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Risk-based Statistical Testing: A Refinement-

based Approach to the Reliability Analysis of 

Safety-Critical Systems 

Fabian Zimmermann, Robert Eschbach, Johannes Kloos and Thomas Bauer 

  

Abstract—In this paper, a method is presented that allows to 

automatically generate test cases for risk-based testing of safety-

critical systems. This is done through the systematic construction 

or refinement of risk-based test models. Our approach works for 

almost all kinds of model-based testing. In this paper, we use   

Model-based Statistical Testing as model-based test technique. 

Statistical testing uses Markov chain test models to describe the 

stimulation and usage profile of the system under test (SUT). In 

our method, the test models are refined in such a way that only 

critical test cases can be generated. The reliability of the SUT can 

be estimated for critical situations. 

 
Index Terms—Model-based testing, regular languages, risk-

based testing, software testing 

 

I. MOTIVATION 

he prevalence of safety-critical systems requires the 

identification and control of risks emanating from these 

systems. This means that potential hazards of these systems 

must be identified and handled. However, it is not enough to 

perform risk analyses solely during system construction. In 

fact, it is the obligation of quality assurance to demonstrate 

that a system fulfills certain safety requirements. For this 

purpose, test cases must be derived to address all potential 

hazards of the system. 

With increasing complexity and quality demands, the effort 

for testing increases as well, making manual testing 

impracticable. Test cases may be automatically derived from 

models. Here, mainly such test cases shall be derived that may 

cause especially critical situations in the system. These high-

risk situations may be identified using commonly-known risk 

analysis techniques, e.g., failure mode and effect analysis 

(FMEA), followed by cause-effect analysis such as fault tree 

analysis (FTA). 
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The contribution of this paper is an algorithmic method for 

modifying a given model for test case generation in such a 

way that only test cases satisfying given criticality conditions 

are generated.  

II. RELATED WORK 

Various works use the term Risk-based Testing. Some of them 

do not only consider hazards caused by the system under test, 

but also managerial risks. For example, Bach [2] considers the 

economic risk of putting too much effort into the development 

and quality assurance, i.e., the testing, of high-quality 

products. Redmill [8] also incorporates the risk in the 

development process and not only the risk of a system 

malfunction identified by a risk analysis, e.g., he discriminates 

forward risk and backward risk for testers, considering, 

among others, risks such as the use of untrained developers. In 

[9], Redmill describes possibilities for quantifying the risk of 

a software system, using the consequence of a fault, its 

probability, or both as a measurement of risk. This risk shall 

then be used for test planning. The choice of appropriate test 

techniques and test cases is not considered. 

Amland [1] calculates the risk of single functions of a 

software system under test. For this, he assesses the failure 

probability using several weighted factors like design quality, 

size, and complexity. The risk values can be used to decide 

which areas of the software are to be tested more extensively 

in addition to the usual tests. 

Chen et al. [4] describe a preference for re-running the 

highest-risk test cases for regression testing. This is done by 

assigning a risk value to each test case. The test cases are 

prioritized by their risk value. In contrast, we want to use risk 

already as a criterion for generating test cases and not only as 

a prioritization criterion. 

In [3], Bauer et al. describe an approach to use risk as a 

criterion for the generation of test cases from test models. Our 

work refines this approach.  

This paper is based on work presented at the TAV 

workshop 2009 [12], extending both the theoretical 

foundation of the work and showing an improved approach 

that allows for a larger number of relevant test cases. 

III. MODEL-BASED STATISTICAL TESTING 

Model-Based Statistical Testing (MBST) was developed as 

part of the Cleanroom software development process [5]. It is 

T 
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a function-oriented approach for validating a system against 

its requirements. The tests derived during MBST are used to 

estimate the expected reliability of the system under test. 
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Figure 1: First steps of MBST: Test Model Building 

 

Starting from the requirements, a model of the system with 

all possible inputs and the expected output is constructed on a 

high level of abstraction by applying the technique Sequence-

Based Specification (SBS, cf. [6]). 

