the logical rules i.e. ⊲ λ , ⊲ λ , ⊲ µ or ⊲ μ.

• We denote by ⊲ s the reduction by one of the simplification rules i.e. ⊲ s l or ⊲ sr

The symmetric λµ-calculus

The un-typed calculus

The set (denoted as T ) of λµ-terms or simply terms is defined by the following grammar where x, y, ... are λ-variables and α, β, ... are µ-variables:

T ::= x | λxT | (T T ) | µαT | (α T )
Note that we adopt here a more liberal syntax (also called de Groote's calculus) than in the original calculus since we do not ask that a µα is immediately followed by a (β M ) (denoted [β]M in Parigot's notation).

The typed calculus

The logical part of this calculus is natural deduction. The types are those of the simply typed λµ-calculus i.e. are built from atomic formulas and the constant symbol ⊥ with the connector →. As usual ¬A is an abbreviation for A →⊥.

The typing rules are given below where Γ is a context, i.e. a set of declarations of the form x : A and α : ¬A where x is a λ (or intuitionistic) variable, α is a µ (or classical) variable and A is a formula.

Γ, x :

A ⊢ x : A ax Γ, x : A ⊢ M : B Γ ⊢ λxM : A → B → i Γ ⊢ M : A → B Γ ⊢ N : A Γ ⊢ (M N ) : B → e Γ, α : ¬A ⊢ M : ⊥ Γ ⊢ µαM : A ⊥ e Γ, α : ¬A ⊢ M : A Γ, α : ¬A ⊢ (α M ) : ⊥ ⊥ i
Note that, here, we also have changed Parigot's notation but these typing rules are those of his classical natural deduction. Instead of writing

M : (A x 1 1 , ..., A xn n ⊢ B, C α 1 1 , ..., C αm m )
we have written

x 1 : A 1 , ..., x n : A n , α 1 : ¬C 1 , ..., α m : ¬C m ⊢ M : B

The reduction rules

The cut-elimination procedure (on the logical side) corresponds to the reduction rules (on the terms) given below. Natural deduction is not, intrinsically, symmetric but Parigot has introduced the so called Free deduction [START_REF] Parigot | Free Deduction: An Analysis of "Computations[END_REF] which is completely symmetric. The λµ-calculus comes from there. To get a confluent calculus he had, in his terminology, to fix the inputs on the left. To keep the symmetry, it is enough to add a new reduction rule (called the µ ′ -reduction) which is the symmetric rule of the µ-reduction and also corresponds to the elimination of a cut.

• (λxM N ) ⊲ β M [x := N ] • (µαM N ) ⊲ µ µαM [α = r N ] • (N µαM ) ⊲ µ ′ µαM [α = l N ] • (α µβM ) ⊲ ρ M [β := α] • µα(α M ) ⊲ θ M if α is not free in M .
where

M [α = r N ] (resp. M [α = l N ]) is obtained by replacing each sub-term of M of the form (α U ) by (α (U N )) (resp. (α (N U ))
). This substitution is called a µ-substitution (resp. a µ ′ -substitution).

Remark 2.3. 1. It is shown in [START_REF] Parigot | λµ-calculus: An algorithm interpretation of classical natural deduction[END_REF] that the βµ-reduction is confluent but neither µµ ′ nor βµ ′ is. For example (µαx µβy) reduces both to µαx and to µβy. Similarly (λzx µβy) reduces both to x and to µβy.

2. Unlike for a β-substitution where, in M [x := N ], the variable x has disappeared it is important to note that, in a µ or µ ′ -substitution, the variable α has not disappeared. Moreover its type has changed. If the type of N is A and, in M , the type of α is

¬(A → B) it becomes ¬B in M [α = r N ]. If the type of N is A → B and, in M , the type of α is ¬A it becomes ¬B in M [α = l N ].
3. In section 4, we will not consider the rules θ and ρ. The rule θ causes no problem since it is strongly normalizing and it is easy to see that this rule can be postponed. However, unlike for the λµμ-calculus where all the simplification rules can be postponed, this is not true for the rule ρ and, actually, Battyanyi has shown in [START_REF] Battyanyi | Normalization results for the symmetric λµcalculus[END_REF] that µµ ′ ρ is not strongly normalizing. However he has shown that µµ ′ ρ (in the untyped case) and βµµ ′ ρ (in the typed case) are weakly normalizing.

Some notations

The following notations will be used for both calculi. It will also be important to note that, in section 3 and 4, we will use the same notations (for example Σ l , Σ r ) for objects concerning respectively the λµμ-calculus and the symmetric λµ-calculus. This is done intentionally to show the analogy between the proofs.

Definition 2.2. Let u, v be terms.

1. cxty(u) is the number of symbols occurring in u.

2. We denote by u ≤ v (resp. u < v) the fact that u is a sub-term (resp. a strict sub-term) of v.

3.

A proper term is a term that is not a variable.

4. If σ is a substitution and u is a term, we denote by

• σ + [x := u] the substitution σ ′ such that for y = x, σ ′ (y) = σ(y) and σ ′ (x) = u • σ[x := u] the substitution σ ′ such that σ ′ (y) = σ(y)[x := u].
Definition 2.3. Let A be a type. We denote by lg(A) the number of symbols in A.

In the next sections we will study various reductions. The following notions will correspond to these reductions. Definition 2.4. Let ⊲ be a notion of reduction.

1. The transitive (resp. reflexive and transitive) closure of ⊲ is denoted by ⊲ + (resp.

⊲ * ). The length (i.e. the number of steps) of the reduction t ⊲ * t ′ is denoted by lg(t ⊲ * t ′ ).

