
HAL Id: hal-00381561
https://hal.science/hal-00381561

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiences from Verifying a Partitioning Kernel Using
Fault Injection

Raul Barbosa, Johan Karlsson

To cite this version:
Raul Barbosa, Johan Karlsson. Experiences from Verifying a Partitioning Kernel Using Fault Injec-
tion. 12th European Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France.
4 p. �hal-00381561�

https://hal.science/hal-00381561
https://hal.archives-ouvertes.fr


Experiences from Verifying a Partitioning Kernel Using Fault Injection

Raul Barbosa and Johan Karlsson
Department of Computer Science and Engineering

Chalmers University of Technology
SE-412 96 Göteborg, Sweden

{raul.barbosa, johan}@chalmers.se

Abstract

This paper describes the usage of fault injection for test-
ing a version of the µC/OS-II kernel which we extended with
robust partitioning mechanisms. The implemented mecha-
nisms were tested using a new fault injection plug-in for the
GOOFI tool, which aims to provide robustness testing for
partitioned systems. We describe the kernel extension and
the experiments, with the goal of fault removal, that explore
the capabilities of the new plug-in for testing the partition-
ing mechanisms. The experiments exposed two vulnerabili-
ties in the extension, showing the importance and potential
benefits of using fault injection for the assessment of parti-
tioned systems.

Keywords: fault injection, partitioning kernel, fault re-
moval, embedded systems.

1 Introduction

Embedded systems have traditionally been implemented
by dedicating a computer node to each software component
or function. This architecture, which is often referred to as
federated, has the advantage of providing clear fault con-
tainment boundaries in a design. Each software component
executes independently on its own processor and resource
sharing is reduced to message passing through a communi-
cation infrastructure. The need for fault tolerance is satis-
fied with the introduction of redundant computer systems as
well as redundant communication channels. This approach
makes it simple to contain hardware and software faults in
the computer where they originate.
The main drawback of federated architectures is that they

lead to a proliferation of hardware as the number of func-
tions grows. The trend to increase the number of subsys-
tems (designed to add new and enhance existing features)
demands a large number of micro-controllers – one per ma-
jor function. The consequence of such designs is the relia-

bility and cost problems faced by manufacturers of embed-
ded systems. The use of many independent computer sub-
systems increases the cost of acquisition, space and main-
tenance, as well as the power consumption. Moreover, a
larger number of hardware units leads to a higher fault rate
that may reduce the system’s reliability.
To address these problems, there is currently a trend to

integrate different functions and software components into a
common hardware platform with few but powerful process-
ing elements. Such integrated architectures have a great
potential to reduce cost and improve reliability, since they
require fewer hardware components than federated archi-
tectures. Furthermore, integrated architectures favor the in-
tegration of Commercial Off-The-Shelf (COTS) software in
order to reduce development and maintenance costs.
However, to achieve these improvements, it is necessary

to equip the system with robust partitioning mechanisms.
Such mechanisms prevent faults in the design of one func-
tion from disrupting the operation of other coexisting func-
tions [14]. Robust partitioning mechanisms should there-
fore ensure fault containment within nodes. These mecha-
nisms must prevent processes from writing into each other’s
memory space – spatial partitioning – as well as ensuring
that there is no interference in the time domain – temporal
partitioning –, which encompasses both task scheduling and
concurrency control.
This paper discusses ideas on the design of fault-tolerant

operating systems for embedded applications. The purpose
of the operating system is to create a partitioned environ-
ment which can be shared by multiple real-time tasks, pos-
sibly with distinct levels of criticality and uneven reliabil-
ity. The principal objective is to facilitate composability
within computer nodes, by preventing undesired interac-
tions among software components that share hardware re-
sources.
We describe an extension to the µC/OS-II real-time ker-

nel, named SECERN – meaning to separate components
from each other. This extension is intended for experimen-
tally assessing techniques for building robust operating sys-



