
HAL Id: hal-00381556
https://hal.science/hal-00381556

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Risk-based Statistical Testing: A Refinement-based
Approach to the Reliability Analysis of Safety-Critical

Systems
Fabian Zimmermann, Robert Eschbach, Johannes Kloos, Thomas Bauer

To cite this version:
Fabian Zimmermann, Robert Eschbach, Johannes Kloos, Thomas Bauer. Risk-based Statistical Test-
ing: A Refinement-based Approach to the Reliability Analysis of Safety-Critical Systems. 12th Eu-
ropean Workshop on Dependable Computing, EWDC 2009, May 2009, Toulouse, France. 8 p. �hal-
00381556�

https://hal.science/hal-00381556
https://hal.archives-ouvertes.fr

1

Risk-based Statistical Testing: A Refinement-

based Approach to the Reliability Analysis of

Safety-Critical Systems

Fabian Zimmermann, Robert Eschbach, Johannes Kloos and Thomas Bauer

Abstract—In this paper, a method is presented that allows to

automatically generate test cases for risk-based testing of safety-

critical systems. This is done through the systematic construction

or refinement of risk-based test models. Our approach works for

almost all kinds of model-based testing. In this paper, we use

Model-based Statistical Testing as model-based test technique.

Statistical testing uses Markov chain test models to describe the

stimulation and usage profile of the system under test (SUT). In

our method, the test models are refined in such a way that only

critical test cases can be generated. The reliability of the SUT can

be estimated for critical situations.

Index Terms—Model-based testing, regular languages, risk-

based testing, software testing

I. MOTIVATION

he prevalence of safety-critical systems requires the

identification and control of risks emanating from these

systems. This means that potential hazards of these systems

must be identified and handled. However, it is not enough to

perform risk analyses solely during system construction. In

fact, it is the obligation of quality assurance to demonstrate

that a system fulfills certain safety requirements. For this

purpose, test cases must be derived to address all potential

hazards of the system.

With increasing complexity and quality demands, the effort

for testing increases as well, making manual testing

impracticable. Test cases may be automatically derived from

models. Here, mainly such test cases shall be derived that may

cause especially critical situations in the system. These high-

risk situations may be identified using commonly-known risk

analysis techniques, e.g., failure mode and effect analysis

(FMEA), followed by cause-effect analysis such as fault tree

analysis (FTA).

Manuscript received February, 25th 2009. This work was supported in part

by the German Federal Ministry of Education and Research (BMBF) in the

context of the projects ViERforES (No.: 01 IM08003 B) and D-Mint (No.: 01

IS07001 E).

All authors are with Fraunhofer IESE, Kaiserslautern, Germany.

Corresponding author: Fabian Zimmermann (phone: +49-631-6800-2135; fax:

+49-631-6800-92135; e-mail: fabian.zimmermann@iese.fraunhofer.de). The

e-mail addresses of the other authors are robert.eschbach@iese.fraunhofer.de,

johannes.kloos@iese.fraunhofer.de and thomas.bauer@iese.fraunhofer.de,

respectively.

The contribution of this paper is an algorithmic method for

modifying a given model for test case generation in such a

way that only test cases satisfying given criticality conditions

are generated.

II. RELATED WORK

Various works use the term Risk-based Testing. Some of them

do not only consider hazards caused by the system under test,

but also managerial risks. For example, Bach [2] considers the

economic risk of putting too much effort into the development

and quality assurance, i.e., the testing, of high-quality

products. Redmill [8] also incorporates the risk in the

development process and not only the risk of a system

malfunction identified by a risk analysis, e.g., he discriminates

forward risk and backward risk for testers, considering,

among others, risks such as the use of untrained developers. In

[9], Redmill describes possibilities for quantifying the risk of

a software system, using the consequence of a fault, its

probability, or both as a measurement of risk. This risk shall

then be used for test planning. The choice of appropriate test

techniques and test cases is not considered.

Amland [1] calculates the risk of single functions of a

software system under test. For this, he assesses the failure

probability using several weighted factors like design quality,

size, and complexity. The risk values can be used to decide

which areas of the software are to be tested more extensively

in addition to the usual tests.