2. If t is in SN i.e. t has no infinite reduction, η(t) will denote the length of the longest reduction starting from t and ηc(t) will denote (η(t), cxty(t)).

3. We denote by u ≺ v the fact that u ≤ w for some w such that v ⊲ * w and either v ⊲ + w or u < w. We denote by the reflexive closure of ≺.

Remark 2.4. -It is easy to check that the relation is transitive, that u v iff u ≤ w for some w such that v ⊲ * w. We can also prove (but we will not use it) that the relation is an order on the set SN .

-If v ∈ SN and u ≺ v, then u ∈ SN and ηc(u) < ηc(v).

-In the proofs done by induction on some k-uplet of integers, the order we consider is the lexicographic order.

Normalization for the λµμ-calculus

The following lemma will be useful. Lemma 3.1. Let t be a l-term (resp. a r-term). If t ∈ SN , then t, α ∈ SN (resp.

x, t ∈ SN ).

Proof By induction on η(t). Since t, α ∈ SN , t, α ⊲ u for some u such that u ∈ SN . If u = t ′ , α where t ⊲ t ′ we conclude by the induction hypothesis since 1. Let ⊲ µ 0 , ⊲ μ0 be defined as follows: 1. If t is strongly normalizing for the l-reduction, then it is also strongly normalizing for the ls-reduction .

η(t ′ ) < η(t). If t = µβ c and u = c[β := α] ∈ SN , then c ∈ SN and t ∈ SN . Contradiction.

⊲ s can be postponed

• µα c, t r ⊲ µ 0 c[α := t r ] if α occurs at most once in c • t l , µx c ⊲ μ0 c[x := t l ] if x occurs at most once in c 2. Let ⊲ l 0 = ⊲ µ 0 ∪ ⊲ μ0 . Lemma 3.2. If u ⊲ s v ⊲ l w, then there is t such that u ⊲ l t ⊲ * s w or u ⊲ l 0 t ⊲ l w. Proof By induction on u. Lemma 3.3. If u ⊲ s v ⊲ l 0 w, then either u ⊲ l 0 w or, for some t, u ⊲ l 0 t ⊲ s w or u ⊲ l 0 t ⊲ l 0 w.
2. If t is strongly normalizing for the µμ-reduction, then it is also strongly normalizing for the µμs-reduction. Proof Use lemmas 3.6 and 3.1. It is easy to check that the lemma 3.1 remains true if we consider only the reduction rules µ and μ.

The µμ-reduction is strongly normalizing

In this section we consider only the µμ-reduction and we restrict the set of terms to the following grammar.

c ::= t l , t r t l ::= x | µα c t r ::= α | µx c
It is easy to check that, to prove the strong normalization of the full calculus with the µμ-reduction, it is enough to prove the strong normalization of this restricted calculus.

Remember that we are, here, in the un-typed caculus and thus our proof does not use types but the strong normalization of this calculus actually follows from the result of the next section: it is easy to check that, in this restricted calculus, every term is typable by any type, in the context where the free variables are given this type. We have kept this section since the main ideas of the proof of the general case already appear here and this is done in a simpler situation.

The main point of the proof is the following. It is easy to show that if t ∈ SN but t[x := t l ] ∈ SN , there is some x, t r ≺ t such that t r [x := t l ] ∈ SN and t l , t r [x := t l ] ∈ SN . But this is not enough and we need a stronger (and more difficult) version of this: lemma 3.8 ensures that, if

t[σ] ∈ SN but t[σ][x := t l ] ∈ SN then the real cause of non SN is, in some sense, [x := t l ].
Having this result, we show, essentially by induction on ηc(t l ) + ηc(t r ), that if t l , t r ∈ SN then t l , t r ∈ SN . The point is that there is, in fact, no deep interactions between t l and t r i.e. in a reduct of t l , t r we always know what is coming from t l and what is coming from t r . The final result comes then from a trivial induction on the terms.

Definition 3.2.

• We denote by Σ l (resp. Σ r ) the set of simultaneous substitutions of the form [x 1 := t 1 , ..., x n := t n ] (resp. [α 1 := t 1 , ..., α n := t n ]) where t 1 , ..., t n are proper l-terms (r-terms). 1. Let t be a term, t l a l-term and τ ∈ Σ l . Assume t l ∈ SN , x is free in t but not free in Im(τ

• For s ∈ {l, r}, if σ = [ξ 1 := t 1 , ..., ξ n := t n ] ∈ Σ s ,
). If t[τ ] ∈ SN but t[τ ][x := t l ] ∈ SN , there is x, t r ≺ t and τ ′ ∈ Σ l such that t r [τ ′ ] ∈ SN and t l , t r [τ ′ ] ∈ SN .
2. Let t be a term, t r a r-term and σ ∈ Σ r . Assume t r ∈ SN , α is free in t but not free in Im(σ).

If t[σ] ∈ SN but t[σ][α := t r ] ∈ SN , there is t l , α ≺ t and σ ′ ∈ Σ r such that t l [σ ′ ] ∈ SN and t l [σ ′ ], t r ∈ SN .
Proof We prove the case (1) (the case (2) is similar). Note that t l is proper since

t[τ ] ∈ SN , t[τ ][x := t l ] ∈ SN and x is not free in Im(τ ). Let Im(τ ) = {t 1 , ..., t k }.
Let U = {u / u is proper and u t} and V = {v / v is proper and v t i for some i}.

