
HAL Id: hal-00381548
https://hal.science/hal-00381548v1

Submitted on 12 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting the Steam-Boiler Case Study with LUTESS :
Modeling for Automatic Test Generation
Virginia Papailiopoulou, Besnik Seljimi, Ioannis Parissis

To cite this version:
Virginia Papailiopoulou, Besnik Seljimi, Ioannis Parissis. Revisiting the Steam-Boiler Case Study
with LUTESS : Modeling for Automatic Test Generation. 12th European Workshop on Dependable
Computing, EWDC 2009, May 2009, Toulouse, France. 8 p. �hal-00381548�

https://hal.science/hal-00381548v1
https://hal.archives-ouvertes.fr

Revisiting the Steam-Boiler Case Study with LUTESS :
Modeling for Automatic Test Generation∗

Virginia Papailiopoulou1, Besnik Seljimi1, Ioannis Parissis2

{virginia.papailiopoulou, besnik.seljimi}@imag.fr, ioannis.parissis@lcis.grenoble-inp.fr
University of Grenoble - France

1Laboratoire d’Informatique de Grenoble, 2Laboratoire de Conception et d’Intégration des Systèmes

Abstract

LUTESS is a testing tool for synchronous software mak-
ing possible to automatically build test data generators. The
latter rely on a formal model of the program environment
composed of a set of invariant properties, supposed to hold
for every software execution. Additional assumptions can
be used to guide the test data generation. The environment
descriptions together with the assumptions correspond to
a test model of the program. In this paper, we apply this
modeling principle to a well known case study, the steam
boiler problem which has been presented in the past. The
aim of this work is to illustrate the process of building the
test model and to assess the difficulty of such a process in a
realistic case study. The steam boiler case study is a quite
suitable problem to use, in point of both problem size and
complexity, for our purposes. Taking advantage of the new
features recently added in LUTESS , we show a way of defin-
ing a test model so that the testing is efficient.

1. Introduction

Synchronous programming [2] is widely used in safety-
critical domains such as avionics, transportation and energy.
The synchronous approach requires the software to react to
its inputs instantaneously. In practice, that means that its
reaction is sufficiently fast so that every change in the exter-
nal environment is taken into account. As soon as the order
of all the events occurring both inside and outside the pro-
gram are specified, temporal constraints describing the be-
havior of a synchronous program can be expressed. Many
programming languages have been proposed to specify and
implement synchronous applications, such as Esterel [3] or
Lustre [5]. They ensure efficient code generation and pro-

∗Work supported by the TAROT Marie Curie Network (MRTN-CT-
2004-505121) and SIESTA (www.siesta-project.com), a project of the
French National Research Foundation (ANR).

vide formal specification and verification facilities.
Several testing tools have been proposed for programs

specified in Lustre. In this paper we use LUTESS V2 [9], a
testing environment which automatically transforms formal
specifications into test data generators. Its main application
domain is the validation of the control part of a software.
Gatel [6] is also based on constraint logic programming but,
contrary to LUTESS , it is rather a “white box” testing tool.
It translates a Lustre program and its environment specifi-
cation in an equivalent Prolog representation and then com-
putes a test input according to test objectives. Furthermore,
LUTESS generates test data with dynamic interaction with
the system under test while Gatel interprets the Lustre code.
Lurette [8] is similar to LUTESS and it makes possible to
test Lustre programs with numeric inputs and outputs. A
boolean abstraction of the environment constraints is first
built: any constraint consisting of a relation between nu-
meric expressions is assimilated to a single boolean vari-
able in this abstraction. The concrete numeric expressions
are handled by an ad hoc environment dedicated to linear
arithmetic expressions. The generation process first assigns
a value to the variables of the boolean abstraction and, then,
tries to solve the corresponding equations to determine the
values of the numeric variables. However, LUTESS uses
constraint logic programming instead of an ad hoc resolu-
tion environment restricted to linear expressions, as Lurette
does. Moreover, the LUTESS specification language is an
extension of the Lustre language while Lurette uses ad hoc
scenario description notations.

