Maksim Jenihhin

Jaan Raik

Anton Chepurov

Uljana Reinsalu

Raimund Ubar

Code Coverage Analysis for Concurrent Programming Languages Using High-Level Decision Diagrams

The paper presents using high-level decision diagram (HLDD) as a suitable graph model for code coverage analysis in concurrent programming languages. The authors show that HLDD models are scalable and compact models for realistic problems can be automatically obtained. At the same time they allow covering paths of non-blocking assignments, which conventional code coverage metrics designed for procedural programming languages are unable to handle. The paper proposes optimal minimization rules to be used in HLDD model synthesis for code coverage analysis.

Introduction

In order to verify the correctness of a design, different test cases are generated. Due to the fact that it is impractical to verify exhaustively all possible inputs and states of a design, the confidence level regarding the quality of the design must be quantified to control the verification effort. The fundamental question is: How do I know if I have verified or simulated enough? Verification coverage is a measure of confidence and it is expressed as a percentage of items verified out of all possible items. Different definitions of items give rise to different coverage measures or coverage metrics.

Over the years, a large variety of code coverage metrics have been proposed, including statement coverage, block coverage, path coverage, branch coverage, expression coverage, transition coverage, sequence coverage, toggle coverage, condition coverage etc [START_REF] Piziali | Functional Verification Coverage Measurement and Analysis[END_REF], [START_REF] Tasiran | Coverage metrics for functional validation of hardware designs[END_REF]. Structural coverage has a long history in software testing and only with the emergence of hardware description languages has it been applied to hardware verification and test.

Note, however that all the above-mentioned coverage metrics are designed to support sequential procedural languages. However, concurrency inherent in e.g. hardware description languages and concurrent programming languages is not supported. In this paper we present using high-level decision diagram (HLDD) as a graph model for code coverage analysis in concurrent programming languages. We show that HLDD models are scalable and compact models for realistic problems can be automatically obtained. At the same time they allow covering paths of nonblocking assignments, which conventional code coverage metrics designed for procedural programming languages are unable to handle.

The paper proposes optimal minimization rules to be used in HLDD model synthesis for code coverage analysis. Experiments using concurrent hardware description language VHDL on ITC99 benchmarks show that up to 14 % increase in coverage accuracy can be achieved by the proposed methodology compared to traditional code coverage metrics. Definition 1: A high-level decision diagram is a directed non-cyclic labelled graph that can be defined as a quadruple GL(M,E,S,!), where M is a finite set of vertices (referred to as nodes), E is a finite set of edges, S is a function which defines the variables labeling the nodes, and ! is a function on E.

High-Level Decision Diagrams

! " #$%&'&(&!)& %#+m 0 , m 1 & m 2 , m 3 , m 4 ,- '#+e 1 , e 2 & e 3 , e 4 , e 5 ,& e 1 =(m 0 , m 1)& e 2 =$m 0 , m 3)& e 3 =$m 0 , m 4)& e 4 =$m 1 , m 2)& e 5 =$m 1 , m 3)- ($m 0)#($m 4)=x 2 & ($m 1)=x 3 & ($m 2)=x 4 & ($m 3)=x 1 - !$e 1)#+.,& !$e 2)#+/&0&1,& !$e 3)#+2&3&4&5,& !$e 4)#+0,& !$e5)#+.&/&1,6
The function S(m i) returns the variable x k , which is labeling node m i . Each node of a HLDD is labeled by a variable. In special cases, nodes can be labeled by constants or algebraic expressions. An edge e"E of a HLDD is an ordered pair e=(m pc ,m sc)"E 2 , where E 2 is the set of all the possible ordered pairs in set E. Graphical interpretation of e is an edge leading from node m pc to node m sc .

It is said that m pc is a predecessor node of m sc , and m sc is a successor node of the node m pc , respectively. ! is a function on E representing the activating conditions of the edges for the simulating procedures. The value of !(e) is a subset of the domain O k of the variable x k , where eL(m i ,m j) and

S(m i)=x k . It is required that Pm i ={ !(e) | e = (m i ,m j)"E} is a partition of the set O k .
Fig. 1 presents a HLDD for a discrete function yLf(x 1 ,x 2 ,x 3 ,x 4). HLDD has only one starting node (root node) m 0 , for which there are no preceding nodes. The nodes that have no successor nodes are referred to as terminal nodes M term " M (nodes m 2 , m 3 and m 4).