In this way, a black-box model of the SUT is derived 

represented as a deterministic Mealy machine whose stimuli 

describe the system inputs and whose responses describe the 

system’s expected outputs. These steps of the process of 

MBST are described in Figure 1.This black-box model serves 

as input for building a usage model that describes the 

stimulation of the test object by its environment from the 

perspective of the test object. Usage models have particular 

states for the initialization (START) and finalization (EXIT) 

of test cases. A test case is an arbitrary path through the model 

from START to EXIT. The state START describes the state of 

the system and its environment at the beginning of a test case. 

The state EXIT marks the end of a test case and can be 

reached from all states where a test case can end via a 

transition marked Exit.  

A Markov chain usage model is then obtained by 

annotating a probability to each model transition. This 

Markov chain induces a probability distribution on all possible 

stimulus sequences. Random test cases can be derived from it 

according to this distribution. Thus, a test case is a random 

walk from START to EXIT in this Markov chain. For these 

Markov chains, we demand that each state is reachable from 

START, and that from each state, the EXIT state is reachable.   

If the probability distribution of the transitions reflects a 

realistic usage probability distribution, the randomly generated 

test cases correspond to the expected usage in the field. The 

test results are used to estimate the reliability of the test object 

with regard to the usage model (cf. [7]). Different metrics for 

estimating quality exist. 

After the model has been created and the usage 

probabilities have been identified, test cases may be 

automatically generated, executed, and evaluated. This is 

shown in Figure 2. 
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Figure 2: Last steps of MBST: Automated Testing  

 

Test cases generated in this way do not consider risk as a 

selection criterion. In [3], risk weights are used instead of 

usage probabilities to derive random test cases covering high 

risks. Therefore, risk weights are assigned to model 

transitions. This approach does not guarantee that transitions 

with high-risk annotations are actually used more often for 

generating test cases. If such transitions can only be reached 

by traversing transitions with lower-risk weights, they will 

occur less often than expected by this risk-based testing 

approach. On the other hand, if no actual usage profile is used, 

the reliability cannot be estimated statistically. 

 

IV. A SMALL EXAMPLE 

An alarm system will be used as a short example. This system 

triggers an alarm if it is activated and an observed room is 

entered by somebody. To stop the alarm, the system has to be 

deactivated. The stimuli identified are enter room, activate 

and deactivate. Relevant system responses are alarm and stop 

alarm. 

 

Figure 3 shows the test model of the alarm system. This 

model contains all possible inputs and the expected outputs of 

the SUT. Each transition is annotated with a probability based 

on a usage profile to generate random test cases automatically. 

In this example, each test case starts in the initial state where 

the alarm system is deactivated. At the end of each test case, 

the alarm system has to be deactivated as well.  

 

 
Figure 3: Test model of the alarm system 
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V.  RISK 

Risk assessments are widely used as a test selection 

criterion. Various standards and works offer different 

definitions of the term risk. An established standard for safety-

critical systems is IEC 61508 [11]. Thus, we apply its risk 

definition. It describes risk as a combination of the probability 

of occurrence of harm and the severity of that harm. Harm is 

the physical injury or damage to the health of people either 

directly or indirectly as a result of damage to property or to 

the environment.  

 

This standard demands a hazard and risk analysis before the 

first steps in the development process are taken. According to 

IEC 61508, a hazard is a potential source of harm.  

 

With techniques such as FMEA or HAZOP (Hazard and 

Operability Study), the hazards of the system are identified. 

For each hazard, the associated risk is considered. Therefore, 

the probability and severity of all hazards have to be 

measured. The FTA is a technique for recognizing the 

potential causes of each hazard and determining the associated 

risks. Based on the tolerable risk for the system, measures for 

risk reduction have to be defined. In IEC 61508, this can be 

done via so called safety functions. 

Based on the necessary risk reduction, the required safety 

integrity level (SIL) is calculated, and safety integrity 

requirements are derived. The SIL determines which measures 

are recommended or highly recommended during the whole 

life circle [10]. 

  

For quality assurance, we want to guarantee or at least 

provide confidence that a certain risk is actually beyond a 

defined tolerable risk level. This can be done by providing a 

test model capable of quickly generating a large number of 

test cases that contain risky situations. Our approach is based 

on marking certain transitions in a state-based test model as 

critical. The identification of these transitions is still subject to 

research, but will probably be based on standard methods for 

risk analysis (e.g., FMEA and FTA). Finally, we use this test 

model to generate test cases that contain these critical 

transitions, since these transitions will usually activate a safety 

function. After running these critical test cases, we can 

estimate the system’s reliability in critical situations and 

especially the reliability of certain safety functions. 