Define inductively the sets Σ ′ l and Σ ′ r of substitutions by the following rules:

ρ ∈ Σ ′ l iff ρ = ∅ or ρ = ρ ′ + [y := v[δ]] for some l-term v ∈ V, δ ∈ Σ ′ r and ρ ′ ∈ Σ ′ l δ ∈ Σ ′ r iff δ = ∅ or δ = δ ′ + [β := u[ρ]] for some r-term u ∈ U, ρ ∈ Σ ′ l and δ ′ ∈ Σ ′ r
Denote by C the conclusion of the lemma, i.e. there is x, t r ≺ t and τ ′ ∈ Σ l such that t r [τ ′ ] ∈ SN and t l , t r [τ ′ ] ∈ SN . We prove something more general.

(

) If u ∈ U, ρ ∈ Σ ′ l , u[ρ] ∈ SN and u[ρ][x := t l ] ∈ SN , then C holds. (2) If v ∈ V, δ ∈ Σ ′ r , v[δ] ∈ SN and v[δ][x := t l ] ∈ SN , then C holds. The term t is proper since t[τ ][x := t l ] ∈ SN . 1 
Then conclusion C follows from (1) with t and τ .

The properties (1) and ( 2) are proved by a simultaneous induction on ηc(u[ρ]) (for the first case) and ηc(v[δ]) (for the second case). We only consider (1), the case ( 2) is proved in a similar way.

• If u begins with a µ. The result follows from the induction hypothesis.

• If u = u l , u r .

-If u r [ρ][x := t l ] ∈ SN : then u r is proper and the result follows from the induction hypothesis.

-If u l [ρ][x := t l ] ∈ SN and u l is proper: the result follows from the induction hypothesis.

- -Otherwise, by lemma 3.7, there are two cases to consider. Note that u r cannot be a variable because, otherwise, -If u l = x, then x, u r and τ ′ = ρ[x := t l ] satisfy the desired conclusion.

u[ρ][x := t l ] = u l [ρ][x := t l ], u
( 

′ ∈ Σ l be such that u r [τ ′ ] ∈ SN , t l [σ], u r [τ ′ ] ∈ SN .
This contradicts the minimality of the chosen elements since ηc(u r ) < ηc(t r ).

The typed λµμ-calculus is strongly normalizing

In this section, we consider the typed calculus with the l-reduction. By theorem 3.1, this is enough to prove the strong normalization of the full calculus. To simplify notations, we do not write explicitly the type information but, when needed, we denote by type(t) the type of the term t.

The proof is essentially the same as the one of theorem 3.2. It relies on lemma 3.10 for which type considerations are needed: in its proof, some cases cannot be proved "by themselves" and we need an argument using the types. For this reason, its proof is done using the additional fact that we already know that, if t l , t r ∈ SN and the type of t r is small, then t[x := t r ] also is in SN . Since the proof of lemma 3.11 is done by induction on the type, when we will use lemma 3.10, the additional hypothesis will be available. Lemma 3.9. Assume t l , t r ∈ SN and t l , t r ∈ SN . Then either (t l = µα c and c[α

:= t r ] ∈ SN ) or (t r = µx c and c[x := t l ] ∈ SN ) or (t l = λxu l , t r = u ′ l .u r and u ′ l , µx u l , u r ∈ SN ) or (t r = λαu r , t l = u ′ r .u l and µα u r , u l , u ′ r ∈ SN ). Proof By induction on η(t l ) + η(t r ).

Definition 3.3.

Let A be a type. We denote Σ A,l (resp. Σ A,r ) the set of substitutions of the form [x 1 := t 1 , ..., x n := t n ] (resp. [α 1 := t 1 , ..., α n := t n ]) where t 1 , ..., t n are proper l-terms (resp. r-terms) and the type of the x i (resp. α i ) is A. Lemma 3.10. Let n be an integer and A be a type such that lg(A) = n. Assume H holds where H is: for every u, v ∈ SN such that lg(type(v)) < n, u[x := v] ∈ SN .

1. Let t be a term, t l a l-term and τ ∈ Σ A,l . Assume t l ∈ SN and has type A, x is free in t but not free in Im(τ

). If t[τ ] ∈ SN but t[τ ][x := t l ] ∈ SN , there is x, t r ≺ t and τ ′ ∈ Σ A,l such that t r [τ ′ ] ∈ SN and t l , t r [τ ′ ] ∈ SN .
2. Let t be a term, t r a r-term and σ ∈ Σ A,r . Assume t r ∈ SN and has type A, α is free in t but not free in Im(σ).

If t[σ] ∈ SN but t[σ][α := t r ] ∈ SN , there is t l , α ≺ t and σ ′ ∈ Σ A,r such that t l [σ ′ ] ∈ SN and t l [σ ′ ], t r ∈ SN .
Proof We only prove the case (1), the other one is similar. Note that t l is proper since t[τ ] ∈ SN and t[τ ][x := t l ] ∈ SN . Let Im(τ ) = {t 1 , ..., t k }. Let U = {u / u is proper and u t} and V = {v / v is proper and v t i for some i}. Define inductively the sets Σ ′ A,l and Σ ′ A,r of substitutions by the following rules:

ρ ∈ Σ ′ A,l iff ρ = ∅ or ρ = ρ ′ + [y := v[δ]] for some l-term v ∈ V, δ ∈ Σ ′ A,r , ρ ′ ∈ Σ ′ A,l
and y has type

A. δ ∈ Σ ′ A,r iff δ = ∅ or δ = δ ′ + [β := u[ρ]] for some r-term u ∈ U, ρ ∈ Σ ′ A,l , δ ′ ∈ Σ ′ A,r
and β has type A.

Denote by C the conclusion of the lemma, i.e. there is x, t r ≺ t and τ ′ ∈ Σ A,l such that t r [τ ′ ] ∈ SN and t l , t r [τ ′ ] ∈ SN . We prove something more general.