Chen et al. [4] describe a preference for re-running the

highest-risk test cases for regression testing. This is done by

assigning a risk value to each test case. The test cases are

prioritized by their risk value. In contrast, we want to use risk

already as a criterion for generating test cases and not only as

a prioritization criterion.

In [3], Bauer et al. describe an approach to use risk as a

criterion for the generation of test cases from test models. Our

work refines this approach.

This paper is based on work presented at the TAV

workshop 2009 [12], extending both the theoretical

foundation of the work and showing an improved approach

that allows for a larger number of relevant test cases.

III. MODEL-BASED STATISTICAL TESTING

Model-Based Statistical Testing (MBST) was developed as

part of the Cleanroom software development process [5]. It is

T

mailto:fabian.zimmermann@iese.fraunhofer.de
mailto:robert.eschbach@iese.fraunhofer.de
mailto:johannes.kloos@iese.fraunhofer.de
mailto:thomas.bauer@iese.fraunhofer.de

2

a function-oriented approach for validating a system against

its requirements. The tests derived during MBST are used to

estimate the expected reliability of the system under test.

Requirements
Documents

Black Box
System

Specification

Interfaces

System usages

Expected responses

Textual,

System+Domain

Knowledge

Test Model Building

Sequence-based

Specification (SBS)
Usage Modeling

Test Model

Markov Chain

Usage Model

Figure 1: First steps of MBST: Test Model Building

Starting from the requirements, a model of the system with

all possible inputs and the expected output is constructed on a

high level of abstraction by applying the technique Sequence-

Based Specification (SBS, cf. [6]).

In this way, a black-box model of the SUT is derived

represented as a deterministic Mealy machine whose stimuli

describe the system inputs and whose responses describe the

system’s expected outputs. These steps of the process of

MBST are described in Figure 1.This black-box model serves

as input for building a usage model that describes the

stimulation of the test object by its environment from the

perspective of the test object. Usage models have particular

states for the initialization (START) and finalization (EXIT)

of test cases. A test case is an arbitrary path through the model

from START to EXIT. The state START describes the state of

the system and its environment at the beginning of a test case.

The state EXIT marks the end of a test case and can be

reached from all states where a test case can end via a

transition marked Exit.

A Markov chain usage model is then obtained by

annotating a probability to each model transition. This

Markov chain induces a probability distribution on all possible

stimulus sequences. Random test cases can be derived from it

according to this distribution. Thus, a test case is a random

walk from START to EXIT in this Markov chain. For these

Markov chains, we demand that each state is reachable from

START, and that from each state, the EXIT state is reachable.

If the probability distribution of the transitions reflects a

realistic usage probability distribution, the randomly generated

test cases correspond to the expected usage in the field. The

test results are used to estimate the reliability of the test object

with regard to the usage model (cf. [7]). Different metrics for

estimating quality exist.

After the model has been created and the usage

probabilities have been identified, test cases may be

automatically generated, executed, and evaluated. This is

shown in Figure 2.

Test Cases Test Results

Executable test

scripts on target

platform

1. step1

2. step2

3. step3

4. step4

Management

decisions

Test stopping

criteria

1. ok

2. ok

3. failed

4. ok

t

1

t

1

!

"

Reliability+
Risk Coverage

Estimation

Automated Testing

Automated

Test Generation

Automated
Test Execution

Automated
Test Evaluation

Test Model

Markov Chain

Usage Model
Passed / failed

test steps

Figure 2: Last steps of MBST: Automated Testing

Test cases generated in this way do not consider risk as a

selection criterion. In [3], risk weights are used instead of

usage probabilities to derive random test cases covering high

risks. Therefore, risk weights are assigned to model

transitions. This approach does not guarantee that transitions

with high-risk annotations are actually used more often for

generating test cases. If such transitions can only be reached

by traversing transitions with lower-risk weights, they will

occur less often than expected by this risk-based testing

approach. On the other hand, if no actual usage profile is used,

the reliability cannot be estimated statistically.

IV. A SMALL EXAMPLE

An alarm system will be used as a short example. This system

triggers an alarm if it is activated and an observed room is

entered by somebody. To stop the alarm, the system has to be

deactivated. The stimuli identified are enter room, activate

and deactivate. Relevant system responses are alarm and stop

alarm.

Figure 3 shows the test model of the alarm system. This

model contains all possible inputs and the expected outputs of

the SUT. Each transition is annotated with a probability based

on a usage profile to generate random test cases automatically.

