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Abstract 
The paper presents using high-level decision 

diagram (HLDD) as a suitable graph model for code 
coverage analysis in concurrent programming 
languages. The authors show that HLDD models are 
scalable and compact models for realistic problems 
can be automatically obtained. At the same time they 
allow covering paths of non-blocking assignments, 
which conventional code coverage metrics designed 
for procedural programming languages are unable to 
handle. The paper proposes optimal minimization 
rules to be used in HLDD model synthesis for code 
coverage analysis.    

1. Introduction 
In order to verify the correctness of a design, 

different test cases are generated. Due to the fact that it 
is impractical to verify exhaustively all possible inputs 
and states of a design, the confidence level regarding 
the quality of the design must be quantified to control 
the verification effort. The fundamental question is: 
How do I know if I have verified or simulated enough? 
Verification coverage is a measure of confidence and it 
is expressed as a percentage of items verified out of all 
possible items. Different definitions of items give rise 
to different coverage measures or coverage metrics. 

Over the years, a large variety of code coverage 
metrics have been proposed, including statement 
coverage, block coverage, path coverage, branch 
coverage, expression coverage, transition coverage, 
sequence coverage, toggle coverage, condition 
coverage etc [1],[2]. Structural coverage has a long 
history in software testing and only with the 
emergence of hardware description languages has it 
been applied to hardware verification and test.  

Note, however that all the above-mentioned 
coverage metrics are designed to support sequential 
procedural languages. However, concurrency inherent 
in e.g. hardware description languages and concurrent 
programming languages is not supported. In this paper 
we present using high-level decision diagram (HLDD) 
as a graph model for code coverage analysis in 
concurrent programming languages. We show that 
HLDD models are scalable and compact models for 

realistic problems can be automatically obtained. At 
the same time they allow covering paths of non-
blocking assignments, which conventional code 
coverage metrics designed for procedural 
programming languages are unable to handle.  

The paper proposes optimal minimization rules to 
be used in HLDD model synthesis for code coverage 
analysis. Experiments using concurrent hardware 
description language VHDL on ITC99 benchmarks 
show that up to 14 % increase in coverage accuracy 
can be achieved by the proposed methodology 
compared to traditional code coverage metrics.  

 

2. High-Level Decision Diagrams   
2.1 HLDD model definition 
 

A High-Level Decision Diagram (HLDD) is a 
graph representation of a discrete function. A discrete 
function y L f(x), where y = (y1, …, yn) and x = (x1, …, 
xm) are vectors is defined on O L O1!…!Om with values 
y " P = P1!…!Pn, and both, the domain O and the 
range P are finite sets of values. The values of 
variables may be Boolean, Boolean vectors, integers. 
Fig. 1 presents an example of a graphical interpretation 
of a HLDD. 

 
Fig.1. A high-level decision diagram representing a 

function y= f(x1,x2,x3,x4 ) 
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Definition 1: A high-level decision diagram is a 
directed non-cyclic labelled graph that can be defined 
as a quadruple GL(M,E,S,!), where M is a finite set of 
vertices (referred to as nodes), E is a finite set of 
edges, S is a function which defines the variables 
labeling the nodes, and ! is a function on E. 

The function S(mi) returns the variable xk, which is 
labeling node mi. Each node of a HLDD is labeled by a 
variable. In special cases, nodes can be labeled by 
constants or algebraic expressions. An edge e"E of a 
HLDD is an ordered pair e=(mpc,msc)"E2, where E2 is 
the set of all the possible ordered pairs in set E. 
Graphical interpretation of e is an edge leading  from 
node mpc to node msc.  

It is said that mpc is a predecessor node of msc, and 
msc is a successor node of the node mpc, respectively. ! 
is a function on E representing the activating 
conditions of the edges for the simulating procedures. 
The value of !(e) is a subset of the domain Ok of the 
variable xk, where eL(mi,mj) and S(mi)=xk. It is 
required that Pmi ={ !(e) | e = (mi,mj)"E} is a partition 
of the set Ok.  

Fig. 1 presents a HLDD for a discrete function 
yLf(x1,x2,x3,x4). HLDD has only one starting node (root 
node) m0, for which there are no preceding nodes. The 
nodes that have no successor nodes are referred to as 
terminal nodes Mterm " M (nodes m2, m3 and m4).  

Design representation by high-level decision 
diagrams, in general case, is a system of HLDDs rather 
than a single HLDD. In fact, for each program variable 
a separate HLDD is generated. During the simulation 
in HLDD systems, the values of some variables 
labeling the nodes of a HLDD are calculated by other 
HLDDs of the system.  

