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Abstract

We calculate the current-voltage characteristic of a one-dimensional band insulator with magnetic

field and Rashba spin-orbit coupling which is connected to nonmagnetic leads. Without spin-orbit

coupling we find a complete spin-filtering effect, meaning that the electric transport occurs in one

spin channel only. For a large magnetic field which closes the band gap, we show that spin-orbit

coupling leads to a transition from metallic to insulating behavior. The oscillations of the different

spin-components of the current with the length of the transport channel are studied as well.

PACS numbers: 72.25.-b, 71.70.Ej
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I. INTRODUCTION

There is a great interest today to study the phenomena of quantum transport in low

dimensional systems, both from a technological and a fundamental point of view. Especially

important are questions of spin polarized transport, also known as spintronics.1 A famous

example is the proposition of the Datta-Das transistor2 which uses the rotation of the elec-

tron spin due to spin-orbit (SO) coupling. There are two sources of spin-orbit coupling in

quasi one-dimensional systems (1D), an intrinsic one due to the lack of inversion symmetry

in certain crystal structures (Dresselhaus term)3 and an external one triggered by an applied

voltage to surface gates (the Rashba SO coupling).4

Several works studied the SO coupling and electronic transport in quasi 1D metallic

systems.5,6,7,8,9,10,11,12,13,14,15,16 In contrast, the influence of SO coupling and magnetic field

on the transport in 1D band insulators is unexplored, and it can be expected to be funda-

mentally different. In the letter band insulators, we will report on two interesting effects:

the complete spin filtering effect and the SO induced metal-insulator transition. An in-

complete spin filtering effect is possible in 1D metallic systems with a potential step or

additional impurities,7,14,16 but the complete spin filtering as well as the spin-orbit induced

metal-insulator transition which will be reported below are specific to 1D band insulators

and cannot be observed (in principle) in 1D metals.

A prototype model for a one-dimensional (1D) band insulator is a half-filled ionic chain

with alternating on-site energies (energy difference ∆). Such an ionic chain will be used in

our study, however the obtained results are expected to be generic to any kind of 1D band

insulators, including charge transfer insulators and realized in diatomic polymers,17 as well

as the 1D Peierls insulators, such as polyacetylene.18 In a wider sense, one-dimensional band

insulators may also be realized in carbon-nanotubes. These nanotubes have the advantage

that the value of the gap may be tuned in a very wide range from 600 meV (for (12,0)

nanotubes) up to 8 meV (for (13,0) nanotubes) or even smaller values.19

Before presenting detailed calculations, let us start with some qualitative arguments.

We first discuss transport in 1D band insulators in a magnetic field B and in absence of

SO interaction. Although the magnetic field induced metal-insulator and insulator-metal

transitions have been the subject of studies for decades,20 in the context of transport in

mesoscopic systems these effects have not been investigated in detail. As we show in this
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paper, in the limit of ultra-low temperatures (T ≪ ∆) and strong magnetic field (B ≥ ∆)

the field induced insulator-metal transitions lead to the almost complete spin filtering effect,

since in this case only one spin channel is open for transport at the Fermi level.

However, the metallic phase reached at B ≥ ∆ shows unconventional and substantially

different properties compared to a normal metal. As we will show, contrary to the usual

1D metallic phase, the Rashba spin-orbit coupling opens up a gap again, leading to a spin-

orbit induced metal-insulator transition. It is important to note that both effects, i.e. the

complete spin filtering effect and the metal-insulator transition induced by the Rashba spin-

orbit coupling are very specific to 1D band insulators, and may not be observed in 1D

metals.

Rather than analyzing the effect of these transitions by computing the bulk transport

properties of the chain, such as the conductivity, we choose to compute the current of a finite

chain of such a material, whose extremities are connected to metallic electrodes. A bias is

imposed between the electrodes in order to induce current flow. On the one hand it allows

to probe the spin filtering effects in a setup which is close to experimental situations, on the

other hand it also allows to investigate potential fluctuations of the current as a function

of the chain length in the presence of SO coupling. In particular, we will show that a

complex behavior, with several periods and a complicated energy dependence is obtained in

the presence of a band gap ∆ and a magnetic field; this is totally different from the simple

harmonic oscillations, with a period inversely proportional to the SO coupling strength,

obtained in the metallic case.