Testing a reactive system using LUTESS requires model-
ing the external environment, that is, expressing the con-
ditions that the system inputs should invarianltly satisfy
i.e hypotheses under which the software is designed. Dif-
ferent testing techniques (conditional probabilities, safety-
property guided testing) can be used to guide the test data
generation process, to avoid unrealistic or unreasonable test
cases, or to reach suspicious situations.

In [9], we have presented the new version of LUTESS
based on constraint logic programming, illustrated on a sim-

1

ple reactive program example, an air-conditioner controller.
Towards our effort to examine how hard this task is for real-
world applications, we present in this paper, an application
of this testing methodology on a more realistic and well
known case study, the steam boiler control system [1]. This
system operates on a significantly large set of input/output
variables as well as of internal functions and has been used
to assess the applicability of several formal methods [1].
The objective of the case study is to assess the difficulties of
the test modeling activities and of the test generation. Mod-
eling requires translating the natural language specification
into temporal invariants as well as into conditional proba-
bility assignments, the latter aiming at defining operational
profiles [7] or execution scenarios. Hence, the contribution
of this paper is twofold. On the one hand, we illustrate the
necessary steps during the test model construction. On the
other hand, we check the scalability of our approach, as far
as the latter can be assimilated to the length and the com-
plexity of the specification, and the resources needed to the
test generation.

The paper is structured in three sections. Section 2 pro-
vides a brief overview of the essential concepts on testing
synchronous software using LUTESS . Section 3 presents
the steam boiler specifications while in section 4 we thor-
oughly demonstrate our approach to build the test model
and the environment specification.

2. Synchronous Programs & LUTESS

LUTESS is a “black box” testing tool designed for syn-
chronous reactive software. The basic characteristic of such
software is that the environment reacts instantaneously to
the system requests. A synchronous program has a cyclic
behavior : at each tick of a global clock (say t=1), inputs
(i1) are read and processed simultaneously and outputs (o1)
are emitted (see Figure 1).

o2
External Environment System Under Test

Time
one cycle

i0 i1 i2

o0 o1

Figure 1. Synchronous software operation.

LUTESS specifications are based on Lustre, a data-flow
language appropriate for programming real-time critical re-
active systems [5]. Any variable or expression represents
an infinite sequence of values and takes its n-th value at the
n-th cycle of the program execution. A Lustre program is

test

verdict
oracle

dynamically produced input data

program output

system underdescription
Environment

input data
generator

Communication link Object provided by the user

collector
trace

Δ

Test harness

Σ

Ω

Figure 2. The LUTESS testing environment.

structured into nodes; a node is a set of equations which de-
fine the node’s outputs as a function of its inputs. Each vari-
able can be defined only once within a node and the order
of equations is of no matter. Specifically, when an expres-
sion E is assigned to a variable X, X=E, that indicates that
the respective sequences of values are identical throughout
the program execution; at any cycle, X and E have the same
value. Once a node is defined, it can be used inside other
nodes like any other operator.

The operators supported by Lustre are the common arith-
metic and logical operators (+, -, *, /, and, or, not, ...) as well
as two specific temporal operators: the precedence (pre)
and the initialization (→). The pre operator introduces to
the flow a delay of one time unit, while the→ operator -also
called followed by (fby)- allows the flow initialization. Let
X=(x0, x1, x2, x3, ...) and E=(e0, e1, e2, e3, ...) be two Lustre
expressions. Then pre(X)=(nil, x0, x1, x2, x3, ...), where nil
is an undefined value, while X→E=(x0, e1, e2, e3, ...).

To perform the test operation, LUTESS requires three
components: the software environment description (∆), the
executable code of the system under test (Σ) and a test or-
acle (Ω) describing the system requirements, as shown in
Figure 2. The system under test and the oracle are both syn-
chronous executable programs.

LUTESS builds a test input generator from the environ-
ment description (i.e. the test specification.) as well as a test
harness which links the generator, the system under test and
the oracle. LUTESS coordinates their execution and records
the input and output sequences as well as the associated or-
acle verdicts thanks to the trace collector.