(

) u ∈ U, ρ ∈ Σ ′ A,l , u[ρ] ∈ SN and u[ρ][x := t l ] ∈ SN , then C holds. (2) If v ∈ V, δ ∈ Σ ′ A,r , v[δ] ∈ SN and v[δ][x := t l ] ∈ SN , then C holds. 1 
Note that, since t[τ ][x := t l ] ∈ SN , t is proper and thus, C follows from (1) with t and τ . The properties ( 1) and ( 2) are proved by a simultaneous induction on ηc(u[ρ]) (for the first case) and ηc(v[δ]) (for the second case). We only consider (1) since ( 2) is similar.

The proof is as in lemma 3.8. We only consider the additional cases:

u = u l , u r , u l [ρ][x := t l ] ∈ SN , u r [ρ][x := t l ] ∈ SN , u r
is proper and one of the two following cases occurs.

• u l [ρ][x := t l ] = λxv l , u r [ρ][x := t l ] = v ′ l .v r and v ′ l , µx v l , v r ∈ SN . Then, u r = w ′ l .w r , v ′ l = w ′ l [ρ][x := t l ] and v r = w r [ρ][x := t l ].
There are three cases to consider.

u l = λxw l and w l [ρ][x := t l ] = v l , then the result follows from the induction hypothesis with w ′ l , µx w l , w r and ρ since η( w ′ l , µx w l , w r

[ρ]) < η(u[ρ]). -u l = y ∈ dom(ρ). Let ρ(y) = λzw l [δ], then a = w ′ l [ρ], µx w l [δ], w r [ρ] [x := t l ] ∈ SN . But, -b = w ′ l [ρ][x := t l ], c = w l [δ][x := t l ], d = w r [ρ][x := t l ] ∈ SN , -lg(type(b)) < n, lg(type(c)) < n, -a = x 2 , µx x 1 , d [x 1 := c][x 2 := b]
and this contradicts the hypothesis (H).

u l = x, then x, u r and τ ′ = τ [x := t l ] satisfy the desired conclusion.

• u l [ρ][x := t l ] = v ′ r .v l , u r [ρ][x := t l ] = λαv r and µα v l , v r , v ′ r ∈ SN . The proof is similar. (η(M )+η(N ), cxty(M )+cxty(N )) is minimal. By lemma 4.3, either M [σ]⊲ * µδM 1 and M 1 [δ = r N [τ ]] ∈ SN or N [τ ] ⊲ * µβN 1 and N 1 [β = l M [σ]] ∈ SN . Look at the first case (the other one is similar). By lemma 4.2, M ⊲ * µδM 2 for some M 2 such that M 2 [σ] ⊲ * M 1 . Thus, M 2 [σ][δ = r N [τ ]] ∈ SN . By lemma 4.4 with M 2 , σ and N [τ ], let M ′ ≺ M 2 and σ ′ be such that M ′ [σ ′ ] ∈ SN , (M ′ [σ ′ ] N [τ ]) ∈ SN .
This contradicts the minimality of the chosen elements since ηc(M ′ ) < ηc(M ).

The simply typed symmetric λµ-calculus is strongly normalizing

In this section, we consider the simply typed calculus with the βµµ ′ -reduction i.e. M ⊲ M ′ means M ′ is obtained from M by one step of the βµµ ′ -reduction. The strong normalization of the βµµ ′ -reduction is proved essentially as in theorem 3.3.

There is, however, a new difficulty : a β-substitution may create a µ, i.e. the fact that M [x := N ] ⊲ * µαP does not imply that M ⊲ * µαQ. Moreover the µ may come from a complicated interaction between M and N and, in particular, the alternation between M and can be lost. Let e.g. M = (M 1 (x (λy

1 λy 2 µαM 4 ) M 2 M 3 )) and N = λz(z N 1 ). Then M [x := N ] ⊲ * (M 1 (µαM ′ 4 M 3 )) ⊲ * µαM ′ 4 [α = r M 3 ][α = l M 1 ].
To deal with this situation, we need to consider some new kind of µµ ′ -substitutions (see definition 4.2). Lemma 4.10 gives the different ways in which a µ may appear. The difficult case in the proof (when a µ is created and the control between M and N is lost) will be solved by using a typing argument.

To simplify the notations, we do not write explicitly the type information but, when needed, we denote by type(M ) the type of the term M . -or

R 2 [z := S] ⊲ * (x i -→ Q) and (N i --→ Q[σ]) ⊲ * λyP , then M ⊲ * (x i -→ Q)
and again we are done.

(

) R ⊲ * (x i -→ Q) and (N i --→ Q[σ]) ⊲ * λzR 1 . Then M ⊲ * (x i -→ Q S 2 
) and the result is trivial. 

′ i [α = a Q[σ]] ⊲ * P for some address a in Q such that Q a = x i . 3. or M ⊲ * Q, Q a [σ] ⊲ * µαN ′ and N ′ [α = a Q[σ]] ⊲ * P for some address a in Q such that lg(type(Q a )) < n .
Proof By induction on ηc(M ). The only non immediate case is M = (R S). Since M [σ] ⊲ * µαP , the application (R[σ] S[σ]) must be reduced. Thus there are three cases to consider.