3. Concurrent programming using non-
blocking signal assignments   
In this paper we consider code coverage measurement 
for non-blocking signal assignments on the example of 
a concurrent hardware description language VHDL. 
VHDL uses a discrete event system to model time and 
deal with concurrency, and so is very flexible. The 
discrete event model is very general, but as a result, 
somewhat difficult to analyze [7]. 

VHDL uses, both, blocking and non-blocking 
assignments. All assignments to signals (with '<=' ) are 
non blocking (i.e. they happen some (delta) time in the 
future), and all assignments to variables (with ':=' )are 
blocking (i.e. they happen immediately). 

Consider the following VHDL example ex1 
provided in Fig. 2, which includes only non-blocking 
assignments to signals. The signals have the following 

naming notations {V- an output variable; cS - a 
conditional statement; D- a decision; T- a terminal 
node; C- a condition; W- a value}. The keywords 
emphasized by bold determine if a line has a statement, 
a branch or conditions.  

In the following we will explain how efficient code 
coverage measurement for the non-blocking 
assignments can be performed using HLDD models. 
This notion is totally missing in traditional code 
coverage metrics and tools. 

4. Optimization level of HLDD model 
In the paper we distinguish three types of HLDD 

representation according to their compactness. We 
present reduction rules for HLDD. These rules are 
similar to the reduction for BDDs presented in [6] and 
can be generalized as follows:  
! HLDD reduction rule1: Eliminate all the redundant 

nodes whose all edges point to an equivalent sub-
graph. 

! HLDD reduction rule2: Share all the equivalent sub-
graphs. 

The three optimization levels in the increasing order 
of compactness are:  

• Full tree HLDD contains all control flow branches 
of the design. 

• Reduced HLDD is obtained by application of the 
HLDD reduction rule 1 to the full tree 
representation.  

 Minimized HLDD is obtained by application of both 
HLDD reduction rules 1 and 2 to the full tree 
representation.   

Fig. 2. A segment of the VHDL code of latw09_ex1 design
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... 
if (cS1_C1 and cS1_C2) 
then  
   V1 <= V1_T1; 
else  
   V1 <= V1_T2; 
end if; 
 
case cS2_C is  
when cS2_C_W1 =>  
   V2 <= V2_T1; 
when cS2_C_W2 =>  
   V2 <= V2_T2; 
when cS2_C_W3 =>  
   V1 <= V1_T2; 
   if(cS3_C1 and ((not cS3_C2) or cS3_C3)) 
   then  
      V2 <= V2_T2; 
   else  
      V2 <= V2_T3;  
end if; 
end case; 
... 



Figures 3, 4 and 5 present a reduced, minimized, 
full-tree and HLDD model representations for the ex1 
example shown in Section 3, respectively.  

 

4. HLDD-based coverage analysis 
4.1 Statement coverage mapping 
 

The statement coverage metric has a 
straightforward mapping to HLDD-based coverage (an 
idea was proposed in [3],[4], the details are 

demonstrated in this paper). It maps directly to the 
ratio of nodes mCurrent traversed during the HLDD 
simulation presented in Algorithm 1 (Subsection 2.2) 
to the total number of the HLDD nodes in the DUV’s 
representation. The appropriate type of HLDD 
representation for the analysis of, both, statement and 
branch coverage metrics is the reduced one. The 
variations in the analysis caused by different HLDD 
representation types are discussed in Subsection 5.1. 

Please consider the VHDL description of the ex1 
example provided in Fig. 3.  The numbers from the 
first column (Stm) correspond to the lines with 10 
statements (both conditional and assignment ones). 
The 14 HLDD nodes of the two graphs in Fig. 4 
correspond to these statements. Covering all nodes in a 
HLDD model (i.e. full HLDD node coverage) 
corresponds to covering all statements in the respective 
HDL. However, the opposite is not true. HLDD node 
coverage is slightly more stringent that HDL statement 
coverage. Please consider as an example VHDL 
statements 1, 2 and 3 and the respective nodes in Fig. 3 
1a, 1b, 2a, 2b, and 3a, 3b. This impact in terms of the 
stringency is also discussed in Subsection 5.1. At the 
same time some of the HDL statements have 
duplicated representation by the HLDD nodes (with 
subscript indexes) due to the fact that in HLDD-based 
design representation the diagrams are normally 
generated for each data variable separately. As an 
example please consider VHDL statement 4 and 
HLDD nodes 41, 42 in Fig.3. 