The test is operated on a single action-reaction cycle: the
generator produces an input vector sends it to the system
under test; the later reacts with an output vector sent back
to the generator. The generator produces a new input vector
and so on. The oracle observes the exchanged inputs and
outputs to detect failures.

In order to automatically generate test sequences, LUT-
ESS needs an environment description (∆ component in Fig-
ure 2) defining the valid input sequences of the program un-
der test. This description is made in an extended version

2

testnode Env(<SUT outputs>) returns (<SUT inputs>);
var <local variables>;
let

environment(Ec1); ... environment(Ecn);
prob(C1,E1,P1); ... prob(Cm,Em,Pm);
safeprop(Sp1,Sp2,,Spk);
hypothesis(H1,H2,,Hl);
<definition of local variables>;

tel;

Figure 3. Testnode syntax.

of Lustre as a new file, the main node of which is called
testnode and the general form of its syntax can be seen in
Figure 3. The inputs (outputs) of a testnode are the outputs
(inputs) of the program under test. The testnode is automat-
ically transformed into a test data generator.

As a rule, a testnode contains four operators specifically
introduced for testing purposes. The environment oper-
ator is used to specify a list of invariant properties, stated
as Lustre expressions, that should hold at each execution
step of sequence. The definition of the input domains for
variables can be stated as an instant invariant as well as a
temporal property. At any cycle, the test generator chooses
a sequence of valid random input values to supply the soft-
ware with. Therefore, the environment constraints can only
depend on the previous values of the output signals1. The
prob operator is used to define conditional probabilities,
while the safeprop operator is used to guide the test gen-
eration process towards situations where the safety proper-
ties could be violated. The hypothesis operator is used as
a complement to safeprop in order to insert assumptions
on the program under test which could improve the fault
detection ability of the generated data [10].

3. The Case Study

The steam boiler specification has been used more than
ten years ago as a common case study for several formal
specification methods [1]. We are considering here the Lus-
tre implementation of this system, proposed in [4].

According to the informal specifications provided in [1],
the physical system of the boiler is composed of four pumps
which supply the boiler with water while it turns it into
steam at its output. In order to avoid any malfunction or
erroneous situation, the controller must maintain the level
of water in the steam boiler, within some safe limits. More
precisely, as it is shown in Figure 4, the physical units of the
system are:

1Supposing that at the current instant t, the input signal i(t) must be is-
sued before the software computes the output o(t), then, if the environment
definitions were referring to the current output o(t), the generation of valid
input sequences at the instant t would be impossible, since the actual value
o(t) would be yet unknown.

sa
fe

 li
m

its

M1

M2

N1

N2

cr
iti

ca
l l

im
its

Pump controllers
4 pumps which

provide the boiler
with water

steam at
the output

valve for
water evacuation

physical_units_ready,
level, steam, valve_status,
pump_state,
pump_control_state,
physical_units_repaired,
physical_units_fail_ack

stop, boiler_waiting,

SW

program_ready, mode,
q, v, n_pumps,
open_pump, close_pump
physical_units_fail_detect,
physical_units_repaired_ack

Figure 4. The steam boiler control system.

• The boiler itself comprises a valve, which at the ini-
tialization phase, evacuates the remaining water. It has
a total capacity of C litres and produces a maximum
steam quantity of W litres/sec. The minimum and
maximum water limits are M1 and M2 respectively;
outside these limits, the system will be endangered af-
ter five seconds, due to either lack of water supply or
water overflow.

• Four pumps provide the boiler with water. Each pump
is characterized by its capacity (p litres/sec) and its
state, “on” or “off”. Although a pump can be stopped
instantly, when it is being started, it needs a whole cy-
cle before it is being opened.

• Four controllers (one for each pump) inform if there
is flow of water from the pumps to the boiler or not.

• A water unit measures the quantity of the water (q) in
the boiler, measured in litres.

• A steam unit measures the quantity of the steam (v) at
the output of the boiler, measured in litres/sec.