tems. Reusing an existing code base, instead of creating a
new solution, has the advantage of making the results more
general and focusing the development effort on fault toler-
ance mechanisms. However, the trade-off is that many de-
sign decisions are inherited and may require adaptation to
circumstances differing from the original purpose, thereby
requiring some verification effort.
We conducted series of preliminary tests of the imple-

mented mechanisms using fault injection. A new fault in-
jection plug-in, aiming to provide robustness testing for par-
titioned systems, was developed for the GOOFI tool [2, 16].
The plug-in targets the Freescale MPC5554 microproces-
sor, which is the central element of the experimental plat-
form supported by the present version of SECERN. The set
of experiments described in this paper explore the capabil-
ities of the MPC5554 plug-in for testing the robustness of
SECERN.
The experiments are conducted according to a methodol-

ogy of focused fault injection, whose main objective is fault
removal, i.e., diagnosis and correction of design faults. It
consists of setting up finely controlled experiments in ac-
cordance with the system properties that are to be verified.
This methodology was applied for verifying the partitioning
mechanisms, which should be able to isolate faulty applica-
tions to guarantee the correct operation of fault-free parti-
tions.

2 SECERN: An Extension to µC/OS-II

The trend to integrate multiple functions into a single
hardware platform has created the need for building strong
fault containment around software components. Initiatives
such as the standard interface for avionics applications [1]
and the AUTOSAR project [6] aim at defining the software
infrastructures and, particularly, the operating systems that
support this level of fault containment. Since those initia-
tives target safety-critical systems, a fundamental concern
is to ensure that resource sharing can be accomplished in a
safe and reliable manner.
We have implemented an experimental prototype of SE-

CERN by extending the µC/OS-II real-time kernel [11]. The
source code of the kernel is well documented and freely
available for academic purposes, making it a suitable choice
for our implementation. The base version of µC/OS-II that
we used lacks support for isolating applications from one
another and from the operating system, which makes it ap-
propriate for experimentally assessing the SECERN concept.
The extended version of the kernel runs on a com-

puter board featuring a Freescale MPC5554 microproces-
sor [5], based on the PowerPC architecture. The processor
core includes an Memory Management Unit (MMU) which
provides, among other services, memory protection. The
hardware-specific layer of µC/OS-II was implemented by

creating a board support package containing low-level code
and macros. The kernel was then extended according to the
design principles that are described next.

2.1 Design Principles of SECERN

One of the key modifications to µC/OS-II is the distinc-
tion between processes and threads, where each process
owns a private address space that groups together one or
more execution threads. Each process acts as a container
which is usually called a partition in Integrated Modular
Avionics (IMA) terminology. The architecture of SECERN
is depicted in Figure 1.

Figure 1. µC/OS-II extended with SECERN.

The private address space of each process is protected by
the memory management hardware, which lies between the
processor core and main memory. Instructions always gen-
erate virtual addresses that are translated by the MMU to
physical addresses before a memory operation is performed.
During this process, the MMU checks that the application
process which is executing has the appropriate access rights
– read, write or execute permission for user- and kernel-
mode instructions. This feature is used to enforce the ap-
propriate access permissions on all memory pages. For sim-
plicity, a direct mapping is set between virtual and physical
addresses, i.e., in practice, no use is made of the address
translation feature.
Memory protection is a standard feature of desktop and

server computers. However, it is seldom used in embedded
real-time systems. One reason for this is that microcon-
trollers are usually not equipped with the necessary hard-
ware, in order to reduce cost and power consumption. An-
other reason is the variation in execution time imposed by
memory protection and address translation, which is usually
optimized for performance rather than predictability.
Typical implementations of memory management hard-

ware make use of a Translation Look-aside Buffer (TLB)
for improving the performance of address translation and



memory protection. A TLB is a very fast cache which con-
tains a small number of entries; each entry specifies the vir-
tual and physical addresses where a memory page starts, the
size of the page and the access rights. This cache reduces
the time overhead of the MMU but there is a large penalty
for memory accesses which are not matched by any TLB
entry. In this case, which is called a TLB-miss, a proces-
sor exception is raised to allow the system software to up-
date the TLB. This may become an issue, since interrupts
are generally unwanted in real-time systems and make it
more difficult to determine the Worst-Case Response Time
(WCRT) of applications.
To deal with this problem, the memory protection rou-