 
Figure 4: Identification of critical transitions 

 

In the alarm example, we assume that only the transition that 

triggers the alarm is critical (cf. Figure 4), since the triggering 

of the alarm represents the major safety function of the 

system. This transition is marked with a lightning symbol. 

 

VI. APPROACH 

Our goal is the generation of test cases that trigger a certain 

critical situation. These test cases will be called critical test 

cases. Risk analysis techniques such as FMEA and FTA may 

be used to identify the critical situations that represent high 

risk. 

One way of generating such test cases would be to just 

generate test cases according to the test model M, and filtering 

out all those test cases that are not critical. Later on, we will 

demonstrate that this approach may lead to many rejected test 

cases. 

Another approach would be the following: The current test 

model M is changed in such a way that only critical test cases 

are derived. The result is a new test model M’. In M’, all 

generated test cases (i.e., all paths from START to EXIT) 

should contain at least one critical transition. Furthermore, 

each path from START to EXIT in M’ should also be a path 

from START to EXIT in M, i.e., the new test model M’ is a 

refinement of the original test model M. 

 

Let traces(M) be the set of all test cases derivable from M and 

traces(M’) the set of all test cases derivable from M’. We 

require: 

traces(M’) ⊆  traces(M) 

 

For reasons of simplicity, we first assume that our test model 

M contains exactly one critical transition t0. An extension of 

this approach for more than one critical transition is described 

in section X. A critical test case is a test case traversing t0. 

 

We may assume that a critical situation occurs when 

transition t0 is traversed for the first time. There is a regular 

expression α corresponding to all possible paths in M ending 

with the critical transition t0 without having traversed t0 

before.1 It may be constructed by computing the regular 

expression corresponding to the source state of t0 (cf. [15]). 

The set of all these paths is then given by the regular language 

L(α). In our example above, the critical transition can be 

given by the regular expression 

“start” (“enter room” + “activate” “deactivate”)* 

“activate” “enter room” 

Let S be the set of all stimuli and S
* the set of all finite 

sequences of stimuli from S. Then the set of all paths from 

START to EXIT that contain t0 can be described as 

  

C := L(α) S*
 ∩  traces(M) 

 

The goal is to algorithmically construct a test model M’ 

 
1 Here, we use the fact that each state of the Markov chain has at most one 

outgoing transition with a given stimulus; this follows from the fact that the 

underlying Mealy machine is deterministic. 
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from M such that traces(M’) =  C. 

 

VII. PROBABILITY DISTRIBUTION FOR MBST 

These transformations are applicable to almost all kinds of test 

models for model-based testing. In MBST the test models are 

Markov chains with probabilities on each transition, so the 

resulting test model has to be a Markov chain as well.   

To generate test cases based on a realistic usage of the SUT, 

we need to make some assumption on the probability 

distribution of the resulting Markov chain: 

 

Let t be a critical test case and P(M gen t) the probability 

that t was randomly generated from model M. Then the 

probability that t was randomly generated from M under the 

assumption that a critical test case was generated (short P(M 

gen t | M gen H)) shall equal the probability that this test case 

is generated from M’: 

   

P(M gen t | M gen H) = P(M’ gen t) 

 

This condition is called the distribution condition. If this 

condition holds, the reliability of the critical transition t0 can 

be estimated. 

VIII. REALIZATION 

In this section, we describe how we derive the new test 

model M’.  The following algorithm is used to build the new 

test model: 

 

First, the original test model is copied twice. We get the two 

test models A and B. In model A, all Exit transitions are 

deleted. In model B, the initial state is deleted. The idea is that 

all test cases start with test steps in model A and end with test 

steps in model B. Model B should only be reachable by 

traversing the critical transition.  

 

Therefore, the critical transition t0 in A is replaced by a 

transition with the same source state and the same labels 

(probability, stimulus, and expected response). The target state 

of the new transition is not the original target state in model A 

but its corresponding state in model B. The new test model M’ 

is this combination of the models A and B.  