The physical system communicates with the program that
controls its function, i.e. the controller, via messages. At
each execution cycle, the controller receives and analyzes
the messages from the physical system, then it sends back
new commands.

EMERGENCY

^ ~failure
physical_units_ready

physical_units_ready

^ ~level_failure
failure

level_failure

^
~f

ai
lu

re

level_failure

failure ^ ~level_failure

~failure

^ failure

NORMAL

RESCUE

INITIALIZE

DEGRADED
critical_failure

| stop_request

steam_boiler_waiting
^ ~critical_failure
^ ~stop_request

critical_failure
| stop_request

STARTUP

Figure 5. Operational modes of the system.

3

According to the messages sent by the environment and
the detected failures, the controller can operate in different
modes. Figure 5 illustrates these modes.

1. startup mode: This is the very beginning of the pro-
gram, where there is no critical failure neither a stop
request detected and the program is waiting for the ap-
propriate message from the physical system that it is
ready to begin functioning. If a critical failure is de-
tected or there is a stop request, the program goes to
the emergency mode.

2. initialize mode: As soon as the physical system is
ready to start functioning, the program enters the ini-
tialization mode. In this mode, the program sends con-
tinuously to the environment a message denoting that
it is ready to function; that happens until it receives
back from the environment the corresponding positive
response. Then, if there is no failure detected, the pro-
gram enters the normal mode; otherwise, i.e. if there is
a failure detected in a physical unit, the program enters
the degraded mode.

3. normal mode: This is the mode where the program
tries to maintain the quantity of water within the nor-
mal limits, N1 and N2, with all the physical units oper-
ating correctly, of course. Once a failure in the water
unit is detected, the program enters the rescue mode,
whereas in case of any other kind of failure, the pro-
gram enters the degraded mode.

4. degraded mode: In this mode, the program tries to
maintain the quantity of water in a satisfactory level,
despite of a possible failure in a physical unit other
than the water unit. When this failure is repaired, the
program returns to the normal mode. When a failure
in the water unit is detected, the program goes to the
rescue mode.

5. rescue mode: In this mode, the program tries to main-
tain the quantity of water in a satisfactory level, despite
of the failure in the water unit. In this case, the quantity
of the water in the boiler is estimated, taking into ac-
count the quantity of steam at the output and the intake
of water that the pumps supply. When the failure is
repaired, the program goes back to normal mode, or to
the degraded mode when a failure in another physical
unit is detected.

6. emergency mode: This is the mode where the pro-
gram must enter any time there is a critical failure or a
stop request. Once the program reaches the emergency
mode, it stops its execution and the physical environ-
ment is responsible to take appropriate functions.

4. Modeling and testing the boiler

The primary function of the boiler controller is to keep
the water level between the given limits, based on inputs re-
ceived from different boiler devices. Thus, in order to test
the controller in its normal functioning, we first consider
that all devices behave correctly and provide the correct in-
puts to the controller. In a later stage, we consider different
faults that are tolerated by the controller in order to test its
reaction in these cases.

This said, the generation of test sequences with LUTESS
requires a model of the system environment (test model).
Although the test models are specific to the program under
test, we claim that the modeling and testing process can fol-
low an incremental approach:

1. Domain definition: Definition of the domain for in-
teger inputs. For example, the water level cannot be
negative or overflow the boiler capacity.

2. Environment dynamics: Specification of different
temporal relations between the current inputs and past
inputs/outputs. These relations often include, but are
not limited to, the physical constrains of the environ-
ment. For example, we could specify that when the
valve opens, the water level can only decrease.

The above specifications are introduced in the
testnode by means of the environment operator.
Simple random test sequences can be generated,
without a particular test objective, but considering all
inputs allowed by the environment.

3. Scenarios: Having in mind a specific test objective,
the tester can specify more precise scenarios, by spec-
ifying additional invariant properties or conditional
probabilities. The prob operator of LUTESS provides
a mean for specifying conditional probabilities which
can be used either to force the test data generator to
conform to realistic scenarios, either to simulate fail-
ures. As a simple example, consider the stop input
which stops the controller when true; a completely
random value will stop prematurely the controller and
thus prevent the testing of all the behaviors. In this
case, lowering the probability of stop being true keeps
the controller running.