tines of SECERN are designed to update the TLB during
context switches. The approach is to insert in the TLB the
pages that belong to a process before running that process,
thereby preventing TLB-misses. This, in turn, simplifies the
response time analysis for hard real-time tasks. Neverthe-
less, this method adds an overhead to context switches.
The time needed for a full context switch without up-

dating any TLB entries is slightly below 10 µs (for saving
the numerous PowerPC context registers, updating kernel
structures and loading the registers of the next task). Con-
sidering a typical embedded application, requiring between
4 and 8 pages of memory, context switching would take
between 31 and 53 µs. This overhead should be carefully
examined when considering performance demands, as it is
common for real-time operating systems to switch context
in less than 10 µs. Nevertheless, when memory protection is
used, this increased time is a trade-off rather than a penalty.
Without updating the TLB, a process may cause in the worst
case one TLB-miss for each page. This is more expensive
than doing the update during context switches and generates
execution time jitter.
Introducing memory protection has implications on the

design of the system call interface, since it rules out the use
of the branch and link instruction for calling system ser-
vices. Instead, service requests are made through the sys-
tem call interrupt. This process is made transparent to ap-
plications by implementing the low-level details in a system
library – a common approach in operating system designs.
The system call mechanism is used by applications to re-

quest kernel services and to reach device drivers. For this
reason, it must be robust in order to prevent application er-
rors from propagating to other parts of the system. This is
often a problem, as experimental studies have shown that
many operating systems contain vulnerabilities in functions
provided by the system call interface [10], e.g., crashing the
system when given exceptional input parameters.
Another problem is that the system call mechanism must

be able to enforce access policies, in order to control the
services that each partition has the right to access. Some
authors propose the usage of sandboxing as the means to

protect the system call mechanism [12, 13]. This technique
consists of interposing the access to system calls with a fil-
ter that enforces a given policy. For real-time kernels, this
technique must be implemented as efficiently as possible.
We took a simple approach to implementing system call

protection. The kernel provides the partition’s ID to the
system call handler. The caller ID can be checked by the
drivers and by any kernel services to enforce an access pol-
icy. It is also possible to check the parameters to the system
call interface and report an error of the partition that exe-
cuted the call. This would act as an additional error detec-
tion mechanism.
One of the limitations of the current version of SECERN

is that it does not introduce mechanisms for temporal par-
titioning. µC/OS-II has a priority-based preemptive sched-
uler that executes always the task with the highest priority
which is ready to run. This means that a high priority task
may prevent lower priority tasks from executing, if it fails to
release the Central Processing Unit (CPU) on time. On the
other hand, this ensures that the highest priority task is never
disturbed by any other task (a limited form of temporal par-
titioning). In the fault injection experiments described in
this paper we focus on the behaviour of the highest priority
task.

2.2 Error Detection and Fault Handling

In addition to memory protection and checking the sys-
tem caller ID, our kernel extension makes use of processor
exceptions to detect errors. Moreover, it allows application-
specific checks to notify the kernel of errors. Many tech-
niques for creating application-specific checks are available
in the literature and the kernel provides the means for such
checks to report errors. When any of these error detection
mechanisms is triggered, SECERN handles the error in one
of two central exception handlers:

• Unrecoverable condition. An error is detected which
may be caused by a hardware problem or by a fault
in the operating system itself. All exceptions which
cannot be safely considered to be caused by one parti-
tion are unrecoverable. An example is an invalid mem-
ory access attempt by the kernel. The currently im-
plemented version enters an infinite loop in case of an
unrecoverable condition. It would be possible, for in-
stance, to restart the kernel, check the consistency of
the hardware and restart all tasks.

