
HAL Id: hal-00381559
https://hal.science/hal-00381559v1

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code Coverage Analysis for Concurrent Programming
Languages Using High-Level Decision Diagrams

Maksim Jenihhin, Jaan Raik, Anton Chepurov, Uljana Reinsalu, Raimund
Ubar

To cite this version:
Maksim Jenihhin, Jaan Raik, Anton Chepurov, Uljana Reinsalu, Raimund Ubar. Code Coverage Anal-
ysis for Concurrent Programming Languages Using High-Level Decision Diagrams. 12th European
Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 4 p. �hal-00381559�

https://hal.science/hal-00381559v1
https://hal.archives-ouvertes.fr

Code Coverage Analysis for Concurrent Programming Languages Using
High-Level Decision Diagrams

Maksim Jenihhin, Jaan Raik, Anton Chepurov, Uljana Reinsalu, Raimund Ubar

Department of Computer Engineering, Tallinn University of Technology
E-mail: < maksim>jaan>anchep>uljana>raiub ABpld.ttu.ee

Abstract
The paper presents using high-level decision

diagram (HLDD) as a suitable graph model for code
coverage analysis in concurrent programming
languages. The authors show that HLDD models are
scalable and compact models for realistic problems
can be automatically obtained. At the same time they
allow covering paths of non-blocking assignments,
which conventional code coverage metrics designed
for procedural programming languages are unable to
handle. The paper proposes optimal minimization
rules to be used in HLDD model synthesis for code
coverage analysis.

1. Introduction
In order to verify the correctness of a design,

different test cases are generated. Due to the fact that it
is impractical to verify exhaustively all possible inputs
and states of a design, the confidence level regarding
the quality of the design must be quantified to control
the verification effort. The fundamental question is:
How do I know if I have verified or simulated enough?
Verification coverage is a measure of confidence and it
is expressed as a percentage of items verified out of all
possible items. Different definitions of items give rise
to different coverage measures or coverage metrics.

Over the years, a large variety of code coverage
metrics have been proposed, including statement
coverage, block coverage, path coverage, branch
coverage, expression coverage, transition coverage,
sequence coverage, toggle coverage, condition
coverage etc [1],[2]. Structural coverage has a long
history in software testing and only with the
emergence of hardware description languages has it
been applied to hardware verification and test.

Note, however that all the above-mentioned
coverage metrics are designed to support sequential
procedural languages. However, concurrency inherent
in e.g. hardware description languages and concurrent
programming languages is not supported. In this paper
we present using high-level decision diagram (HLDD)
as a graph model for code coverage analysis in
concurrent programming languages. We show that
HLDD models are scalable and compact models for

realistic problems can be automatically obtained. At
the same time they allow covering paths of non-
blocking assignments, which conventional code
coverage metrics designed for procedural
programming languages are unable to handle.

The paper proposes optimal minimization rules to
be used in HLDD model synthesis for code coverage
analysis. Experiments using concurrent hardware
description language VHDL on ITC99 benchmarks
show that up to 14 % increase in coverage accuracy
can be achieved by the proposed methodology
compared to traditional code coverage metrics.

2. High-Level Decision Diagrams
2.1 HLDD model definition

A High-Level Decision Diagram (HLDD) is a
graph representation of a discrete function. A discrete
function y L f(x), where y = (y1, …, yn) and x = (x1, …,
xm) are vectors is defined on O L O1!…!Om with values
y " P = P1!…!Pn, and both, the domain O and the
range P are finite sets of values. The values of
variables may be Boolean, Boolean vectors, integers.
Fig. 1 presents an example of a graphical interpretation
of a HLDD.

Fig.1. A high-level decision diagram representing a

function y= f(x1,x2,x3,x4)

!"#$%&'&(&!)&
%#+m0, m1& m2, m3, m4,-
'#+e1, e2& e3, e4, e5,& e1=(m0, m1)& e2=$m0, m3)& e3=$m0, m4)&
e4=$m1, m2)& e5=$m1, m3)-
($m0)#($m4)=x2& ($m1)=x3& ($m2)=x4& ($m3)=x1-
!$e1)#+.,& !$e2)#+/&0&1,& !$e3)#+2&3&4&5,& !$e4)#+0,&
!$e5)#+.&/&1,6

!