4. Property-based testing: This step uses formally spec-
ified safety properties in order to guide the generation
toward the violation of such a property [10]. The re-
sulting generation will remove inputs that, given the
property expression, obviously cannot lead to its vio-
lation. In order to be effective, this guidance requires
the safety properties to be expressed as a relation be-
tween inputs that imply some outputs. Test hypotheses

4

can also be introduced and possibly make this guid-
ance more effective.

In the following, these steps are described in details and
applied to the steam boiler case study.

4.1. Domain definitions

The domain of an input is the set of meaningful values
that an input is designed to receive. Integer inputs used in
controllers are often used to represent a state, consisting of
a limited subset of integers, like in the case of valve_status
or pump_state variables. In other cases, such as level, they
represent an interval of integers.

We use the following expressions to define the domain
of each integer input in the controller2 (inside parentheses
are given the values of constants used):

• The water level value should be between 0 and the
maximum capacity of C (1000):

0 <= level and level <= C

• The water steam value should be between 0 and the
maximum quantity of W (25):

0 <= steam and steam <= W

• The valve can be closed (0) or open (1):

closed <= valve_status and valve_status
<= open

• The pump state can be closed or open:

AND(N_pump, closed <= pump_state and
pump_state <= open)

where N_pump is the number of pumps (4); AND is a
boolean operator applying the above boolean expression to
the whole array pump_state and resulting in the conjunction
of the corresponding values.

So far, the above model can be directly used to gener-
ate random test sequences. Nevertheless, these sequences
are not very conclusive. The controller cannot deal with
the random behavior of all the devices, and as soon as it
is started it goes to emergency mode: either a stop request
has been sent (stop being true for 3 consecutive steps), ei-
ther a failure has occurred while initializing. Note that, ac-
cording to the specification, any message received when not
expected is considered as a failure. Thus, in order to ob-
serve meaningful executions, we should specify, more thor-
oughly, the environment dynamics.

2Note that these invariants are meaningful only under the assumption
that all the devices are functioning.

4.2. Environment dynamics

Environment dynamics can be expressed as temporal re-
lations between the current and past values of the software
inputs and outputs. We can derive directly from the speci-
fication, the properties that identify the correct behavior of
the devices, some of which are presented below:

• The steam_boiler_waiting message is sent only in
startup mode:
steam_boiler_waiting = (false -> (pre mode =
startup));

• The physical_units_ready message is sent as a notifi-
cation of the received message program_ready:
physical_units_ready= (false -> (pre
program_ready));

• The water level is equal to its previous value, to which
is added the quantity of water entering through the
open pumps and removed the quantity exiting through
the steam or the valve. Thus, the expected water level
is:
expected_level = level -> pre(expected_level)
+ Dt*sum_flow(N_pump, pump_control_state) -
Dt*steam - Dt*valve_status*V;

where the sum_flow node calculates the sum of the flow
passing through all the pumps, based on the controller state.

If the expected level is negative, this means that no more
water is remaining in the steam boiler (level=0). If the
expected level is greater then the total capacity, it means
that not all the expected water has been flowing through the
pumps and in this case the boiler is full (level=C). When the
expected level is between 0 and C, it represents the actual
quantity of water (level=expected_level):

true -> if expected_level < 0 then level=0
else if expected_level > C then level=C else
level=expected_level;

• When the boiler starts, the steam flow is supposed to
be zero:
implies(true -> pre(mode=startup), steam=0);

• The state of the valve (valve_status) changes only
when the valve message is sent by the controller:
(valve_status=closed) -> (pre
valve=(valve_status <> pre valve_status));

• The pump is opened (resp. closed) when it receives
open_pump (resp. close_pump). This behavior is im-
plemented in the correct_pump_state node (that we
don’t detail here for sake of simplicity) and applied to
all the pumps:
AND(N_pump, correct_pump_state(open_pump,
close_pump, pump_state));