In this example, each test case starts in the initial state where

the alarm system is deactivated. At the end of each test case,

the alarm system has to be deactivated as well.

Figure 3: Test model of the alarm system

3

V. RISK

Risk assessments are widely used as a test selection

criterion. Various standards and works offer different

definitions of the term risk. An established standard for safety-

critical systems is IEC 61508 [11]. Thus, we apply its risk

definition. It describes risk as a combination of the probability

of occurrence of harm and the severity of that harm. Harm is

the physical injury or damage to the health of people either

directly or indirectly as a result of damage to property or to

the environment.

This standard demands a hazard and risk analysis before the

first steps in the development process are taken. According to

IEC 61508, a hazard is a potential source of harm.

With techniques such as FMEA or HAZOP (Hazard and

Operability Study), the hazards of the system are identified.

For each hazard, the associated risk is considered. Therefore,

the probability and severity of all hazards have to be

measured. The FTA is a technique for recognizing the

potential causes of each hazard and determining the associated

risks. Based on the tolerable risk for the system, measures for

risk reduction have to be defined. In IEC 61508, this can be

done via so called safety functions.

Based on the necessary risk reduction, the required safety

integrity level (SIL) is calculated, and safety integrity

requirements are derived. The SIL determines which measures

are recommended or highly recommended during the whole

life circle [10].

For quality assurance, we want to guarantee or at least

provide confidence that a certain risk is actually beyond a

defined tolerable risk level. This can be done by providing a

test model capable of quickly generating a large number of

test cases that contain risky situations. Our approach is based

on marking certain transitions in a state-based test model as

critical. The identification of these transitions is still subject to

research, but will probably be based on standard methods for

risk analysis (e.g., FMEA and FTA). Finally, we use this test

model to generate test cases that contain these critical

transitions, since these transitions will usually activate a safety

function. After running these critical test cases, we can

estimate the system’s reliability in critical situations and

especially the reliability of certain safety functions.

Figure 4: Identification of critical transitions

In the alarm example, we assume that only the transition that

triggers the alarm is critical (cf. Figure 4), since the triggering

of the alarm represents the major safety function of the

system. This transition is marked with a lightning symbol.

VI. APPROACH

Our goal is the generation of test cases that trigger a certain

critical situation. These test cases will be called critical test

cases. Risk analysis techniques such as FMEA and FTA may

be used to identify the critical situations that represent high

risk.

One way of generating such test cases would be to just

generate test cases according to the test model M, and filtering

out all those test cases that are not critical. Later on, we will

demonstrate that this approach may lead to many rejected test

cases.

Another approach would be the following: The current test

model M is changed in such a way that only critical test cases

are derived. The result is a new test model M’. In M’, all

generated test cases (i.e., all paths from START to EXIT)

should contain at least one critical transition. Furthermore,

each path from START to EXIT in M’ should also be a path

from START to EXIT in M, i.e., the new test model M’ is a

refinement of the original test model M.

Let traces(M) be the set of all test cases derivable from M and

traces(M’) the set of all test cases derivable from M’. We

require:

traces(M’) ⊆ traces(M)

For reasons of simplicity, we first assume that our test model

M contains exactly one critical transition t0. An extension of

this approach for more than one critical transition is described

in section X. A critical test case is a test case traversing t0.

We may assume that a critical situation occurs when

transition t0 is traversed for the first time. There is a regular

expression α corresponding to all possible paths in M ending

with the critical transition t0 without having traversed t0

before.1 It may be constructed by computing the regular

expression corresponding to the source state of t0 (cf. [15]).

The set of all these paths is then given by the regular language

L(α). In our example above, the critical transition can be

given by the regular expression

“start” (“enter room” + “activate” “deactivate”)*

“activate” “enter room”

Let S be the set of all stimuli and S
* the set of all finite

sequences of stimuli from S. Then the set of all paths from

START to EXIT that contain t0 can be described as

C := L(α) S*
 ∩ traces(M)

The goal is to algorithmically construct a test model M’

1 Here, we use the fact that each state of the Markov chain has at most one

outgoing transition with a given stimulus; this follows from the fact that the

underlying Mealy machine is deterministic.

4

from M such that traces(M’) = C.