• It is reduced by a µ ′ -reduction, i.e. there is a term S 1 such that S[σ] ⊲ * µαS 1 and S 1 [α = l R[σ]] ⊲ * P . By the induction hypothesis:

-either S⊲ * µαQ and

Q[σ]⊲ * S 1 , then M ⊲ * µαQ[α = l R] and Q[α = l R][σ]⊲ * P .
-or S ⊲ * Q and, for some i, N i ⊲ * µαN ′ i , Q a = x i for some address a in Q and

N ′ i [α = a Q[σ]] ⊲ * S 1 . Then M ⊲ * (R Q) = Q ′ and letting b = [r :: a] we have N ′ i [α = b Q ′ [σ]] ⊲ * P . -or S ⊲ * Q, Q a [σ]⊲ * µαN ′ for some address a in Q such that lg(type(Q a )) < n and N ′ [α = a Q[σ]] ⊲ * S 1 . Then M ⊲ * (R Q) = Q ′ and letting b = [r :: a] we have N ′ [α = b Q ′ [σ]] ⊲ * P and lg(type(Q ′ b )) < n.
• It is reduced by a µ-reduction. This case is similar to the previous one. The previous definition may thus be considered as ambiguous. When we consider the term N [σ] where σ ∈ Σ A , we assume that N (and not N [σ]) is typed in the context where the α i have type A. Also note that considering N [α = a M ] implies that the type of M a is A. Lemma 4.11. Let n be an integer and A be a type such that lg(A) = n. Let N, P be terms and τ ∈ Σ A . Assume that,

• for every M, N ∈ SN such that lg(type(N )) < n, M [x := N ] ∈ SN .

• Proof We prove something a bit more general: let A be a type, M, N 1 , ..., N k be terms and τ 1 , ..., τ k be substitutions in Σ A . Assume that, for each i, N i has type A and N

N [τ ] ∈ SN but N [τ ][δ = a P ] ∈ SN . [y := R ′′ [α = b V ′ [σ]]]. If V ′ [σ][δ = a P ] ∈ SN , we get the result by the induction hypothesis since ηc(V ′ [σ]) < ηc(V [σ]). Otherwise this contradicts the assumption (H) since V ′ [σ][δ = a P ], R ′′ [α = b V ′ [σ][δ = a P ]] ∈ SN , V ′ [σ][δ = a P ][y := R ′′ [α = b V ′ [σ][δ = a P ]]] ∈ SN
i [τ i ] ∈ SN . Then M [x 1 := N 1 [τ 1 ], ..., x k := N k [τ k ]] ∈ SN . This is proved by induction on (lg(A), η(M ), cxty(M ), Σ η(N i ), Σ cxty(N i ))
where, in Σ η(N i ) and Σ cxty(N i ), we count each occurrence of the substituted variable. For example if k = 1 and x 1 has n occurrences, Σ η(N i ) = n.η(N 1 ).

If M is λyM 1 or (α M 1 ) or µαM 1 or a variable, the result is trivial. Assume then that - - 

M = (M 1 M 2 ). Let σ = [x 1 := N 1 [τ 1 ], ..., x k := N k [τ k ]]. By the induction hypothesis, M 1 [σ], M 2 [σ] ∈ SN . By
M 1 ⊲ * λyQ and Q[σ] ⊲ * P . Then Q[y := M 2 ][σ] = Q[σ][y := M 2 [σ]] ⊲ * P [y := M 2 [σ]] and, since η(Q[y := M 2 ]) < η(M ), this contradicts the induction hypothesis. -M 1 ⊲ * (x i -→ Q) and (N i --→ Q[σ]) ⊲ * λyP
M 1 ⊲ * µαQ and Q[σ] ⊲ * P . Then, Q[α = r M 2 ][σ] = Q[σ][α = r M 2 [σ]] ⊲ * P [α = r M 2 [σ]] and, since η(Q[α = r M 2 ]) < η(M ), this contradicts the induction hypothesis. -M 1 ⊲ * Q, N i [τ i ] ⊲ * µαL ′ and Q a = x i for some address a in Q such that L ′ [α = a Q[σ]] ⊲ * P and thus L ′ [α = b M ′ [σ]] ∈ SN

Remarks and future work

Why the usual candidates do not work ?

In [START_REF] Parigot | Proofs of strong normalization for second order classical natural deduction[END_REF], the proof of the strong normalization of the λµ-calculus is done by using the usual (i.e. defined without a fix-point operation) candidates of reducibility. This proof could be easily extended to the symmetric λµ-calculus if we knew the following properties for the un-typed calculus:

1. If N and (M [x := N ] -→ P ) are in SN , then so is (λxM N -→ P ).

2. If N and (M [α = r N ] -→ P ) are in SN , then so is (µαM N -→ P ).

If

-→ P are in SN , then so is (x -→ P ).

These properties are easy to show for the βµ-reduction but they were not known for the βµµ ′ -reduction.

The third property is true but the properties (1) and (2) are false. The proof of (3) and the counter-examples for (1) and (2) can be found in [START_REF] David | Why the usual candidates of reducibility do not work for the symetric λµ-calculus[END_REF].

Future work

We believe that our technique, will allow to give explicit bounds for the length of the reductions of a typed term. This is a goal we will try to manage.