The paper is organized as follows. In Sec. II, we introduce the model and in Sec. III we

discuss the spectrum of the infinite chain. In Sec. IV, we discuss the method which is used

to obtain the transport properties as well as physical results. We conclude in Sec. V.

II. THE MODEL

We note first that the spin-orbit coupling can be generated by a voltage VG applied to

external gates perpendicular to the current. This is known as Rashba spin-orbit coupling,4

and defines the device studied in the present paper (Fig. 1). We consider a finite chain

(oriented in the x̂ direction) connected to metallic leads. Lateral metallic gates are placed

so that to create an electric field which is perpendicular to both the chain and the magnetic
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FIG. 1: (Color online) Schematic figure of the transport process studied in the paper. The SO

coupling parameter αR is proportional to VG.

field (ẑ) direction. With these conventions the following Hamiltonian describes the molecular

chain:

H = −t
∑

n,σ

(

c†n,σcn+1,σ + h.c.
)

+
∆

2

∑

n,σ

(−1)nc†n,σcn,σ

−
gµBH

2

∑

n,σ

σc†n,σcn,σ

+αR

∑

n

(

c†n,↑cn+1,↓ − c†n,↓cn+1,↑ + h.c.
)

. (1)

Here the first contribution describes the kinetic energy in the tight binding model, the

second one accounts for alternating on-site energies, the third term is the Zeeman coupling

(magnetic field B = gµBH) and the last term is the Rashba SO coupling (strength αR). We

consider a finite chain of length L which is connected to left and right leads by tunneling

amplitudes Tl and Tr, respectively. Note that we investigate here the case of nonmagnetic

leads. We assume that the SO coupling vanishes in the leads and that the magnetic field

only affects the central region significantly.

III. THE SPECTRUM

To understand the magneto transport results it is useful to first consider the spectrum

of (1). For clarity all spectra are plotted in the reduced Brillouin zone k ∈ [−π/2a, π/2a]

associated with the presence (possibly small) of alternating on site energies. Typically this
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FIG. 2: Spectrum of the tight-binding chain (see Eqs. (1)-(2)) with magnetic field (B = gµBH =

1.3), with and without Rashba coupling αR and ionicity ∆ (t = 1 has been taken as unit of energy).

spectrum consists of 4 branches and it can be obtained exactly:

E±
1/2

(k) = ±
√

4α2
R sin2 k + B2

4
+ ∆2

4
+ 4t2 cos2 k ±W

W =
√

16α2
Rt

2 sin2(2k) + 4B2t2 cos2 k + B2∆2

4
(2)

in the general case with spin-orbit coupling αR and in the presence of a magnetic field. It is

shown in Fig. 2 for different cases of ∆ and αR, with a non-zero magnetic field B.

The upper left corner of Fig. 2 depicts the trivial case of a non dimerized tight binding

chain (∆ = 0) in the presence of a magnetic field. The latter gives rise to a splitting between

the spin up and spin down bands. The spectrum has been folded in this reduced Brillouin

zone to serve as a point of comparison for the other cases, with dimerisation.

We now consider the case of a non-zero value for ∆ (bottom left plot of Fig. 2). For

αR = 0, the spin up and down bands are still separated, but the dimerisation opens a gap

for each spin band at the boundaries of the Brillouin zone. This implies that for energies

close to the Fermi level only one spin channel will be open for the transport (complete spin

filtering effect, see next Section). As shown on the Figure, the magnetic field can be so

strong that the gap closes and the system can become metallic. We now switch on the

Rashba coupling in the presence of dimerisation (bottom right corner of Fig. 2). In this

case, the coupling between spin up and spin down gives rise to an anticrossing, so that the

spin-orbit coupling opens up a gap again.

On the other hand, there is no spin filtering effect for a homogeneous, metallic chain
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(∆ = 0, top row of Fig. 2). Without magnetic field (not shown), the spin-orbit coupling can

be taken exactly into account by a shift of k → k + arctan(αR/t). As can be easily inferred

from the spin split band structure in a magnetic field (left plot) the density of states for

spin up and spin down electrons is the same in that case. And the introduction of spin-orbit

coupling (right plot) does not open a gap. This proves that both effects, i.e. the complete

spin filtering effect and the spin-orbit driven metal-insulator transition cannot be observed

in a metallic system (∆ = 0).