VII. PROBABILITY DISTRIBUTION FOR MBST

These transformations are applicable to almost all kinds of test

models for model-based testing. In MBST the test models are

Markov chains with probabilities on each transition, so the

resulting test model has to be a Markov chain as well.

To generate test cases based on a realistic usage of the SUT,

we need to make some assumption on the probability

distribution of the resulting Markov chain:

Let t be a critical test case and P(M gen t) the probability

that t was randomly generated from model M. Then the

probability that t was randomly generated from M under the

assumption that a critical test case was generated (short P(M

gen t | M gen H)) shall equal the probability that this test case

is generated from M’:

P(M gen t | M gen H) = P(M’ gen t)

This condition is called the distribution condition. If this

condition holds, the reliability of the critical transition t0 can

be estimated.

VIII. REALIZATION

In this section, we describe how we derive the new test

model M’. The following algorithm is used to build the new

test model:

First, the original test model is copied twice. We get the two

test models A and B. In model A, all Exit transitions are

deleted. In model B, the initial state is deleted. The idea is that

all test cases start with test steps in model A and end with test

steps in model B. Model B should only be reachable by

traversing the critical transition.

Therefore, the critical transition t0 in A is replaced by a

transition with the same source state and the same labels

(probability, stimulus, and expected response). The target state

of the new transition is not the original target state in model A

but its corresponding state in model B. The new test model M’

is this combination of the models A and B.

Figure 5: New test model

hus, since A has no Exit transition and each path from A to B

igure 5 shows the new model of our example. The critical

 the resulting Markov chain, the transition probabilities are

IX. AN ALTERNATIVE APPROACH

In al transitions

ca

assume that only the critical transitions in a test

ca

nce again, we change the test model M to get a new test

T

contains a critical transition, a critical transition is always

traversed during test case generation (finding random paths

from START to EXIT). By deleting all Exit transitions in

model A, it is not always possible to reach EXIT from all parts

of the new model M’. The parts that have no path to EXIT

anymore are eliminated. This can be done by deleting all

incoming transitions of these parts of the new model.

F

transition with the stimulus enter room and expected

responses alarm has to be triggered to reach the copy of the

original test model containing an Exit transition.

In

calculated by simply normalizing the outgoing transition

probabilities of each state so that they sum to one. This can be

shown by considering the transition probabilities for each state

of the resultant Markov chains in turn.

 our first approach, all test cases with critic

n be generated from a new test model M’. But many of these

test cases contain a critical transition as a test step relatively

early in the test case followed by a large number of uncritical

test steps.

We may

se are interesting, so we want to generate test cases with the

critical test steps at the end. The idea is to end a test case after

the last critical situation has been tested. Steps before this

critical situation are relevant for detecting unknown side

effects that might influence the result of the critical test step.

O

model with the desired properties. All test cases generated

from the new test model M” contain a critical transition, but

near the end of a test case.

5

Let M” be the new test model created with this approach, M’

the model created with the first approach, and M the original

model, then we have:

traces(M”) ⊆ traces(M’) ⊆ traces(M)

Thus, only test cases with critical steps near the end can be

derived from M”, traces(M”) is a subset of traces(M’).

The following algorithm is used to create the new test model

M”. In the original model M, all Exit transitions are deleted.

After each critical transition, a new decision state is inserted.

In this state, a decision between staying in the test model and

going to EXIT has to be made. As in the other approach, parts

that have no path to EXIT anymore have to be deleted.

Figure 6: New test model with second approach

he test cases generated with this approach contain at least

igure 6 shows the new test model M” for our short example.

s in our first approach, the probabilities have to be adjusted

ssuming that we have only one critical transition t0, the

T

one critical transition. No additional test steps (or transitions)

have to be taken into account after the last critical step. The

final steps of each test case after the last critical step lead to

the EXIT state. These steps are only taken to end the test case

properly.

F

After the critical transition with the stimulus enter room and

the expected response alarm, a new state has been inserted. In

this state, the decision between ending the test case and

generating a longer test case has to be made. To end this test

case properly the stimulus deactivate is sent to the SUT as the

last step.

A

in such a way that the distribution condition holds. In states

where transitions are deleted, this is again done by simply

normalizing the outgoing transition probabilities so that they

sum to one. More complicated is the calculation of outgoing

transition probabilities for the new decision states.