4.2 Branch coverage mapping 
Similar to the statement coverage, branch coverage 

also has very clear representation in HLDD model (an 
idea was proposed in [3],[4], the details are 
demonstrated in this paper). It is the ratio of every 
edge eactive activated in the simulation process 
presented by Algorithm 1 (Subsection 2.2) to the total 
number of edges in the corresponding HLDD 
representation of the code.  

The numbers (underlined) from the second column 
(Dcn) in Fig. 2 correspond to the lines with 7 branches 
(i.e. decisions). The 12 HLDD nodes of the two graphs 
in Fig. 3 correspond to these decisions. Covering all 
edges in a HLDD model (i.e. full HLDD edge 
coverage) corresponds to covering all branches in the 
respective HDL. However, similar to the previously 
discussed statement coverage mapping, here the 
opposite is also not true and HLDD edge coverage is 
slightly more stringent that HDL branch coverage.  

The VHDL branches (Fig. 2) 1 and 2 are 
represented in Fig. 3 by respective edges 1a, 1b and 
2a, 2b. The duplicated edges are also emphasized by 
subscript indexes, (e.g. 31,32 ^ 41,42 ^ _1,_2). 

Fig. 5. Minimized HLDD for latw09_ex1 

Fig. 4. Full tree HLDD for latw09_ex1 

Fig. 3. Reduced HLDD for latw09_ex1 



5. Experiments 
This subsection presents experimental results for 

four ITC99 benchmarks [8] that evaluate the proposed 
HLDD-based structural coverage analysis 
methodology. Table 1 presents the characteristics of 
the different HLDD representations introduced in 
Section 3.  

 
Table 2 shows comparison results of the proposed 

methodology based on different HLDD representations 
and coverage analysis achieved by a commercial state-
of-the-art HDL simulation tool from a major CAD 
vendor using the same sets of stimuli.  

As it can be seen, the reduced HLDDs allow equal 
or more stringent coverage evaluation in comparison to 
the commercial coverage analysis software. For three 
designs (b01, b06 and b09) more stringent analysis is 
achieved using HLDDs. The HLDD model allows 
increasing the coverage accuracy up to 13 % more 
exact statement measurement and 14 % branch 
measurement (b09 design). In our previous work [3] it 
was shown that HLDD-based coverage analysis has 
significantly lower (tens of times) computation (i.e. 
measurement) time overhead compared to the same 
commercial simulator.  

 

6. Conclusions 
The paper presents using high-level decision 

diagram (HLDD) as a suitable graph model for code 
coverage analysis in concurrent programming 
languages. The authors show that HLDD models are 
scalable and compact models for realistic problems can 
be automatically obtained. At the same time they allow 
covering paths of non-blocking assignments, which 
conventional code coverage metrics designed for 

procedural programming languages are unable to 
handle. The paper proposes optimal minimization rules 
to be used in HLDD model synthesis for code 
coverage analysis suitable for concurrent languages.    

It is important to emphasize that all coverage 
metrics (i.e. statement, branch, condition or a 
combination of them) in the proposed methodology are 
analyzed by a single HLDD simulation tool which 
relies on HLDD design representation model. Different 
levels of coverages are distinguished by simply 
generating a different level of HLDD (i.e. minimized, 
reduced, or hierarchical with expanded conditional 
nodes). Experimental results demonstrate feasibility 
and efficiency of the proposed methodology.  
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Number of nodes Number of edges 
Design 

min red. f.tree min red. f.tree 
b01 1. 35 045 30 32 045 
b02 /4 04 29 02 02 24 
b06 25 //4 22. 91 /// 213 
b09 22 4: /03 40 42 /0. 

Table 1. Characteristics of different HLDD 
i l ti

Table 2. Comparison of code coverage analysis results 

Statement coverage,$;) Branch coverage, $;) 
Design Stimuli, 

$<=>?@AB)  red. min. VHDL red. min. VHDL 

/2 946. /.. :169 5260 9264 996: b01 
01 96.5 /.. 100 90.3 /.. 100 
/. :061 /.. :461 :/65 :/65 :169 

b02 
/2 /.. /.. /.. /.. /.. /.. 
// 9.60 /.. 9363 5:61 9:60 9563 

b06 
30 98.3 /.. 100 98.2 /.. 100 
01 87.0 /.. 100 85.9 956/ 100 

b09 
11 /.. /.. /.. /.. /.. /.. 