• Recoverable condition. The detected error is confined
to a single process (i.e., partition) and it is possible
to delete that process and continue executing. Exam-
ples of such errors are invalid memory accesses or in-
valid instructions executed by a partition. In this case,
SECERN deletes all threads belonging to the process



Figure 2. Evaluation platform for µC/OS-II and
SECERN.

and resumes execution. In hard real-time systems it is
fundamental to ensure that fault handling activities are
processed in a timely manner (in this case one would
have to determine the time needed to delete the faulty
process).

3 Robustness Testing for Partitioned Systems

We have extended the GOOFI tool [2, 16] with support
for injecting faults into the Freescale MPC5554 micropro-
cessor. The new fault injection plug-in is based on an ex-
isting plug-in which provides support for the MPC565 pro-
cessor. The experimental setup consists of a desktop com-
puter, with GOOFI and the winIDEA development environ-
ment, controlling an MPC5554 development board [8]. The
development board includes an on-board Nexus debugger.
Figure 2 depicts the experimental platform.
The MPC5554 fault injection plug-in is capable of au-

tomatically injecting bit-flips into processor registers and
memory locations. It allows the user to define a range of
code addresses where the execution can be stopped for in-
jecting a fault. In each experiment the tool selects one ran-
dom code address to set a breakpoint for fault injection. The
tool then chooses a resource randomly (register or memory
location) and one of its bits to inject the bit-flip once the
breakpoint is reached.
This plug-in, unlike its predecessors, does not collect the

sequence of instructions executed in the fault-free experi-
ment (i.e., it does not create a program trace). Doing so is
a time-consuming procedure, since the processor needs to
be stepped in order to determine the sequence of values of
the program counter. Due to the large number of instruc-
tions executed by the kernel, the application processes, the
idle task and other system tasks, the stepping process for the
reference experiment would take too much time.
To deal with this, the tool allows fault injection experi-

ments to be made without a program trace. This is achieved
by choosing a random address from the entire range of user-
defined addresses. Since that address might not be reached
once the program executes, there are a number of experi-
ments in which a fault is never injected and the outcome is
exactly the same as that of a fault-free experiment. Such
experiments are simply discarded during analysis and clas-

sification.
To provide fault injection for a partitioned environment,

the tool is capable of monitoring the execution of the oper-
ating system and collect the output of multiple tasks. The
user can define the output address of multiple workloads,
so that the results produced by tasks can be collected and
classified. Moreover, the tool can set breakpoints for mon-
itoring the activation of the two central exception handlers
described in the previous section, in order to monitor the op-
erating system. The activation of breakpoints and the output
data are saved to a database for analysis.
Regarding the workloads used as operating system tasks,

we use cyclic programs that execute some computations on
input data and delay themselves until the next iteration. Fig-
ure 3 shows the typical structure of the main routine of a
workload thread. The output breakpoint can be set to the
address before the call to OSTimeDlyUntil().

void thread(void *pdata)
{

INT32U next_time, period = 20;

next_time = OSTimeGet();

while(TRUE)
{

getInput();
computeOutput();
OSTimeDlyUntil(next_time += period);

}
}

Figure 3. Main routine of a workload thread.

4 Focused Fault Injection

One may conduct fault injection experiments with the
purpose of fault forecasting or fault removal. Fault fore-
casting experiments aim to estimate diverse measures of
dependability and to gain a better understanding of how a
system (or one particular component) behaves in the pres-
ence of real faults. Such experiments are useful for com-
paring alternative components with regards to their depend-
ability, for identifying a system’s dependability bottlenecks,
for characterizing a system’s dependability, etc.
The goal of fault removal experiments is to identify flaws

in the design or implementation of a component or a system,
so that they can be corrected. To achieve this, one places
the focus of experimentation on exercising specific parts of
the system with suitable types of faults (which the system
is required to tolerate). This form of fault injection is suit-
able for testing fault tolerance mechanisms and is therefore
helpful for the verification of computer systems.