5

Table 1. Excerpt of a test case using all the possible invariant properties.
t0 t1 t2 t3 t6 t7 t8 t9 t10 t11 t998 t999 t1000

stop 0 0 0 0 0 0 0 0 0 0 0 0 0

steam_boiler_waiting 0 1 0 0 0 0 0 0 0 0 0 0 0

physical_units_ready 0 0 0 0 0 0 1 0 0 0 0 0 0

level 964 964 859 804 519 434 389 374 329 459 534 544 509

steam 0 0 11 1 13 17 9 3 24 4 22 13 22

valve_status closed closed open open open closed closed closed closed closed closed closed closed

pump_state[0..3] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [1,0,0,0] [1,1,0,0] [1,1,1,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

pump_control_state[0..3] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [1,0,0,0] [1,1,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

program_ready 0 1 0 0 0 0 0 0 0 0 0 0 0

mode start init init init init init normal normal normal normal normal normal normal

valve 0 1 0 0 1 0 0 0 0 0 0 0 0

q 964 964 859 804 519 434 389 374 329 459 534 544 509

v 0 0 11 1 13 17 9 3 24 4 22 13 22

open_pump[0..3] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [1,0,0,0] [0,1,0,0] [0,0,1,0] [1,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

close_pump[0..3] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0] [1,0,0,0] [1,0,0,0] [1,0,0,0] [0,0,0,0] [0,0,0,0] [0,0,0,0]

• The pump controller indicates that a pump is opened
after a delay of one cycle (due to the time needed to
balance the pressure as specified in [1]) and immedi-
ately when stopped:
AND(N_pump, pump_control_state = (pump_state
= open^N_pump and pre(pump_state =
open^N_pump)));

• When a fault message is received from the controller,
the device acknowledges the controller that it has re-
ceived the message. This behavior is applied to all the
pumps and their controllers, the level and the steam.
We give here the example of the level unit:
level_failure_acknowledgement = (false -> pre
level_failure_detection);

• When a fault detection message is received, the devices
send the repaired message until they receive acknowl-
edgement from the controller. This behavior is applied
to all the pumps and their controllers, the level and the
steam. We show below how to apply this to all the
pumps:
AND(N_pump, pump_repaired = (false^N_pump
-> pre(pump_repaired) and not(pre
pump_repaired_acknowledgement) or pre
pump_failure_acknowledgement))

Table 1 shows a generated test case resulting from the above
test model. In order to avoid premature stop of the system,
we added the not(stop) invariant. The generated test se-
quences simulate the normal function of the steam boiler.
At the first execution cycle, the controller requests the open-
ing of the valve, because of the high water level, until the
latter is reduced to the safe limits (t7). Afterward, the con-
troller continues on normal mode, since no failure is sig-
naled by the physical units.

4.3. Test scenarios

Previously generated test cases are obtained by adding
systematically all the invariants that define correct function-
ing of the boiler devices. This can be seen as a normal exe-
cution of the software. But, often when testing, one can try
to put the software into abnormal execution scenarios. In
LUTESS , specific execution scenarios can be obtained ei-
ther with invariant properties, either by specifying different
conditional probabilities.

In section 4.2, using an invariant property, we have set
stop to be always false, which can be seen as a simple sce-
nario: “the boiler is never stopped”. If we want to test
whether the software behaves correctly in case of shutdown,
we may want to allow “sometimes” the stop message to
be true, by specifying a small probability: prob(true,
stop, 0.05);

In a testnode (see Figure 3), the expression
prob(C,E,P) means that if the condition C holds
then the probability of the expression E to be true is equal
to P. Hence, with the above probability, the obtained
sequences have rare occurrences of the stop message and
the system can be observed for some time, before being
stopped late in the testing process.