Design representation by high-level decision diagrams, in general case, is a system of HLDDs rather than a single HLDD. In fact, for each program variable a separate HLDD is generated. During the simulation in HLDD systems, the values of some variables labeling the nodes of a HLDD are calculated by other HLDDs of the system.

Concurrent programming using nonblocking signal assignments

In this paper we consider code coverage measurement for non-blocking signal assignments on the example of a concurrent hardware description language VHDL. VHDL uses a discrete event system to model time and deal with concurrency, and so is very flexible. The discrete event model is very general, but as a result, somewhat difficult to analyze [START_REF] Penry | Optimizations for a Simulator Construction System Supporting Reusable Components[END_REF].

VHDL uses, both, blocking and non-blocking assignments. All assignments to signals (with '<=') are non blocking (i.e. they happen some (delta) time in the future), and all assignments to variables (with ':=')are blocking (i.e. they happen immediately). Consider the following VHDL example ex1 provided in Fig. 2, which includes only non-blocking assignments to signals. The signals have the following naming notations {V-an output variable; cS -a conditional statement; D-a decision; T-a terminal node; C-a condition; W-a value}. The keywords emphasized by bold determine if a line has a statement, a branch or conditions.

In the following we will explain how efficient code coverage measurement for the non-blocking assignments can be performed using HLDD models. This notion is totally missing in traditional code coverage metrics and tools.

Optimization level of HLDD model

In the paper we distinguish three types of HLDD representation according to their compactness. We present reduction rules for HLDD. These rules are similar to the reduction for BDDs presented in [START_REF] Bryant | Graph-Based Algorithms for Boolean Function Manipulation[END_REF] and can be generalized as follows: ! HLDD reduction rule1: Eliminate all the redundant nodes whose all edges point to an equivalent subgraph. ! HLDD reduction rule2: Share all the equivalent subgraphs.

The three optimization levels in the increasing order of compactness are:

• Full tree HLDD contains all control flow branches of the design. • Reduced HLDD is obtained by application of the HLDD reduction rule 1 to the full tree representation.

Minimized HLDD is obtained by application of both HLDD reduction rules 1 and 2 to the full tree representation.

HLDD-based coverage analysis 4.1 Statement coverage mapping

The statement coverage metric has a straightforward mapping to HLDD-based coverage (an idea was proposed in [START_REF] Raik | Code Coverage Analysis using High-Level Decision Diagrams[END_REF], [START_REF] Minakova | High-Level Decision Diagram Manipulations for Code Coverage Analysis[END_REF], the details are demonstrated in this paper). It maps directly to the ratio of nodes m Current traversed during the HLDD simulation presented in Algorithm 1 (Subsection 2.2) to the total number of the HLDD nodes in the DUV's representation. The appropriate type of HLDD representation for the analysis of, both, statement and branch coverage metrics is the reduced one. The variations in the analysis caused by different HLDD representation types are discussed in Subsection 5.1.

Please consider the VHDL description of the ex1 example provided in Fig. 3. The numbers from the first column (Stm) correspond to the lines with 10 statements (both conditional and assignment ones). The 14 HLDD nodes of the two graphs in Fig. 4 correspond to these statements. Covering all nodes in a HLDD model (i.e. full HLDD node coverage) corresponds to covering all statements in the respective HDL. However, the opposite is not true. HLDD node coverage is slightly more stringent that HDL statement coverage. Please consider as an example VHDL statements 1, 2 and 3 and the respective nodes in Fig. 3 1a, 1b, 2a, 2b, and 3a, 3b. This impact in terms of the stringency is also discussed in Subsection 5.1. At the same time some of the HDL statements have duplicated representation by the HLDD nodes (with subscript indexes) due to the fact that in HLDD-based design representation the diagrams are normally generated for each data variable separately. As an example please consider VHDL statement 4 and HLDD nodes 4 1 , 4 2 in Fig. 3.

Branch coverage mapping

Similar to the statement coverage, branch coverage also has very clear representation in HLDD model (an idea was proposed in [START_REF] Raik | Code Coverage Analysis using High-Level Decision Diagrams[END_REF], [START_REF] Minakova | High-Level Decision Diagram Manipulations for Code Coverage Analysis[END_REF], the details are demonstrated in this paper). It is the ratio of every edge e active activated in the simulation process presented by Algorithm 1 (Subsection 2.2) to the total number of edges in the corresponding HLDD representation of the code.