Fault forecasting is a very frequent objective of fault in-
jection practitioners. Researchers often adopt this method
for experimentally validating new techniques, e.g., by deter-
mining the coverage provided by an error-detecting mech-
anism or the effectiveness of a recovery strategy. Taking a
broader perspective, there have been research efforts to pro-
mote the use of measurement theory for estimating depend-
ability [3] and to define methods for benchmarking the de-
pendability of computer systems [9]. Dependability bench-
marks aim, among other things, to guide the development
effort (e.g., by finding weaknesses in an architecture) and
to assist buyers in deciding among competing off-the-shelf
components.
Nevertheless, fault removal is also vital for many, if

not most, buyers of COTS software. Consider an exam-
ple where a system integrator intends to use an off-the-shelf
operating system for building a given application. The se-
lection process is influenced by numerous factors, including
technical findings – such as results of dependability bench-
marks – and management decisions – based on each ven-
dor’s credentials, guarantees in terms of long term support,
cost issues, etc. We can identify two risks here. First, the
selected operating system might not be the most depend-
able among the available choices. Second, regardless of
the choice, it may require adaptation to a specific hardware
platform and it could contain design or implementation de-
fects. Consequently, system integrators would be interested
in coming back to suppliers with problematic test cases that
require attention.
In this paper we adopt fault injection as the means to

find such test cases. We are interested in finding and re-
moving vulnerabilities in SECERN – particularly those re-
lated to partitioning. To this end, we begin by describing
a methodology for fault removal in partitioned systems and
then present the results of fault injection experiments target-
ing our experimental platform.

4.1 Methodology

A fault injection experiment with the objective of fault
removal has two principal outcomes: either the system fails
to cope with the fault that is injected (e.g., the operating sys-
tem crashes) or the service provided by the system is clas-
sified as correct. This classification requires sufficient data
to be collected during the experiments, so that we can de-
termine whether or not the system fails to handle any faults.
If so, those faults can be regarded as counterexamples, i.e.,
scenarios where one or more system properties are violated.
Naturally, the faultload must be representative of faults

that the system is required to tolerate. On the one hand
we wish to test systems extensively, in order to identify
as many existing defects as possible. On the other hand
all counterexamples should be meaningful, i.e., they should

only locate actual defects rather than calling our attention
to situations which the system is not supposed to handle.
To achieve this, we adopt a methodology of focusing fault
injection experiments in accordance with the system prop-
erties that are to be verified.
The concept of focused fault injection has been used in

the past for testing distributed systems [15]. We take a
conceptually similar approach targeting the verification of
node-layer fault tolerance mechanisms. Our goal is to ver-
ify that SECERN prevents application errors from propagat-
ing to the operating system and to other applications. We
are therefore searching for vulnerabilities in the software
related to partitioning mechanisms, e.g., the low-level code
that controls the hardware. Nevertheless, one should not ex-
clude the possibility of finding hardware design faults such
as those reported by Intel [7], affecting the MMU of recent
microprocessors. The fault injection experiments were de-
signed by taking the following steps:

• Configure the workloads in a relevant manner. We
configured the system to execute two processes, each
one with a single thread. The two threads executed, in
an infinite loop, a data processing routine and released
the CPU until the next iteration. The tasks executed
with sufficient frequency to force context switches
among them at intermediate points of the execution (of
the low priority thread).

• Inject faults that mimic application errors. The tool
injected bit-flips in the context registers (i.e., proces-
sor registers that are saved during context switches) of
the lowest priority task. Bit-flips are not representative
of software faults but, nevertheless, they are represen-
tative of faults that the system must handle. The tool
was configured to inject faults during the execution of
any instruction of the low priority thread.

• Collect sufficient data to classify experiments. Dur-
ing each experiment we collected the output of both
tasks and monitored the activation of the two central
exception handlers described earlier (to infer whether
the operating system had crashed).

• Classify the outcome of the experiments. We analyzed
the data resulting from the experiments in order to
check if partitioning had been violated. First, the out-
put of the high priority task was compared to that of a
fault-free reference experiment. Any difference in the
results indicates a partitioning violation. Second, the
activation of the unrecoverable exception handler in-
dicates that the operating system had crashed. Third,
experiments where the execution ended at a different
instruction address than the expected one are caused
by an undetected system crash.