A

probability of leaving to EXIT shall equal the probability of

reaching EXIT in the original test model M without traversing

t0 again.

X. MANY CRITICAL TRANSITIONS

In realistic applications, test models often contain several

hundred transitions [13]. Even if most of them are uncritical,

there is almost always more than one critical transition. For

models with multiple critical transitions, there are many

possibilities for generating critical test cases. For example one

could require that every test case contains at least one critical

transition or that it contains all critical transitions. Another

possibility is to claim that each test case contains at least a

fixed number of critical transitions.

Assuming that there are n critical transitions in test model M

and α1,...,αn are the regular expressions matching these

transitions.

Then the first solution can be described in the language of

regular languages:

Let S be the set of all stimuli and S
* the set of all finite

sequences of stimuli from S.

M’ shall have the property that

traces(M’) = (L(α1) S
* ∪ ... ∪ L(αn) S

*) ∩ traces(M).

All test cases generated from the new test model M’ contain at

least one critical transition.

The second solution is to claim that each test case generated

from the new test model M* contains all critical transition. In

the language of regular expressions this means that M*

satisfies

traces(M*) = L(α1) S
* ∩ ... ∩ L(αn) S

* ∩ traces(M).

This assumption is dangerous because traces(M*) could be the

empty set. The same problem occurs if we claim that each test

case contains at least a fixed number of critical transitions

bigger than one. So we prefer the first solution.

The easiest way to build M’ is to construct one model for each

critical transition. Let crit1,...,critn be the critical transitions

identified in M. Then we can build one test model Mi’ for each

critical transition criti by simply ignoring the other critical

transitions. M’ can be built using a union automaton of these

models such that the following condition holds:

traces(M’) = traces(M1’) ∪ ... ∪ traces(Mn’).

Thus, each test case that can be generated from one of the

models Mi’ is also derivable in M’.

XI. A LARGER EXAMPLE: A RAILWAY CONTROL SYSTEM

We demonstrate and evaluate our approach on the test model

for a Railway Control System (RCS). This railway control

system is based on a railroad operating procedure called

“Zugleitbetrieb”, which is used for low-traffic railroad lines in

Germany. Those requirements of the RCS that are relevant for

6

our example are detailed in Table 1. We will show that the

generation of critical test cases in the original test model is

fairly unlikely, meaning that we would need to generate an

enormous number of test cases from the original model to get

the same number of critical test cases as in a transformed

model.

The RCS is an assistance system for a train director,

managing information about the positions and destinations of

trains and the lengths of track reserved for the journeys of

trains.

The RCS shall use various track-side equipment such as track

vacancy detectors (devices that check whether a train is inside

a certain area of the railroad network) […] to counter-check

and enforce the train director’s decisions.

The railroad network is partitioned into blocks, i.e., connected

subnetworks of the railroad network.

Safety requirement: Each block may contain at most one

train.

Safety requirement: All situations where a train enters an

unreserved or already occupied block must be detected and

emergency measures must be taken.

The RCS shall be able to work with any track layout and any

number of trains running on its network.

If a train driver wants to run his train from station A to station

B, he must follow this procedure:

1. Request a track reservation from A to B. If this

reservation fails, he may retry until he succeeds.

2. The track must be set up.

3. When leaving station A (i.e., once the last wagon has

left A), he may notify the train director that the train

has left A.

4. When arriving at B (i.e., once the last wagon has

fully arrived at B), he must notify the train director

that the train has arrived at B.

Table 1: Requirements for the RCS

Several additional requirements are needed for the

construction of the system model; the details can be found in

[13].

C

D

A

$

E

Ff2f1

Figure 7: A small railroad network. The lines represent

railroad tracks, which are joined at switches (visualized by

the black triangles). The block borders are the dashed

lines.

The idea behind the test model is to automatically construct a

test model for a given track layout and train schedule,

allowing the construction of stimulation models by domain

experts for configurations that lead to many inherently risky

situations.

This is done by describing a test model fragment for the

movement of a train from one station to the next, then

building a larger fragment for the movement of each train

from its starting point to its final destination, and ultimately

computing a model describing the parallel execution of these

fragments for all trains in the network.

Figure 8: A test model fragment describing the possible

movements of a train from station S1 to station S2 via the

track in block F. The colored state in the middle is an

error state where the system should be shut down.