70
m0

71
m1

72
m2

7/
m3

70
m4

y . 0

.&/&1

285

/81

e1 e4

e2

e5

e3

Definition 1: A high-level decision diagram is a
directed non-cyclic labelled graph that can be defined
as a quadruple GL(M,E,S,!), where M is a finite set of
vertices (referred to as nodes), E is a finite set of
edges, S is a function which defines the variables
labeling the nodes, and ! is a function on E.

The function S(mi) returns the variable xk, which is
labeling node mi. Each node of a HLDD is labeled by a
variable. In special cases, nodes can be labeled by
constants or algebraic expressions. An edge e"E of a
HLDD is an ordered pair e=(mpc,msc)"E2, where E2 is
the set of all the possible ordered pairs in set E.
Graphical interpretation of e is an edge leading from
node mpc to node msc.

It is said that mpc is a predecessor node of msc, and
msc is a successor node of the node mpc, respectively. !
is a function on E representing the activating
conditions of the edges for the simulating procedures.
The value of !(e) is a subset of the domain Ok of the
variable xk, where eL(mi,mj) and S(mi)=xk. It is
required that Pmi ={ !(e) | e = (mi,mj)"E} is a partition
of the set Ok.

Fig. 1 presents a HLDD for a discrete function
yLf(x1,x2,x3,x4). HLDD has only one starting node (root
node) m0, for which there are no preceding nodes. The
nodes that have no successor nodes are referred to as
terminal nodes Mterm " M (nodes m2, m3 and m4).

Design representation by high-level decision
diagrams, in general case, is a system of HLDDs rather
than a single HLDD. In fact, for each program variable
a separate HLDD is generated. During the simulation
in HLDD systems, the values of some variables
labeling the nodes of a HLDD are calculated by other
HLDDs of the system.

3. Concurrent programming using non-
blocking signal assignments
In this paper we consider code coverage measurement
for non-blocking signal assignments on the example of
a concurrent hardware description language VHDL.
VHDL uses a discrete event system to model time and
deal with concurrency, and so is very flexible. The
discrete event model is very general, but as a result,
somewhat difficult to analyze [7].

VHDL uses, both, blocking and non-blocking
assignments. All assignments to signals (with '<=') are
non blocking (i.e. they happen some (delta) time in the
future), and all assignments to variables (with ':=')are
blocking (i.e. they happen immediately).

Consider the following VHDL example ex1
provided in Fig. 2, which includes only non-blocking
assignments to signals. The signals have the following

naming notations {V- an output variable; cS - a
conditional statement; D- a decision; T- a terminal
node; C- a condition; W- a value}. The keywords
emphasized by bold determine if a line has a statement,
a branch or conditions.

In the following we will explain how efficient code
coverage measurement for the non-blocking
assignments can be performed using HLDD models.
This notion is totally missing in traditional code
coverage metrics and tools.

4. Optimization level of HLDD model
In the paper we distinguish three types of HLDD

representation according to their compactness. We
present reduction rules for HLDD. These rules are
similar to the reduction for BDDs presented in [6] and
can be generalized as follows:
! HLDD reduction rule1: Eliminate all the redundant

nodes whose all edges point to an equivalent sub-
graph.

! HLDD reduction rule2: Share all the equivalent sub-
graphs.

The three optimization levels in the increasing order
of compactness are:

• Full tree HLDD contains all control flow branches
of the design.

• Reduced HLDD is obtained by application of the
HLDD reduction rule 1 to the full tree
representation.

 Minimized HLDD is obtained by application of both
HLDD reduction rules 1 and 2 to the full tree
representation.