Failures of the system can also be simulated this way. To
do so, invariant properties expressed in sections 4.1 and 4.2
can be replaced by prob expressions. For instance:

• A possible failure of the system can occur in the ini-
tialize mode, if we assume that there is a small prob-
ability to get the message physical_units_ready, when
expected:
prob(true, physical_units_ready = (false ->
(pre program_ready)), 0.2);

6

Table 2. Excerpt of a test case with broken level device scenario.
t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17

physical_units_ready 0 1 0 0 0 0 0 0 0 0 0

level 579 519 509 464 429 334 -1069082252 389 514 574 614

level_repaired 0 0 0 0 0 0 0 0 1 0 0

level_failure_acknowledgement 0 0 0 0 0 0 0 1 0 0 0

mode init normal normal normal normal normal rescue rescue normal normal normal

q 579 519 509 464 429 334 279 389 514 574 614

level_failure_detection 0 0 0 0 0 0 1 0 0 0 0

level_repaired_acknowledgement 0 0 0 0 0 0 0 0 1 0 0

• Another failure may consist of a change of the valve
state, even if no command has been sent to the valve:
prob(true, (valve_status=closed) -> (pre
valve = (valve_status <> pre valve_status)),
0.8);

Of course, this list is not exhaustive. Every property in an
environment operator could be replaced by such a prob
expression. The value of the assigned probability must be
empirically determined by the tester.

We show here, a more advanced simulation, of a
nonsignaled failure of the level measurement unit. To do so,
we first remove any domain constraints for the level input.
Then, we consider the previously shown invariant specify-
ing the current level value:

level_inv = true -> if expected_level < 0 then
level=0 else if expected_level > C then level=C
else level = expected_level;

We keep the same invariant conditions when not in nor-
mal mode:

implies(true -> pre(mode)<>normal, 0<=level
and level<=C -> level_inv);

And, while in normal mode, we introduce:
prob(false -> pre(mode)=normal, level_inv,

0.9);

Table 2 shows a generated test case for this level device
fault simulation and the corresponding controller reaction.
At instant t13, an arbitrary negative level value has been
generated and the controller has detected a fault in the wa-
ter level measuring device (level_failure_detection=1).
We can notice that the mode has changed to rescue and the
level value has been estimated. In the next two steps, the
device has been repaired and the controller goes back to
normal mode.

Note that there is no support for statically checking the
consistency of the defined probabilities. Therefore, it may
happen that the defined conditional probabilities cannot be
satisfied. For this case, two options are implemented in
LUTESS [9]: (1) the test operation terminates and the tester
must modify the assigned probabilities; (2) the generator
tempts to satisfy as much constraints as possible in order to
generate input values, so it ignores the specification causing
the inconsistency and continues the generation process.

4.4. Property-based testing

Safety properties are specified in a testnode using the
safeprop operator. When this operator is used, testing
is performed to check if these properties are satisfied by
the program under test. Property-based testing guides the
test generation by avoiding, when possible, input values that
cannot lead to a property violation. Consider, for instance,
the property: “issuing the stop message for 3 consequent
steps leads the controller into emergency mode”. To for-
mally express this property we use two local boolean vari-
ables pre_stop and pre_pre_stop, referring to the value of
stop for the past 2 steps:

pre_stop = false -> pre stop;
pre_pre_stop = false -> pre pre_stop;
safeprop(implies(false -> pre(mode)=normal
and stop and pre_stop and pre_pre_stop,
mode=emergency));

Violating this property requires setting the left part of the
implication to true. The table 3 shows the effect of the above
specification on the generated sequence. Immediately after
the controller has passed into normal mode, the value of
stop is set to true for the following 3 steps.

4.5. Concluding remarks

The objective of the case study was to assess the test
modeling difficulty and the test generation complexity of
LUTESS V2. The overall study showed that relevant test
models for the steam boiler controller were not difficult to
build: Modeling the steam boiler environment required a
few days of work. Of course, the effort needed for a com-
plete test operation is not easy to assess as it depends on
the desired thoroughness of the test sequences which may
lead the tester to write several conditional probabilities cor-
responding to different situations (and resulting to different
testnodes). It must be noted that building a new testnode
to generate a new set of test sequences usually requires a
slight modification of a previous testnode. This makes easy
to generate a big number of test sequences with a small ef-
fort. Thus, when compared to manual test data construction,

7

Table 3. Excerpt of a test case guided by a safety property.
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

stop 1 0 1 0 1 1 0 1 1 1 0 0

physical_units_ready 0 0 0 0 0 0 1 0 0 0 0 0

mode start init init init init init normal normal normal emergency emergency emergency

that the test professionals often use in practice, such an au-
tomatic generation of test cases could certainly facilitate the
testing process.