The numbers (underlined) from the second column (Dcn) in Fig. 2 correspond to the lines with 7 branches (i.e. decisions). The 12 HLDD nodes of the two graphs in Fig. 3 correspond to these decisions. Covering all edges in a HLDD model (i.e. full HLDD edge coverage) corresponds to covering all branches in the respective HDL. However, similar to the previously discussed statement coverage mapping, here the opposite is also not true and HLDD edge coverage is slightly more stringent that HDL branch coverage.

The VHDL branches (Fig. 2) 1 and 2 are represented in Fig. 3 by respective edges 1a, 1b and 2a, 2b. The duplicated edges are also emphasized by subscript indexes, (e.g.

Experiments

This subsection presents experimental results for four ITC99 benchmarks [8] that evaluate the proposed HLDD-based structural coverage analysis methodology. Table 1 presents the characteristics of the different HLDD representations introduced in Section 3.

Table 2 shows comparison results of the proposed methodology based on different HLDD representations and coverage analysis achieved by a commercial stateof-the-art HDL simulation tool from a major CAD vendor using the same sets of stimuli.

As it can be seen, the reduced HLDDs allow equal or more stringent coverage evaluation in comparison to the commercial coverage analysis software. For three designs (b01, b06 and b09) more stringent analysis is achieved using HLDDs. The HLDD model allows increasing the coverage accuracy up to 13 % more exact statement measurement and 14 % branch measurement (b09 design). In our previous work [START_REF] Raik | Code Coverage Analysis using High-Level Decision Diagrams[END_REF] it was shown that HLDD-based coverage analysis has significantly lower (tens of times) computation (i.e. measurement) time overhead compared to the same commercial simulator.

Conclusions

The paper presents using high-level decision diagram (HLDD) as a suitable graph model for code coverage analysis in concurrent programming languages. The authors show that HLDD models are scalable and compact models for realistic problems can be automatically obtained. At the same time they allow covering paths of non-blocking assignments, which conventional code coverage metrics designed for procedural programming languages are unable to handle. The paper proposes optimal minimization rules to be used in HLDD model synthesis for code coverage analysis suitable for concurrent languages.

It is important to emphasize that all coverage metrics (i.e. statement, branch, condition or a combination of them) in the proposed methodology are analyzed by a single HLDD simulation tool which relies on HLDD design representation model. Different levels of coverages are distinguished by simply generating a different level of HLDD (i.e. minimized, reduced, or hierarchical with expanded conditional nodes). Experimental results demonstrate feasibility and efficiency of the proposed methodology.

2. 1

 1 HLDD model definition A High-Level Decision Diagram (HLDD) is a graph representation of a discrete function. A discrete function y L f(x), where y = (y 1 , …, y n) and x = (x 1 , …, x m) are vectors is defined on O L O 1 !…!O m with values y " P = P 1 !…!P n , and both, the domain O and the range P are finite sets of values. The values of variables may be Boolean, Boolean vectors, integers. Fig. 1 presents an example of a graphical interpretation of a HLDD.

Fig. 1 .

 1 Fig.1. A high-level decision diagram representing a function y= f(x1,x2,x3,x4)

Fig. 2 .

 2 Fig. 2. A segment of the VHDL code of latw09_ex1 design

Figures 3 ,

 3 Figures 3, 4 and 5 present a reduced, minimized, full-tree and HLDD model representations for the ex1 example shown in Section 3, respectively.

 3 1 ,3 2 ^ 4 1 ,4 2 ^ _ 1 ,_ 2).

Fig. 5 .Fig. 4 .Fig. 3 .

 543 Fig. 5. Minimized HLDD for latw09_ex1

Table 1 . Characteristics of different HLDD i l tiTable 2 . Comparison of code coverage analysis results Statement coverage,$;) Branch coverage, $;)

 12

	Design	Number of nodes	Number of edges
		min	red.	f.tree	min	red.	f.tree
	b01	1.	35	045	30	32	045
	b02	/4	04	29	02	02	24
	b06	25	//4	22.	91	///	213
	b09	22	4:	/03	40	42	/0.

Acknowledgments The work has been supported in part by EC FP 7 REGPOT project CREDES, Estonian Competence Centre CEBE, Enterprise Estonia funded ELIKO Centre, Estonian SF grants 7068 and 7483, and Estonian Information Technology Foundation (EITSA).