  
Figure 5: New test model 

hus, since A has no Exit transition and each path from A to B 

igure 5 shows the new model of our example. The critical 

 the resulting Markov chain, the transition probabilities are 

IX. AN ALTERNATIVE APPROACH 

In al transitions 

ca

assume that only the critical transitions in a test 

ca

nce again, we change the test model M to get a new test 

 

T

contains a critical transition, a critical transition is always 

traversed during test case generation (finding random paths 

from START to EXIT). By deleting all Exit transitions in 

model A, it is not always possible to reach EXIT from all parts 

of the new model M’. The parts that have no path to EXIT 

anymore are eliminated. This can be done by deleting all 

incoming transitions of these parts of the new model.      

 

F

transition with the stimulus enter room and expected 

responses alarm has to be triggered to reach the copy of the 

original test model containing an Exit transition. 

 

In

calculated by simply normalizing the outgoing transition 

probabilities of each state so that they sum to one. This can be 

shown by considering the transition probabilities for each state 

of the resultant Markov chains in turn. 

 our first approach, all test cases with critic

n be generated from a new test model M’. But many of these 

test cases contain a critical transition as a test step relatively 

early in the test case followed by a large number of uncritical 

test steps.  

We may 

se are interesting, so we want to generate test cases with the 

critical test steps at the end. The idea is to end a test case after 

the last critical situation has been tested. Steps before this 

critical situation are relevant for detecting unknown side 

effects that might influence the result of the critical test step. 

 

O

model with the desired properties. All test cases generated 

from the new test model M” contain a critical transition, but 

near the end of a test case.  
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Let M” be the new test model created with this approach, M’ 

the model created with the first approach, and M the original 

model, then we have: 

    

traces(M”) ⊆  traces(M’) ⊆  traces(M) 

 

Thus, only test cases with critical steps near the end can be 

derived from M”, traces(M”) is a subset of traces(M’).   

 

The following algorithm is used to create the new test model 

M”. In the original model M, all Exit transitions are deleted. 

After each critical transition, a new decision state is inserted. 

In this state, a decision between staying in the test model and 

going to EXIT has to be made. As in the other approach, parts 

that have no path to EXIT anymore have to be deleted. 

 

 
Figure 6: New test model with second approach 

he test cases generated with this approach contain at least 

igure 6 shows the new test model M” for our short example. 

s in our first approach, the probabilities have to be adjusted 

ssuming that we have only one critical transition t0, the 

 

T

one critical transition. No additional test steps (or transitions) 

have to be taken into account after the last critical step. The 

final steps of each test case after the last critical step lead to 

the EXIT state. These steps are only taken to end the test case 

properly. 

 

F

After the critical transition with the stimulus enter room and 

the expected response alarm, a new state has been inserted. In 

this state, the decision between ending the test case and 

generating a longer test case has to be made. To end this test 

case properly the stimulus deactivate is sent to the SUT as the 

last step.  

 

A

in such a way that the distribution condition holds. In states 

where transitions are deleted, this is again done by simply 

normalizing the outgoing transition probabilities so that they 

sum to one. More complicated is the calculation of outgoing 

transition probabilities for the new decision states. 

 

A

probability of leaving to EXIT shall equal the probability of 

reaching EXIT in the original test model M without traversing 

t0 again. 

X. MANY CRITICAL TRANSITIONS 

In realistic applications, test models often contain several 

hundred transitions [13]. Even if most of them are uncritical, 

there is almost always more than one critical transition. For 

models with multiple critical transitions, there are many 

possibilities for generating critical test cases. For example one 

could require that every test case contains at least one critical 

transition or that it contains all critical transitions.  Another 

possibility is to claim that each test case contains at least a 

fixed number of critical transitions.  

 

Assuming that there are n critical transitions in test model M 

and α1,...,αn are the regular expressions matching these 

transitions.  

Then the first solution can be described in the language of 

regular languages:  

Let S be the set of all stimuli and S
* the set of all finite 

sequences of stimuli from S.  

M’ shall have the property that 

 

traces(M’) =  (L(α1) S
* ∪ ... ∪  L(αn) S

*) ∩  traces(M). 

 

All test cases generated from the new test model M’ contain at 

least one critical transition. 