The steam boiler problem requires exchanging an impor-
tant number of messages between the system controller and
the physical system. The main program handles 38 inputs
and 34 outputs, boolean or integer, and it is composed of 30
internal functions. The main node is made, when unfolded,
of 686 lines of Lustre code. Each testnode consists of about
20 invariant properties modeling the boiler environment to
which are added various conditional probabilities or safety
properties. The average size of a testnode, together with the
auxiliary nodes, approximates 200 lines of Lustre code. It
takes approximately less than 30 seconds to generate a se-
quence of hundred steps, for any of the test models we used
(tests performed on a Linux Fedora 9, Intel Pentium 2GHz
and 1GB of memory; LUTESS uses the ECLiPSe3 environ-
ment for constraint solving.

5. Conclusions and Future Work

Realistically and efficiently testing a reactive application
with LUTESS requires building test models (tesnodes) of
the program. We have defined a methodology suggesting
several modeling stages, starting from domain definitions
and environment dynamics and following with scenarios
and safety properties. To assess the difficulty to carry out
this testing methodology, we have revisited the steam-boiler
system specification, a well-known case study. We have
identified several constraints and assumptions on the sys-
tem inputs and outputs which contribute to well-formed test
models of the program and we have thoroughly described
the steps of the proposed test methodology including guide-
lines to the test model construction and recommendations
on the use of the conditional probabilities and the safety-
property guided test generation. The results are encourag-
ing both in terms of modeling difficulty and of required gen-
eration time. Even if other case studies are needed to assess
the applicability and the scalability of the approach, this ex-
periment suggests that the methodology and the tool could
be suitable for real-world industrial applications.

Future work includes extending LUTESS to handle float
numbers. Such an extension requires defining an adequate
enumeration method during the constraint resolution.

3http://www.eclipse-clp.org

References

[1] Jean-Raymond Abrial. Steam-boiler control specifica-
tion problem. In Formal Methods for Industrial Appli-
cations, pages 500–509, 1995.

[2] A. Benveniste and G. Berry. The Synchronous Ap-
proach to Reactive and Real-Time Systems. Proceed-
ings of the IEEE, 79(9):1270–1282, 1991.

[3] F. Boussinot and R. De Simone. The Esterel language.
Proceedings of the IEEE, 79(9):1293–1304, 1991.

[4] T. Cattel and G. Duval. The steam boiler problem in
lustre. Formal Methods for Industrial Applications,
pages 149–164, 1996.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
lustre. Proceedings of the IEEE, 79(9):1305–1320,
1991.

[6] Bruno Marre and Agnès Arnould. Test sequences gen-
eration from lustre descriptions: Gatel. In IEEE In-
ternational Conference on Automated Software Engi-
neering, pages 229–237, Grenoble, France, October
2000.

[7] J. Musa. Operational Profiles in Software-Reliability
Engineering. IEEE Software, 10(2):14–32, 1993.

[8] Pascal Raymond, Xavier Nicollin, Nicolas Halb-
wachs, and Daniel Weber. Automatic testing of reac-
tive systems. In IEEE Real-Time Systems Symposium,
pages 200–209, 1998.

[9] Besnik Seljimi and Ioannis Parissis. Using clp to au-
tomatically generate test sequences for synchronous
programs with numeric inputs and outputs. In ISSRE,
pages 105–116, 2006.

[10] Besnik Seljimi and Ioannis Parissis. Automatic gen-
eration of test data generators for synchronous pro-
grams: Lutess v2. In DOSTA ’07: Workshop on Do-
main specific approaches to software test automation,
pages 8–12, New York, NY, USA, 2007. ACM.

8