Fig. 2. A segment of the VHDL code of latw09_ex1 design

Stm Dcn VHDL code

1

2

3

4

5

6

7
8

9

10

1

2

3

4

5

6

7

...
if (cS1_C1 and cS1_C2)
then
 V1 <= V1_T1;
else
 V1 <= V1_T2;
end if;

case cS2_C is
when cS2_C_W1 =>
 V2 <= V2_T1;
when cS2_C_W2 =>
 V2 <= V2_T2;
when cS2_C_W3 =>
 V1 <= V1_T2;
 if(cS3_C1 and ((not cS3_C2) or cS3_C3))
 then
 V2 <= V2_T2;
 else
 V2 <= V2_T3;
end if;
end case;
...

Figures 3, 4 and 5 present a reduced, minimized,
full-tree and HLDD model representations for the ex1
example shown in Section 3, respectively.

4. HLDD-based coverage analysis
4.1 Statement coverage mapping

The statement coverage metric has a
straightforward mapping to HLDD-based coverage (an
idea was proposed in [3],[4], the details are

demonstrated in this paper). It maps directly to the
ratio of nodes mCurrent traversed during the HLDD
simulation presented in Algorithm 1 (Subsection 2.2)
to the total number of the HLDD nodes in the DUV’s
representation. The appropriate type of HLDD
representation for the analysis of, both, statement and
branch coverage metrics is the reduced one. The
variations in the analysis caused by different HLDD
representation types are discussed in Subsection 5.1.

Please consider the VHDL description of the ex1
example provided in Fig. 3. The numbers from the
first column (Stm) correspond to the lines with 10
statements (both conditional and assignment ones).
The 14 HLDD nodes of the two graphs in Fig. 4
correspond to these statements. Covering all nodes in a
HLDD model (i.e. full HLDD node coverage)
corresponds to covering all statements in the respective
HDL. However, the opposite is not true. HLDD node
coverage is slightly more stringent that HDL statement
coverage. Please consider as an example VHDL
statements 1, 2 and 3 and the respective nodes in Fig. 3
1a, 1b, 2a, 2b, and 3a, 3b. This impact in terms of the
stringency is also discussed in Subsection 5.1. At the
same time some of the HDL statements have
duplicated representation by the HLDD nodes (with
subscript indexes) due to the fact that in HLDD-based
design representation the diagrams are normally
generated for each data variable separately. As an
example please consider VHDL statement 4 and
HLDD nodes 41, 42 in Fig.3.

4.2 Branch coverage mapping
Similar to the statement coverage, branch coverage

also has very clear representation in HLDD model (an
idea was proposed in [3],[4], the details are
demonstrated in this paper). It is the ratio of every
edge eactive activated in the simulation process
presented by Algorithm 1 (Subsection 2.2) to the total
number of edges in the corresponding HLDD
representation of the code.

The numbers (underlined) from the second column
(Dcn) in Fig. 2 correspond to the lines with 7 branches
(i.e. decisions). The 12 HLDD nodes of the two graphs
in Fig. 3 correspond to these decisions. Covering all
edges in a HLDD model (i.e. full HLDD edge
coverage) corresponds to covering all branches in the
respective HDL. However, similar to the previously
discussed statement coverage mapping, here the
opposite is also not true and HLDD edge coverage is
slightly more stringent that HDL branch coverage.

The VHDL branches (Fig. 2) 1 and 2 are
represented in Fig. 3 by respective edges 1a, 1b and
2a, 2b. The duplicated edges are also emphasized by
subscript indexes, (e.g. 31,32 ^ 41,42 ^ _1,_2).

Fig. 5. Minimized HLDD for latw09_ex1

Fig. 4. Full tree HLDD for latw09_ex1

Fig. 3. Reduced HLDD for latw09_ex1

5. Experiments
This subsection presents experimental results for

four ITC99 benchmarks [8] that evaluate the proposed
HLDD-based structural coverage analysis
methodology. Table 1 presents the characteristics of
the different HLDD representations introduced in
Section 3.

Table 2 shows comparison results of the proposed

methodology based on different HLDD representations
and coverage analysis achieved by a commercial state-
of-the-art HDL simulation tool from a major CAD
vendor using the same sets of stimuli.