IV. TRANSPORT THROUGH A FINITE CHAIN

In the absence of electronic interactions, the current through a finite chain of length L can

be cast exactly in a Landauer type formula, written here for zero temperature. This current

depends on the orientation of electrons spin at the input lead and the output lead: the

current Iss′ for instance, corresponds to electrons which enter with spin s (with s =↑ or ↓)

from the left lead and leave the current channel with spin s′ to the right lead. With this

convention,

Iss′(VD) = ΓLΓR

∫ µR

µL

dE
∣

∣

∣
Gss′

ab (E)
∣

∣

∣

2

. (3)

The integration is peformed between the chemical potentials of the left and right leads

(µL = −VD and µR = 0). The energy dependent transmission is simply proportional to the

square modulus of the total retarded Green function of the chain (which include the coupling

with the leads) between both endpoints, noted here a and b. The tunneling rates on the left

and right side are defined as Γj ≡ 2πρjT
2
j (j = L,R), where ρj is the (constant) density of

states of lead j, and Tj the tunneling amplitude to lead j. The total Green function of the

chain between the end sites a and b, Gss′

ab can be obtained from the Green function of the

bare chain (uncoupled to leads) gss′

ab by solving the Dyson equations:
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↓↑
bb















and similar equations for the opposite spins, and where Σj = −iΓj is the retarded self-energy

coming from the coupling to lead j = L,R. The Green functions of the bare chain gss′

ab are
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obtained simply by computing the eigenvalues and eigenstates of the finite chain, and using

a spectral representation:

gss′

ab (E) =
∑

n

ψs
n(a)

(

ψs′

n (b)
)∗

E −En + i0+
(4)

Here all the Green functions, and consequently the current in Eq. (3), are 2x2 matrices in

spin space. This is a consequence of the Rashba SO coupling, which couples the spin-up

and spin-down channels. Without SO coupling all quantities become diagonal in spin space,

and the formula for the total Green function reduces to:

Gss
ab =

gss
ab

(1 − ΣLgss
aa)(1 − ΣRg

ss
bb ) − ΣLΣRg

ss
abg

ss
ba

(5)

Let us start the discussion of our numerical results with the current-voltage characteristics

in a magnetic field with ∆ 6= 0, but without SO coupling (see Fig. 3). The magnetic field

B = Bc is chosen such that it just closes the gap, but the exact value of this parameter

is nevertheless not important for the spin-filtering effect. The transport for drain voltages

between VD = 0 and VD ≃ 0.6t is only possible for one spin channel. It means that we find

complete spin polarization in the transport channel (connected to nonmagnetic leads) and

a complete spin-filtering. The spin polarization of the current is defined in the general case

as7,14

P =
I↑↑ + I↓↑ − I↑↓ − I↓↓
I↑↑ + I↓↑ + I↑↓ + I↓↓

. (6)

As shown on Fig. 3, the spin polarization remains finite (but smaller than unity) for larger

voltages (between approximatively 0.6 t and 2.25 t) and disappears at approximatively 2.25 t

where the current reaches saturation (all the electrons of the tight-binding band contribute).

A finite spin polarization means also that the current creates a total magnetization M

in the transport channel of length L. The value of the total magnetization is given by

M/µB = L(I↑↑ + I↓↑ − I↑↓ − I↓↓)/〈v〉, where 〈v〉 means the average velocity of the electrons

which are active in the transport process (ballistic transport).

This spin-filtering effect is expected to work for a wide range of gap values. The voltage

region where only one spin channel is open is determined by the applied magnetic field.

This works also if the magnetic field is not sufficiently strong to close the gap. Therefore,

even materials with gap values of about 0.5 eV are possible candidates to show the complete

spin-filtering effect. The onset of the minority spin channel (at zero energy in Fig. 3) is

given by the relative position of the chemical potential with respect to the upper band edge
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FIG. 3: Upper plot: total current as a function of the bias voltage VD, in the spin filtering

configuration. ∆ = 0.6, B = 0.6, ΓL = ΓR = 0.1 and t = 1, for a chain of 500 sites.The inset shows

the separate contributions from the spin-up and spin-down current. Lower plot: spin polarization

(Eq. (6)) for the same parameters.

of the valence band which may vary from one experimental situation to another.