  If u l [ρ][x := t l ] ∈ SN and u l = y ∈ dom(ρ). Let ρ(y) = µβ d[δ], then µβd[δ][x := t l ] ∈ SN and the result follows from the induction hypothesis with µβd and δ (case (2)) since ηc(µβd[δ]) < ηc(u[ρ]).

  r and thus, by lemma 3.1, u[ρ][x := t l ] would be in SN .(1) u l [ρ][x := t l ] = µα c and c[α := u r [ρ][x := t l ]] ∈ SN . -If u l = µα d, then d[α := u r ][ρ][x := t l ] ∈ SNand the result follows from the induction hypothesis with d[α := u r ] and ρ since η(d[α := u r ][ρ]) < η(u[ρ]). -If u l = y ∈ dom(ρ), let ρ(y) = µβ d[δ], then d[δ ′ ][x := t l ] ∈ SN where δ ′ = δ + [β := u r [ρ]] and the result follows from the induction hypothesis with d and δ ′ (case(2)).

  ) u r [ρ][x := t l ] = µy c and c[α := u l [ρ][x := t l ]] ∈ SN . Then u r = µy d and d[y := u l ][ρ][x := t l ] ∈ SN . The result follows from the induction hypothesis with d[y := u l ] and ρ since η(d[y := u l ][ρ]) < η(u[ρ]).

Lemma 4. 5 . 1 . 1 . 4 . 6 .

 51146 If (M N ) ⊲ * λxP , then M ⊲ * λyM 1 and M 1 [y := N ] ⊲ * λxP . 2. If (M N ) ⊲ * µαP , then either (M ⊲ * λyM 1 and M 1 [y := N ] ⊲ * µαP ) or (M ⊲ * µαM 1 and M 1 [α = r N ] ⊲ * P ) or (N ⊲ * µαN 1 and N 1 [α = l M ] ⊲ * P ).Proof (1) is trivial. (2) is as in lemma 4.Lemma Let M ∈ SN and σ = [x 1 := N 1 , ..., x k := N k ]. Assume M [σ]⊲ * λyP . Then, either M ⊲ * λyP 1 and P 1 [σ] ⊲ * P or M ⊲ * (x i -→ Q ) and (N i --→ Q[σ]) ⊲ * λyP .Proof By induction on ηc(M ). The only non immediate case is M = (R S). By lemma 4.5, there is a term R 1 such that R[σ] ⊲ * λzR 1 and R 1 [z := S[σ]] ⊲ * λyP . By the induction hypothesis (since ηc(R) < ηc(M )), we have two cases to consider. (1) R ⊲ * λzR 2 and R 2 [σ] ⊲ * R 1 , then R 2 [z := S][σ] ⊲ * λyP . By the induction hypothesis (since η(R 2 [z := S]) < η(M )), -either R 2 [z := S] ⊲ * λyP 1 and P 1 [σ] ⊲ * P ; but then M ⊲ * λyP 1 and we are done.

Lemma 4 . 10 .

 410 Let n be an integer, M ∈ SN , σ = [x 1 := N 1 , ..., x k := N k ] where lg(type(N i )) = n for each i. Assume M [σ] ⊲ * µαP . Then, 1. either M ⊲ * µαP 1 and P 1 [σ] ⊲ * P 2. or M ⊲ * Q and, for some i, N i ⊲ * µαN ′ i and N

•Definition 4 . 3 .Remark 4 . 2 .

 4342 It is reduced by a β-reduction, i.e. there is a term U such that R[σ] ⊲ * λyU and U [y := S[σ]] ⊲ * µαP . By lemma 4.6, there are two cases to consider. -either R ⊲ * λyR 1 and R 1 [σ][y := S[σ]] = R 1 [y := S][σ] ⊲ * µαP . The result follows from the induction hypothesis since η(R 1 [y := S]) < η(M ).-orR⊲ * (x i -→ R 1 ). Then Q = (x i -→ R 1 S) and a = [] satisfy the desired conclusion since then lg(type(M )) < n. Let A be a type. We denote by Σ A the set of substitutions of the form [α 1 = a 1 M 1 , ..., α n = an M n ] where the type of the α i is ¬A. Remember that the type of α is not the same in N and in N [α = a M ].

Lemma 4 . 12 .

 412 and the type of y is less than n. If M, N ∈ SN , then M [x := N ] ∈ SN .

  lemma 4.8 there are 3 cases to consider. • M 1 [σ] ⊲ * λyP and P [y := M 2 [σ]] ∈ SN . By lemma 4.6, there are two cases to consider.

  . Then, since the type of N i is A, lg(type(y)) < lg(A). But P, M 2 [σ] ∈ SN and P [y := M 2 [σ]] ∈ SN . This contradicts the induction hypothesis. • M 1 [σ] ⊲ * µαP and P [α = r M 2 [σ]] ∈ SN . By lemma 4.10, there are three cases to consider.

Theorem 4 . 2 .