As it can be seen, the reduced HLDDs allow equal
or more stringent coverage evaluation in comparison to
the commercial coverage analysis software. For three
designs (b01, b06 and b09) more stringent analysis is
achieved using HLDDs. The HLDD model allows
increasing the coverage accuracy up to 13 % more
exact statement measurement and 14 % branch
measurement (b09 design). In our previous work [3] it
was shown that HLDD-based coverage analysis has
significantly lower (tens of times) computation (i.e.
measurement) time overhead compared to the same
commercial simulator.

6. Conclusions
The paper presents using high-level decision

diagram (HLDD) as a suitable graph model for code
coverage analysis in concurrent programming
languages. The authors show that HLDD models are
scalable and compact models for realistic problems can
be automatically obtained. At the same time they allow
covering paths of non-blocking assignments, which
conventional code coverage metrics designed for

procedural programming languages are unable to
handle. The paper proposes optimal minimization rules
to be used in HLDD model synthesis for code
coverage analysis suitable for concurrent languages.

It is important to emphasize that all coverage
metrics (i.e. statement, branch, condition or a
combination of them) in the proposed methodology are
analyzed by a single HLDD simulation tool which
relies on HLDD design representation model. Different
levels of coverages are distinguished by simply
generating a different level of HLDD (i.e. minimized,
reduced, or hierarchical with expanded conditional
nodes). Experimental results demonstrate feasibility
and efficiency of the proposed methodology.

Acknowledgments The work has been supported in part
by EC FP 7 REGPOT project CREDES, Estonian
Competence Centre CEBE, Enterprise Estonia funded
ELIKO Centre, Estonian SF grants 7068 and 7483, and
Estonian Information Technology Foundation (EITSA).

References
[1] Andrew Piziali, “Functional Verification Coverage

Measurement and Analysis”, Springer, 2008
[2] S. Tasiran, K. Keutzer, Coverage metrics for functional

validation of hardware designs. Design & Test of
Computers, IEEE, Volume 18, Issue 4, Jul-Aug. 2001, pp.
36-45

[3] J. Raik, U. Reinsalu, R. Ubar, M. Jenihhin, P. Ellervee,
“Code Coverage Analysis using High-Level Decision
Diagrams”, DDECS 2008, April, 2008, pp. 201-206

[4] K. Minakova, U. Reinsalu, A. Chepurov, J. Raik, M.
Jenihhin, R.Ubar, P. Ellervee, “High-Level Decision
Diagram Manipulations for Code Coverage Analysis”, BEC
2008, Tallinn, Estonia, October 2008, pp. 207 - 210

[5] R. Ubar, J. Raik, A. Morawiec, “Back-tracing and Event-
driven Techniques in High-level Simulation with Decision
Diagrams”, ISCAS 2000, Vol. 1, pp. 208-211.

[6] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation”, IEEE Trans. on Computers, Vol.
C-3_, No. 8, August 1986, pp. 677-691

[7] David A. Penry and David I. August. Optimizations for a
Simulator Construction System Supporting Reusable
Components Proceedings of the 40th Design Automation
Conference (DAC), June 2003.

[8] http://www.cerc.utexas.edu/itc99-benchmarks/bench.html

Number of nodes Number of edges
Design

min red. f.tree min red. f.tree
b01 1. 35 045 30 32 045
b02 /4 04 29 02 02 24
b06 25 //4 22. 91 /// 213
b09 22 4: /03 40 42 /0.

Table 1. Characteristics of different HLDD
i l ti

Table 2. Comparison of code coverage analysis results

Statement coverage,$;) Branch coverage, $;)
Design Stimuli,

$<=>?@AB) red. min. VHDL red. min. VHDL

/2 946. /.. :169 5260 9264 996: b01
01 96.5 /.. 100 90.3 /.. 100
/. :061 /.. :461 :/65 :/65 :169

b02
/2 /.. /.. /.. /.. /.. /..
// 9.60 /.. 9363 5:61 9:60 9563

b06
30 98.3 /.. 100 98.2 /.. 100
01 87.0 /.. 100 85.9 956/ 100

b09
11 /.. /.. /.. /.. /.. /..