• Examine experiments that expose counterexamples.
Faults that cause the operating system to crash, the
high priority task to produce wrong/missing output or
the high priority task to be deleted are classified as par-
titioning violations. For these experiments one must
examine the fault which was injected (the instruction
where the bit-flip was injected and the resource af-
fected), since it exemplifies a situation which is not
properly handled. Essentially, the question is to under-
stand what led a fault injected in the low priority thread
to affect other parts of the system.

• If necessary, instrument the code and document test
cases. We can manually instrument the code of the
workloads to mimic as closely as possible any fault
that exposes a counterexample. This optional step can
be useful, for example, when a system integrator finds
problematic test cases using fault injection; the system
integrator would prefer to send test cases consisting of
instrumented programs to the supplier of the operating
system, rather than sending the fault injection tool and
the fault definitions. Moreover, in our case this serves
as a way of validating the fault injection tool.

4.2 Results

We present the results of a campaign consisting of 284
fault injection experiments. Each of the two threads exe-
cuted a workload consisting of a wavelet transform, which
takes an array of input data an produces an output array con-
taining the result of the transform.
In our setup it takes 1min 12s to run a reference ex-

periment for collecting the results of a fault-free execution.
Each fault injection experiment takes, in average, 1min 25s.
Since we do not collect the program trace (i.e., the sequence
of instructions executed during the reference experiment),
we must set the fault injection breakpoint without being cer-
tain that it will be reached.
Table 1 shows that the fault injection breakpoint was

reached, in this set of experiments, in 67 occasions. In the
remaining 217 experiments the fault injection breakpoint
was not reached and this means that no fault was injected.
We analyzed the 67 experiments where a bit-flip was ac-

tually injected to determine whether it was correctly han-
dled. As explained earlier, the classification process takes
into account the activation of the centralized exception han-
dlers (recoverable and unrecoverable) and the output of the
tasks to determine whether or not the fault was handled. In
this case we consider only the output of the high priority
task, since we are injecting faults in the low priority task.
Table 2 shows the classification of the fault injection exper-
iments.
As we can see in Table 2, the operating system crashed

once and the high priority task produced wrong results in

three occasions. One of the wrong outputs occurred in
the same experiment where the operating system crashed
(which made it impossible for the task to continue execut-
ing). Thus, we found three experiments where the system
failed to handle a fault in the context of the low priority
task. One fault led the entire operating system to a crash
and two faults caused the high priority task to produce in-
correct results. These faults were carefully examined since
they exposed flaws in the system.

4.2.1 The Context Switch Flaw

The fault that led the operating system to a crash was in-
jected into processor register R1, which is the stack pointer.
At a certain point of the execution of the low priority task,
a bit-flip changed the stack pointer from 40007F0816 to
44007F0816. In practice, this meant that R1 no longer
pointed to the top of the low priority thread’s stack and now
pointed to an unused memory address.
We used the debugging environment to manually inject

a similar fault and observe the sequence of events that then
took place. Rather than using the stack pointer, the low pri-
ority task was executing a part of the main loop when a
context switch occurred. At this point, the µC/OS-II kernel
started to save the context of the task to the top of its stack
– the approach that it is designed to take. The problem was
that the stack pointer no longer pointed to the correct ad-
dress. Thus, the kernel attempted to write the context of the
task to address 44007F0816. This memory area was unused
and therefore not listed in the TLB, thus causing a TLB-
miss. In our design, a TLB-miss caused by kernel code is
an unrecoverable condition.
The code of the low priority task was manually instru-

mented to execute correctly for two seconds, corrupt the
stack pointer and enter an infinite loop (to wait for a context
switch). Figure 4 shows the instrumented code.
This fault showed that our extension to µC/OS-II failed

to provide perfect partitioning due to an inherited design
decision. Since µC/OS-II saves the context of tasks on the
top of their own stack, it is possible for a task to corrupt the
stack pointer and cause the kernel to write onto an erroneous
memory location.
There are numerous possible solutions to remove this

partitioning defect. We chose to add a stack pointer check
during context switches. The task control block of all tasks
(a kernel structure which stores important task information)
contains the location and size of each task’s stack. We
added a check to verify, before saving the context, that R1
points to a memory location in the task’s stack and that there
is enough space to write all context registers. After modify-
ing the context switching code we executed the test case in
Figure 4 and verified that the fault had been removed.