 42 where b = (l :: a) andM ′ = (Q M 2 ). By lemma 4.2, N i ⊲ * µαL and L[τ i ] ⊲ * L ′ . Thus, L[τ i ][α = b M ′ [σ]] ∈ SN . By lemma 4.11, there is L 1 ≺ L and τ ′ such that L 1 [τ ′ ] ∈ SN and M ′ [σ] b = L 1 [τ ′ ] ∈ SN . Let M ′′ be M ′where the variable x i at the address b has been replaced by the fresh variable y and letσ 1 = σ + [y := L 1 [τ ′ ]]. Then M ′′ [σ 1 ] = M ′ [σ] b = L 1 [τ ′ ] ∈ SN .If M 1 ⊲ + Q we get a contradiction from the induction hypothesis since η(M ′′ ) < η(M ). Otherwise, M ′′ is the same as M up to the change of name of a variable and σ 1 differs from σ only at the address b. At this address, x i was substituted in σ by N i [τ i ] and in σ 1 by L 1 [τ ′ ] but ηc(L 1 ) < ηc(N i ) and thus we get a contradiction from the induction hypothesis.-M ⊲ * Q, Q a [σ] ⊲ * µαL for some address a in Q such that lg(type(Q a )) < lg(A) and L[α = a Q[σ]] ⊲ * P . Then, L[α = b M ′ [σ]] ∈ SN where b = [l :: a] and M ′ = (Q M 2 ).By lemma 4.11, there is anL ′ and τ ′ such that L ′ [τ ′ ] ∈ SN and M ′ [σ] b = L ′ [τ ′ ] ∈ SN . Let M ′′ be M ′where the variable x i at the address b has been replaced by the fresh variable y.Then M ′′ [σ][y := L ′ [τ ′ ]] = M ′ [σ] b = L ′ [τ ′ ] ∈ SN .But η(M ′′ ) ≤ η(M ) and cxty(M ′′ ) < cxty(M ) since, because of its type, Q a cannot be a variable and thus, by the induction hypothesis,M ′′ [σ] ∈ SN . Since M ′′ [σ][y := L ′ [τ ′ ]] ∈ SNand lg(type(L ′ )) < lg(A), this contradicts the induction hypothesis. • M 2 [σ] ⊲ * µαP and P [α = l M 1 [σ]] ∈ SN . This case is similar to the previous one. Every typed term is in SN . Proof By induction on the term. It is enough to show that if M, N ∈ SN , then (M N ) ∈ SN . Since (M N ) = (x y)[x := M ][y := N ] where x, y are fresh variables, the result follows by applying theorem 4.12 twice and the induction hypothesis.

  we denote by dom(σ) (resp. Im(σ)) the set {ξ 1 , ..., ξ n } (resp. {t 1 , ..., t n }). Assume t l , t r ∈ SN and t l , t r ∈ SN . Then either t l = µα c and c[α := t r ] ∈ SN or t r = µx c and c[x := t l ] ∈ SN .Proof By induction on η(t l ) + η(t r ). Since t l , t r ∈ SN , t l , t r ⊲ t for some t such that t ∈ SN . If t = t ′ l , t r where t l ⊲ t ′ l , we conclude by the induction hypothesis since η(t ′

	Lemma 3.7.

l ) + η(t r ) < η(t l ) + η(t r ). If t = t l , t ′ r where t r ⊲ t ′ r , the proof is similar. If t l = µα c and t = c[α := t r ] ∈ SN or t r = µx c and t = c[x := t l ] ∈ SN , the result is trivial.

  Theorem 3.2. The µμ-reduction is strongly normalizing. Proof By induction on the term. It is enough to show that, if t l , t r ∈ SN , then t l , t r ∈ SN . We prove something more general: let σ (resp. τ ) be in Σ r (resp. Σ l ) and assume t l [σ], t r [τ ] ∈ SN . Then t l [σ], t r [τ ] ∈ SN . Assume it is not the case and choose some elements such that t l [σ], t r [τ ] ∈ SN , t l [σ], t

r [τ ] ∈ SN and (η(t l ) + η(t r ), cxty(t l ) + cxty(t r )) is minimal. By lemma 3.7, either t l [σ] = µα c and c[α := t r [τ ]] ∈ SN or t r [τ ] = µx c and c[x := t l [σ]] ∈ SN . Look at the second case (the first one is similar). We have t r = µx d and d[τ ] = c, then d[τ ][x := t l [σ]] ∈ SN . By lemma 3.8, let u r ≺ d and τ

2.1.2. The typed calculusThe logical part of this calculus is the (classical) sequent calculus which is, intrinsically, symmetric. The types are built from atomic formulas with the connectors → and where the intuitive meaning of A -B is "A and not B". The typing system is a sequent calculus based on judgments of the following form:c : (Γ ⊢ △) Γ ⊢ t l : A , △ Γ, t r : A ⊢ △where Γ (resp. △) is a l-context (resp. a r-context), i.e. a set of declarations of the form x : A (resp. α : A) where x (resp. α) is a l-variable (resp. a r-variable) and A is a type.Γ, x : A ⊢ x : A , △ Γ, α : A ⊢ α : A, △ Γ, x : A ⊢ t l : B , △ Γ ⊢ λx t l : A → B , △ Γ ⊢ t l : A , △ Γ, t r : B ⊢ △ Γ, t l .t r : A → B ⊢ △ Γ ⊢ t l : A , △ Γ, t r : B ⊢ △ Γ ⊢ t r .t l : A -B , △ Γ, t r : A ⊢ α : B, △ Γ, λα t r : A -B ⊢ △Γ ⊢ t l : A , △ Γ , t r : A ⊢ △ t l , t r : (Γ ⊢ △)

Lemma 3.11. If t, t l , t r ∈ SN , then t[x := t l ], t[α := t r ] ∈ SN . Proof We prove something a bit more general: let A be a type and t a term.

(1) Let t 1 , ..., t k be l-terms and τ 1 , ..., τ k be substitutions in Σ A,r . If, for each i, t i has type A and t i [τ i ] ∈ SN , then t[x 1 := t 1 [τ 1 ], ..., x k := t k [τ k ]] ∈ SN .

(2) Let t 1 , ..., t k be r-terms and τ 1 , ..., τ k be substitutions in Σ A,l . If, for each i, t i has type A and t i [τ i ] ∈ SN , then t[α 1 := t 1 [τ 1 ], ..., α k := t k [τ k ]] ∈ SN .