 

The second solution is to claim that each test case generated 

from the new test model M* contains all critical transition. In 

the language of regular expressions this means that M* 

satisfies 

 

traces(M*) =  L(α1) S
* ∩ ... ∩ L(αn) S

* ∩  traces(M). 

 

This assumption is dangerous because traces(M*) could be the 

empty set. The same problem occurs if we claim that each test 

case contains at least a fixed number of critical transitions 

bigger than one. So we prefer the first solution. 

 

The easiest way to build M’ is to construct one model for each 

critical transition. Let crit1,...,critn be the critical transitions 

identified in M. Then we can build one test model Mi’ for each 

critical transition criti by simply ignoring the other critical 

transitions. M’ can be built using a union automaton of these 

models such that the following condition holds: 

 

traces(M’) =  traces(M1’) ∪ ... ∪  traces(Mn’). 

  

Thus, each test case that can be generated from one of the 

models Mi’ is also derivable in M’.  

XI. A LARGER EXAMPLE: A RAILWAY CONTROL SYSTEM 

We demonstrate and evaluate our approach on the test model 

for a Railway Control System (RCS). This railway control 

system is based on a railroad operating procedure called 

“Zugleitbetrieb”, which is used for low-traffic railroad lines in 

Germany. Those requirements of the RCS that are relevant for 
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our example are detailed in Table 1. We will show that the 

generation of critical test cases in the original test model is 

fairly unlikely, meaning that we would need to generate an 

enormous number of test cases from the original model to get 

the same number of critical test cases as in a transformed 

model. 

 

The RCS is an assistance system for a train director, 

managing information about the positions and destinations of 

trains and the lengths of track reserved for the journeys of 

trains. 

The RCS shall use various track-side equipment such as track 

vacancy detectors (devices that check whether a train is inside 

a certain area of the railroad network) […] to counter-check 

and enforce the train director’s decisions. 

The railroad network is partitioned into blocks, i.e., connected 

subnetworks of the railroad network. 

Safety requirement: Each block may contain at most one 

train. 

Safety requirement: All situations where a train enters an 

unreserved or already occupied block must be detected and 

emergency measures must be taken. 

The RCS shall be able to work with any track layout and any 

number of trains running on its network. 

If a train driver wants to run his train from station A to station 

B, he must follow this procedure: 

1. Request a track reservation from A to B. If this 

reservation fails, he may retry until he succeeds. 

2. The track must be set up. 

3. When leaving station A (i.e., once the last wagon has 

left A), he may notify the train director that the train 

has left A. 

4. When arriving at B (i.e., once the last wagon has 

fully arrived at B), he must notify the train director 

that the train has arrived at B. 

Table 1: Requirements for the RCS 

 

Several additional requirements are needed for the 

construction of the system model; the details can be found in 

[13]. 

C

D

A

$

E

Ff2f1
 

Figure 7: A small railroad network. The lines represent 

railroad tracks, which are joined at switches (visualized by 

the black triangles). The block borders are the dashed 

lines. 

 

The idea behind the test model is to automatically construct a 

test model for a given track layout and train schedule, 

allowing the construction of stimulation models by domain 

experts for configurations that lead to many inherently risky 

situations. 

This is done by describing a test model fragment for the 

movement of a train from one station to the next, then 

building a larger fragment for the movement of each train 

from its starting point to its final destination, and ultimately 

computing a model describing the parallel execution of these 

fragments for all trains in the network. 

 

 
Figure 8: A test model fragment describing the possible 

movements of a train from station S1 to station S2 via the 

track in block F. The colored state in the middle is an 

error state where the system should be shut down. 

 

The small fragment is depicted in Figure 8, and a stimulation 

model fragment for a train moving from station A to C and 

then to E in the railroad network given in Figure 7 is shown in 

Figure 9. The resulting test model for two trains, one running 

from A to C and then to E and another running from B to D 

and then to A, is already too large to display: It has 262 states 

and 635 transitions, permitting approximately 1.8 · 10
18 

possible test cases, not counting those test cases that use self-

loop transitions. 