No. of Experiments Breakpoint Reached Breakpoint Not Reached
284 67 (23.6%) 217 (76.4%)

Table 1. Activation of the fault injection breakpoint.

Experiments
Operating System High Priority Task

Operational Crashed Correct
Output

Wrong
Output Deleted

67 66 1 64 3 (2+1) 0

Table 2. Outcome of the fault injection experiments.

void thread(void *pdata)
{

INT32U next_time, period = 20;

next_time = OSTimeGet();

while(TRUE)
{

// two seconds after startup
if(next_time > 200)
{

// set stack pointer to 0x44007F08
__asm__ (" lis %R1, 17408 ");
__asm__ (" addi %R1, %R1, 32520 ");
while(TRUE){ }

}

getInput();
computeOutput();
OSTimeDlyUntil(next_time += period);

}
}

Figure 4. Manual instrumentation of the low
priority thread to corrupt the stack pointer
and wait for a context switch.

4.2.2 The Configuration Error

The two experiments that caused the high priority task to
produce wrong results injected a fault into registers R6 and
R29. These faults were injected at a point of the execution
where these registers were being used to calculate mem-
ory addresses for write operations. The instructions that ex-
ecuted subsequently attempted to write into a page which
was shared by the two tasks, containing code and data be-
longing to a shared floating point library.
The issue here was that there were several pages erro-

neously configured with write permission for all tasks. The
initialization sequence inserts into the TLB the pages that
are listed permanently (kernel and shared libraries). An in-

spection of this sequence revealed that the pages were con-
figured with full permissions for all tasks, even though they
should be only readable and executable. In this case, a test
case would be as simple as instrumenting the code of the
low priority thread to write into those addresses. This con-
figuration error was solved by giving only read and execute
permissions on the library pages to all tasks.

4.3 Discussion and Limitations

These experiments demonstrate the potential of fault in-
jection as a fault removal technique for partitioned systems.
Despite the small number of faults injected and examined
in this paper, it was possible to find and correct two imple-
mentation flaws. However, we would have to conduct many
more experiments to exhaustively test the mechanisms in-
cluded in the extended real-time kernel.
Moreover, a limitation of these experiments is that we

only observed the output of the high priority task in the
value domain, i.e., the time when task produced its output
was not monitored. Thus, temporal partitioning was only
examined indirectly, by monitoring whether or not the high
priority task produced correct results at some point in time.
We have tested the robustness of the implementation in

the presence of bit-flips in the context of one process. Even
though this is a type of fault that the system must tolerate,
bit-flips in CPU registers and main memory are mostly rep-
resentative of transient hardware faults. An exhaustive test
of the kernel extension should take into account software
faults. These can be injected using software fault emulation
operators [4].

5 Conclusion

This paper presented SECERN – an approach to provide
partitioning and fault tolerance for real-time kernels. SE-
CERN includes several mechanisms to confine errors to the
applications where they originate. These mechanisms are
necessary for creating a partitioned environment which can



be shared by multiple real-time tasks, possibly with distinct
criticality.
The partitioning mechanisms were implemented as an

extension to the µC/OS-II real-time kernel. The current
version of the extension uses memory protection, processor
exceptions, system call protection and application-specific
checks to detect errors. These techniques were imple-
mented while taking into account that they must respect
the requirements of real-time tasks, i.e., they must introduce
low overhead and if possible no execution time jitter. The
extended kernel was developed for the Freescale MPC5554
microcontroller.
A new fault injection plug-in was developed for the

GOOFI tool, targeting the MPC5554 microprocessor and
aiming to provide robustness testing for partitioned sys-
tems. We conducted a series of fault injection experiments
using the tool for testing the kernel extension. These ex-
periments were conducted according to a methodology of
focused fault injection, with the goal of diagnosing and re-
moving design faults.
The experiments exposed two vulnerabilities in the ker-

nel extension: one related to configuration management,
where some memory pages were marked as writable for
all processes while they should only be readable and exe-
cutable; and one related to an inherited design decision re-
garding context switches which is unsuitable for partitioned
systems. Even though the tests are not exhaustive, they
show the importance and potential benefits of using fault
injection for the assessment of partitioned systems.