We only consider (1) since [START_REF] Battyanyi | Normalization results for the symmetric λµcalculus[END_REF] is similar. This is proved by induction on (lg(A), η(t), cxty(t), Σ η(t i ), Σ cxty(t i )) where, in Σ η(t i ) and Σ cxty(t i ), we count each occurrence of the substituted variable. For example if k = 1 and x 1 has n occurrences, Σ η(t i ) = n.η(t 1 ).

The only no trivial case is t = u l , u r . Let σ = [x 1 := t 1 [τ 1 ], ..., x k := t k [τ k ]]. By the induction hypothesis, u l [σ], u r [σ] ∈ SN . By lemma 3.9, there are four cases to consider. -

we get a contradiction from the induction hypothesis.

, this contradicts the induction hypothesis.

-If u l = λxw l and w l [σ] = v l . Then w ′ l , µx w l , w r [σ] ∈ SN and this contradicts the induction hypothesis, since η( w ′ l , µx w l , w r ) < η(t).

where y is a fresh variable and thus w

where z is a fresh variable and lg(type(w ′ l [σ])) < lg(A), this contradicts the induction hypothesis. • The set of simultaneous substitutions of the form [α 1 = s 1 P 1 ..., α n = sn P n ] where s i ∈ {l, r} will be denoted by Σ.

• For s ∈ {l, r}, the set of simultaneous substitutions of the form [α 1 = s P 1 ...α n = s P n ] will be denoted by Σ s .

• Let σ ∈ Σ. We say that σ ∈ SN iff for every N ∈ Im(σ), N ∈ SN .

• If -→ P is a sequence P 1 , ..., P n of terms, (M -→ P ) will denote (M P 1 ... P n ). 

Proof By induction on M . M cannot be of the form

Look at the first case (the other one is similar). By the induction hypothesis

] ⊲ * P we are done. 

Proof Assume s = r (the other case is similar). Let Im(σ) = {N 1 , ..., N k }. Assume M, δ, σ, P satisfy the hypothesis. Let U = {U / U M } and V = {V / V N i for some i}. Define inductively the sets Σ m and Σ n of substitutions by the following rules:

] for some U ∈ U, ρ ∈ Σ m and τ ′ ∈ Σ n Denote by C the conclusion of the lemma, i.e. there is

The conclusion C follows from (1) with M and σ. The properties (1) and ( 2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and ηc(V [τ ]) (for the second case).

Look first at (1)

-if U = λxU ′ or U = µαU ′ : the result follows from the induction hypothesis with U ′ and ρ. 

the result follows from the induction hypothesis with V and τ (with (2)). Otherwise, by lemmas 4.2 and 4.3, there are two cases to consider.

-

The result follows from the induction hypothesis with U 2 and ρ ′ .

-

The result follows from the induction hypothesis with V 1 and τ ′ (with (2)).

The case (2) is proved in the same way. Note that, since δ is not free in the N i , the case b = (δ V 1 ) does not appear. • An address is a finite list of symbols in {l, r}. The empty list is denoted by [] and, if a is an address and s ∈ {l, r}, [s :: a] denotes the list obtained by putting s at the beginning of a.

• Let a be an address and M be a term. • Let M be a term and a be an address such that M a is defined. Then M a = N is the term M where the sub-term M a has been replaced by N .

• Let M, N be some terms and a be an address such that M a is defined. Then

-Let M = (P ((R (x T )) Q)) and a = [r :: l ::

-Note that the sub-terms of a term having an address in the sense given above are those for which the path to the root consists only on applications (taking either the left or right son).

-Note that

where N does not matter. More generally, the term N [α = a M ] does not depend of M a .

-Note that M a = N can be written as M ′ [x a := N ] where M ′ is the term M in which M a has been replaced by the fresh variable x a and thus (this will be used in the proof of lemma 4.12) if M a is a variable x,

where M 1 is the term M in which the particular occurrence of x at the address a has been replaced by the fresh name y and the other occurrences of x remain unchanged. Lemma 4.7. Let M be a term and σ

Proof By induction on M . Use lemma 4.5. • δ is free and has type ¬A in N but δ is not free in Im(τ ).

Then, there is

Proof The proof looks like the one of lemma 4.4. Denote by (H) the first assumption i.e. for every M, N ∈ SN such that lg(type(N )) < n, M [x := N ] ∈ SN .

Let τ = [α 1 = a 1 M 1 , ..., α n = an M n ], U = {U / U N } and V = {V / V M i for some i}. Define inductively the sets Σ m and Σ n of substitutions by the following rules:

Denote by C the conclusion of the lemma. We prove something more general.

(1

Note that the definitions of the sets Σ n and Σ m are not the same as the ones of lemma 4.4. We gather here in Σ n all the µµ ′ -substitutions getting thus the new substitutions of definition 4.2 and we put in Σ m only the λ-substitutions.

The conclusion C follows from (1) with N and τ . The properties (1) and ( 2) are proved by a simultaneous induction on ηc(U [ρ]) (for the first case) and ηc(V [τ ]) (for the second case).

The proof is by case analysis as in lemma 4.4. We only consider the new case for V [σ], i.e. when V = (V 1 V 2 ) and V i [σ][δ = a P ] ∈ SN . The other ones are done essentially in the same way as in lemma 4.4.

-Assume first the interaction between V 1 and V 2 is a β-reduction.

1 , the result follows from the induction hypothesis with V

-Assume next the interaction between V 1 and V 2 is a µ or µ ′ -reduction. We consider only the case µ (the other one is similar). If V 1 ⊲ * µαV ′ 1 , the result follows from the induction hypothesis with

Otherwise, by lemma 4.10, there are two cases to consider.

-