The small fragment is depicted in Figure 8, and a stimulation

model fragment for a train moving from station A to C and

then to E in the railroad network given in Figure 7 is shown in

Figure 9. The resulting test model for two trains, one running

from A to C and then to E and another running from B to D

and then to A, is already too large to display: It has 262 states

and 635 transitions, permitting approximately 1.8 · 10
18

possible test cases, not counting those test cases that use self-

loop transitions.

In the requirements list, two requirements are listed as safety

requirements, namely the invariant that a block may contain at

most one train at a time, and that all situations where a train

enters an unreserved or already occupied block must be

detected and emergency measures must be taken. These

requirements result from an FMEA identifying train collisions

as the main system hazard. Starting here, these safety

requirements are derived as measures against the two possible

causes of train collisions: unauthorized train movements and

erroneous movement authorizations. In particular, erroneous

reservations are forbidden by the invariant, while

unauthorized movements are detected (if possible) by the

second safety requirement.

For the application of our method, we need to identify the

critical transitions in the test model. Here, we use the results

from above, leading to the transitions marked with a lightning

symbol in Figure 8. Of these transitions, the one on the left,

marked with a small 1, describes a movement without

authorization, while all the others describe a train entering an

already occupied or unreserved block, which violates the

invariant.

Only approximately 3.8% of all test cases that can be derived

from the test model are critical.

Using realistic profile, e.g., one generated from field data, one

finds that the critical transitions actually have very low

7

probability in normal use, since they correspond to serious

system failures or procedure violations. We assume that the

probability for a critical transition is very low compared with

the probability of an uncritical transition. They only occur

when a train enters unauthorized a block or gets an erroneous

movement authorizations. Assuming that the probability of

each critical transition less than 0.1%, only few of all

randomly generated test cases steps contain a critical

transition.

Thus, with a realistic profile, we can assume that the

probability that a randomly generated test case traverses one

of the critical transitions is extremely small.

On the other hand, we applied the model transformation

technique as described in section X for each critical transition

in the model. In this way, we arrived at a usage model with

432 states and 1002 transitions. This model permits 6.8 · 10
16

possible (loop-free) test cases, all of which traverse at least

one critical transition.

Thus, we find that the model transformation increases the

likelihood of a critical test case from less than 3.8% to 100%.

Expressed differently, using the original model, one in

roughly 26 test cases is a critical test case (using a uniform

distribution), while the modified test model generates only

critical test cases. At the same time, the resulting test model

still allows the generation of a large number of test cases,

which is necessary for significant reliability computations.

XII. CONCLUSION AND OUTLOOK

This paper describes work in progress for the derivation of

critical test cases in model-based statistical testing by using a

modified test model, constructed for the guaranteed generation

of high-risk test cases.

One possible extension of this method could be the

classification of the risks of transitions. In this way, test suites

with different minimal risks could be derived.

Another step would be the extension of the theoretical

background of our method into a theory of Markov usage

model transformations describing conservation properties. For

example, it would be worthwhile knowing how the

reliabilities of the outgoing transitions of modified states must

be chosen so that reliability estimations are still valid. A

further development of this theory could also encompass the

model transformations induced by model composition

operators.

One last area of research would be to find similar model

transformation operators permitting more complex failure

scenarios, and then analyze the operators found in this way for

effectiveness and efficiency with regard to risk-oriented

failure detection.

ACKNOWLEDGMENT

The Railway Control System example was developed at

Siemens Transportation Systems (now Siemens Mobility) as a

case study for the ranTEST research project. We would like to

thank Michael Ebert for very fruitful discussions about the

approach presented here.

This work was partly funded by the German Federal

Ministry of Education and Research (BMBF) in the context of

the projects ViERforES (No.: 01 IM08003 B) and D-Mint

(No.: 01 IS07001 E).

REFERENCES

[1] Amland, S. 2000. Risk-based testing: risk analysis fundamentals and

metrics for software testing including a financial application case study.

J. Syst. Softw. 53, 3 (Sep. 2000), 287-295

[2] Bach, J., James Bach on Risk-Based Testing – How to conduct heuristic

risk analysis, Software Testing & Quality Engineering

November/December 1999, p. 23-28

[3] Bauer, T., Stallbaum, H., Metzger, A., Eschbach, R. Risikobasierte

Ableitung und Priorisierung von Testfällen für den modellbasierten

Systemtest, SE09 München, 2008.