Acknowledgements

The authors wish to acknowledge Jorge Alçada, Ding
Xie and Chi Zhang for their contribution to the develop-
ment of the kernel extension and the fault injection envi-
ronment described in this paper. This work was partially
supported by the Swedish National Aviation Research Pro-
gramme (NFFP) project number S4207, and by the Saab
Endowed Professorship.

References

[1] Aeronautical Radio, Inc. ARINC specification 653-1:
Avionics application software standard interface, Oct. 2003.

[2] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson.
GOOFI: Generic object-oriented fault injection tool. In Pro-
ceedings of the 2001 International Conference on Depend-
able Systems and Networks (DSN 2001), pages 83–88, July
2001.

[3] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi.
Foundations of measurement theory applied to the evalua-
tion of dependability attributes. In Proceedings of the 37th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2007), pages 522–533, June
2007.

[4] J. A. Durães and H. S. Madeira. Emulation of soft-
ware faults: A field data study and a practical approach.
IEEE Transactions on Software Engineering, 32(11):849–
867, Nov. 2006.

[5] Freescale Semiconductor, Inc. MPC5553/MPC5554 Micro-
controller Reference Manual (Rev 4.0), Apr. 2007.

[6] H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi,
L. Lundh, J. Leflour, J.-L. Maté, K. Nishikawa, and
T. Scharnhorst. AUTomotive Open System ARchitecture
- an industry-wide initiative to manage the complexity of
emerging automotive E/E architectures. In Proceedings of
the 2004 International Congress on Transportation Elec-
tronics (Convergence 2004), pages 325–332, Oct. 2004.

[7] Intel Corporation. Intel R© CoreTM2 Extreme Processor
X6800 and Intel R© CoreTM2 Duo Desktop Processor E6000
and E4000 Sequence: Specification Update. Document No.
313279-026, May 2008.

[8] iSYSTEM AG. EVB-5554 Evaluation and Development Kit
for Freescale PowerPC MPC5554 Microcontroller (User’s
Manual), July 2007.

[9] K. Kanoun and L. Spainhower, editors. Dependability
Benchmarking for Computer Systems. Wiley, 2008.

[10] P. Koopman, K. DeVale, and J. DeVale. Dependability
Benchmarking for Computer Systems, chapter Interface Ro-
bustness Testing: Experience and Lessons Learned from the
Ballista Project, pages 201–226. Wiley, 2008.

[11] J. J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP
Books, second edition, 2002.

[12] D. S. Peterson, M. Bishop, and R. Pandey. A flexible con-
tainment mechanism for executing untrusted code. In Pro-
ceedings of the 11th USENIX Security Symposium, pages
207–225, Aug. 2002.

[13] N. Provos. Improving host security with system call poli-
cies. In Proceedings of the 12th USENIX Security Sympo-
sium, pages 257–272, Aug. 2003.

[14] J. Rushby. Partitioning in avionics architectures: Re-
quirements, mechanisms, and assurance. Technical Report
NASA/CR-1999-209347, NASA Langley Research Center,
June 1999.

[15] S. Tao, P. D. Ezhilchelvan, and S. K. Shrivastava. Focused
fault injection testing of software implemented fault toler-
ance mechanisms of Voltan TMR nodes. Distributed Sys-
tems Engineering, 2(1):39–49, Mar. 1995.

[16] J. Vinter, J. Aidemark, D. Skarin, R. Barbosa, P. Folkesson,
and J. Karlsson. An overview of GOOFI – a generic
object-oriented fault injection framework. Technical Re-
port 05-07, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, Göteborg, Sweden,
2005.