We now consider the case of non-zero SO coupling. The transition from metallic to

insulating behavior driven by SO coupling is shown in Fig. 4. The magnetic field is the

same as in Fig. 3, i.e. it just closes the gap B = Bc = ∆, and the Rashba SO coupling

is αR = 0.2t. It is created by an external gate voltage (see Fig. 1). The SO coupling

leads to an insulating behavior, as seen in the spectrum (Fig. 2) and in the current-voltage

characteristics (Fig. 4). In contrast to Fig. 3, the presence of the SO coupling αR leads to

a current on-set at VD ≃ 0.25t corresponding to half of the gap value for our choice of the

chemical potential. The different current components Iss′ are now all different, and the spin

polarization (Eq. 6) is different from zero but not complete (0 < P < 1).

Note that the relative values of the different spin-components of the current in Fig. 4 are
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FIG. 4: (Color online) Upper plot: total current as a function of the bias voltage VD, in the the

presence of Rashba spin-orbit coupling, with αR = 0.2, ∆ = 0.6, B = 0.6, ΓL = ΓR = 0.1 and t = 1

for a chain of 500 sites. The inset shows the four spin components of the current (in this order

from top to bottom near VD = 2.5): I↓↓ (red), I↑↑ (black), I↓↑ (orange), and I↑↓ (blue). Lower

plot: spin polarization (Eq. (6)) for the same parameters.

dependent on the chain length. This is due to the Rashba SO coupling, which is known to

induce spin precession. Here, this spin precession is made more complex due to the presence

of the magnetic field B and the ionicity ∆. The oscillations of the current components,

as a function of the chain length L, are shown in Fig. 5, for L varying between 500 and

600. These oscillations have a rather small contrast, show several periods and a complicated

dependence on bias voltage VD in the general case (a dominating period seems to be present

for the off diagonal components of the current though). This has to be contrasted with the

pure metallic case (B = 0 and ∆ = 0, shown in the inset of Fig. 5), where only one period

Lp = π/α is present independently on VD, and where the contrast is maximum.

9



500 520 540 560 580 600

0.005

0.010

0.015

0.020

0.025

520 540
0.

0.02

0.04

I¯¯

I

I¯
I¯

L

FIG. 5: (Color online) Oscillations of the spin components of the current as a function of the

chain length (lengths between 500 and 600), for VD = 2.0, when SO Rashba coupling is present

(αR = 0.2, ∆ = 0.6, B = 0.6, ΓL = ΓR = 0.05 and t = 1). Inset: the same plot with B = 0 and

∆ = 0, where I↑↑ = I↓↓ and I↑↓ = I↓↑

V. CONCLUSIONS

In studying the combined effect of magnetic field and SO interaction on the transport in

1D band insulators we found two interesting effects. First, already without SO coupling, the

presence of a magnetic field leads to complete spin filtering. We studied this effect here by

connecting the conduction channels to nonmagnetic leads but the effect of magnetic leads

is easy to imagine, at least qualitatively. Then, spin filtering means high conductance for

parallel magnetization in the leads and low conductance for antiparallel arrangement.

We speculate that the voltage region of the spin filtering effect may be dramatically

enhanced by the presence of magnetic impurities in the band insulator, due to the giant

Zeemann effect. This might be important for the experimental verification of our proposal.

The second striking effect of this study appears in band insulators with small band gap

that may be closed by a magnetic field. In that situation, the SO coupling leads again to

an insulating behavior. That is especially interesting for the Rashba spin orbit coupling

which is tuned by a gate voltage. Therefore, we may propose a device in which the metal-
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insulator transition is controlled by the gate voltage via the Rashba SO term. This is

in sharp contrast with 1D metallic systems, where the SO coupling does not lead to any

metal-insulator transition.

We also showed the oscillations of the different current components with the chain length.

Whereas the simple oscillations in metallic systems are easy to understand, the oscillations

are much more complex for band insulators. We have let a detailed analysis of these oscil-

lations for further studies. In our calculations the band insulator was simulated by an ionic

term of alternating on-site energies in the Hamiltonian. But we think that our results are

generic to any kind of band insulator. On the other hand, the way in which Coulomb corre-

lations influence our results may be different from one microscopic Hamiltonian to another.

We expect that the Coulomb correlation just scales the band gap (either to larger or to

smaller values) and that the presented results should remain valid with effective parameters,

however.

The authors thank Marc Bescond and Alvaro Ferraz for useful discussion.
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