 

In the requirements list, two requirements are listed as safety 

requirements, namely the invariant that a block may contain at 

most one train at a time, and that all situations where a train 

enters an unreserved or already occupied block must be 

detected and emergency measures must be taken. These 

requirements result from an FMEA identifying train collisions 

as the main system hazard. Starting here, these safety 

requirements are derived as measures against the two possible 

causes of train collisions: unauthorized train movements and 

erroneous movement authorizations. In particular, erroneous 

reservations are forbidden by the invariant, while 

unauthorized movements are detected (if possible) by the 

second safety requirement. 

 

For the application of our method, we need to identify the 

critical transitions in the test model. Here, we use the results 

from above, leading to the transitions marked with a lightning 

symbol in Figure 8. Of these transitions, the one on the left, 

marked with a small 1, describes a movement without 

authorization, while all the others describe a train entering an 

already occupied or unreserved block, which violates the 

invariant. 

 

Only approximately 3.8% of all test cases that can be derived 

from the test model are critical.   

Using realistic profile, e.g., one generated from field data, one 

finds that the critical transitions actually have very low 
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probability in normal use, since they correspond to serious 

system failures or procedure violations. We assume that the 

probability for a critical transition is very low compared with 

the probability of an uncritical transition. They only occur 

when a train enters unauthorized a block or gets an erroneous 

movement authorizations. Assuming that the probability of 

each critical transition less than 0.1%, only few of all 

randomly generated test cases steps contain a critical 

transition. 

 

Thus, with a realistic profile, we can assume that the 

probability that a randomly generated test case traverses one 

of the critical transitions is extremely small. 

On the other hand, we applied the model transformation 

technique as described in section X for each critical transition 

in the model. In this way, we arrived at a usage model with 

432 states and 1002 transitions. This model permits 6.8 · 10
16 

possible (loop-free) test cases, all of which traverse at least 

one critical transition. 

 

Thus, we find that the model transformation increases the 

likelihood of a critical test case from less than 3.8% to 100%. 

Expressed differently, using the original model, one in 

roughly 26 test cases is a critical test case (using a uniform 

distribution), while the modified test model generates only 

critical test cases. At the same time, the resulting test model 

still allows the generation of a large number of test cases, 

which is necessary for significant reliability computations. 

XII. CONCLUSION AND OUTLOOK 

This paper describes work in progress for the derivation of 

critical test cases in model-based statistical testing by using a 

modified test model, constructed for the guaranteed generation 

of high-risk test cases. 

 

One possible extension of this method could be the 

classification of the risks of transitions. In this way, test suites 

with different minimal risks could be derived. 

 

Another step would be the extension of the theoretical 

background of our method into a theory of Markov usage 

model transformations describing conservation properties. For 

example, it would be worthwhile knowing how the 

reliabilities of the outgoing transitions of modified states must 

be chosen so that reliability estimations are still valid. A 

further development of this theory could also encompass the 

model transformations induced by model composition 

operators. 

 

One last area of research would be to find similar model 

transformation operators permitting more complex failure 

scenarios, and then analyze the operators found in this way for 

effectiveness and efficiency with regard to risk-oriented 

failure detection. 
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XIII. APPENDIX: AN INSTANCE OF THE RCS TEST MODEL FOR 

ONE TRAIN 

Reserve

[track available]

Setup Enter F

[clear]
Leave S1

Departure

Notification

Leave F

Arrival

Notification

Departure

Notification

Enter S2

[clear]
Reserve

[track unavailable]

Enter F

[clear, res.] 

Leave S1 Leave F

Enter S2

[clear,reserved]

Enter F [occupied/unreserved]

Enter F 

[occupied]

Enter S2 

[occ./unres.]
Enter S2 

[occupied]

Enter S2 [occupied] 

Enter S2

[clear]

Reserve

[track available]

Setup Enter F

[clear]
Leave S1

Departure

Notification

Leave F

Arrival

Notification

Departure

Notification

Enter S2

[clear]
Reserve

[track unavailable]

Enter F

[clear, res.] 

Leave S1 Leave F

Enter S2

[clear,reserved]

Enter F [occupied/unreserved]

Enter F 

[occupied]

Enter S2 

[occ./unres.]
Enter S2 

[occupied]

Enter S2 [occupied] 

Enter S2

[clear]

 

Figure 9: An instance of the RCS test model for one train 

running from A to C via F1 and from there to E via F2. 

The notation is described in Figure 8. 