[4] Chen, Y., Probert, R. L., and Sims, D. P. 2002. Specification-based

regression test selection with risk analysis. In Proceedings of the 2002

Conference of the Centre For Advanced Studies on Collaborative

Research (Toronto, Ontario, Canada, September 30 - October 03, 2002).

D. A. Stewart and J. H. Johnson, Eds. IBM Centre for Advanced Studies

Conference. IBM Press, 1.

[5] S. Prowell, C. Trammell, R. Linger, J. Poore, Cleanroom Software

Engineering: Technology and Process, Addison-Wesley-Longman,

1999.

[6] S. Prowell, J. Poore, "Foundations of sequence-based software

specification", IEEE Transactions on Software Engineering, Vol. 29,

No. 5, May 2003, 417--429.

[7] S. Prowell, J. Poore, "Computing system reliability using Markov chain

usage models", Journal of Systems and Software, Vol. 73, No. 2,

October 2004, 215 - 225.

[8] Redmill, F. 2004. Exploring risk-based testing and its implications:

Research Articles. Softw. Test. Verif. Reliab. 14, 1 (Mar. 2004), 3-15.

[9] Redmill, F. 2005. Theory and practice of risk-based testing: Research

Articles. Softw. Test. Verif. Reliab. 15, 1 (Mar. 2005), 3-20.

[10] Redmill, F., An Introduction to the Safety Standard IEC 61508, Journal

of the System Safety Society, Volume 35, No. 1, First Quarter 1999,

Synopsis.

[11] IEC 61508 Functional safety of electrical/electronic1/programmable

electronic safety-related systems

[12] Zimmermann, F., Eschbach, R., Kloos, J., Bauer, T., "Risiko-basiertes

statistisches Testen“, 28. Treffen der Fachgruppe TAV der Gesellschaft

für Informatik (GI), Dortmund, 2009

[13] Kloos, J., Eschbach, R., “Generating System Models for a Highly

Configurable Train Control System using a Domain-Specific Language:

A Case Study”, submitted to AMOST 2009

[14] Haasl, D. F., "Advanced Concepts in Fault Tree Analysis", Proceedings

of the System Safety Symposium, Seattle, 1965 (The Boeing Company,

Seattle, 1965)

[15] Hopcroft, J. E. and Ullman, J. D. 1990 Introduction to Automata Theory,

Languages, and Computation. 1st. Addison-Wesley Longman

Publishing Co., Inc.

http://publica.fraunhofer.de/starweb/servlet.starweb?path=pub0.web&search=N-76418
http://publica.fraunhofer.de/starweb/servlet.starweb?path=pub0.web&search=N-76418
http://publica.fraunhofer.de/starweb/servlet.starweb?path=pub0.web&search=N-76418
http://www.aw-bc.com/
http://www.computer.org/publications/dlib/
http://www.elsevier.com/locate/jss

8

XIII. APPENDIX: AN INSTANCE OF THE RCS TEST MODEL FOR

ONE TRAIN

Reserve

[track available]

Setup Enter F

[clear]
Leave S1

Departure

Notification

Leave F

Arrival

Notification

Departure

Notification

Enter S2

[clear]
Reserve

[track unavailable]

Enter F

[clear, res.]

Leave S1 Leave F

Enter S2

[clear,reserved]

Enter F [occupied/unreserved]

Enter F

[occupied]

Enter S2

[occ./unres.]
Enter S2

[occupied]

Enter S2 [occupied]

Enter S2

[clear]

Reserve

[track available]

Setup Enter F

[clear]
Leave S1

Departure

Notification

Leave F

Arrival

Notification

Departure

Notification

Enter S2

[clear]
Reserve

[track unavailable]

Enter F

[clear, res.]

Leave S1 Leave F

Enter S2

[clear,reserved]

Enter F [occupied/unreserved]

Enter F

[occupied]

Enter S2

[occ./unres.]
Enter S2

[occupied]

Enter S2 [occupied]

Enter S2

[clear]

Figure 9: An instance of the RCS test model for one train

running from A to C via F1 and from there to E via F2.

The notation is described in Figure 8.

