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ABSTRACT. Conventionally, dynamic crack propagation is modelled using fracture mechanics 
(either linear elastic, or with an extension to confined plasticity). Herein, we propose a 
different view, based on a coupling between an atomic description at the crack tip and a 
classical continuum description away from it. The paper presents the theoretical background 
and some first numerical results. 

RÉSUMÉ. La modélisation de la propagation de fissure repose principalement sur une bonne 
utilisation de la mécanique de la rupture (dans le cadre élastique linéaire ou bien dans des 
extensions à la plasticité confinée). Nous proposons ici une approche différente, tant sur la 
modélisation numérique que physique, qui consiste à coupler une vision atomique en pointe 
de fissure à une description classique continue. Cet article présente le cadre théorique du 
couplage ainsi que quelques résultats numériques en dimension 1. 
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1. Introduction

In most approaches to date, fracture is modelled using a continuum approach, ei-
ther using linear-elastic fracture mechanics, or with an extension to take care of con-
fined inelastic yielding, or crack bridging effects, such as in cohesive-zone models.
In this contribution we shall describe a novel approach to fracture. The basic idea is
that the crack tip is described by an atomistic model while the surrounding will be
described as a continuum, discretized via a finite element method that exploits the
partition-of-unity property of finite element shape functions. Indeed, by using en-
riched interpolation functions to capture cracks that may be incompatible with the
underlying mesh structure no remeshing is needed. At the same time, there is no need
to use asymptotic enriched functions at the continuum level, since the crack tip is de-
scribed by an atomistic model. At the atomistic scale, either a classical molecular
dynamics description or quantum mechanics can be employed. The latter approach
relies on a very detailed description: The Schrödinger equation is solved as a func-
tion of the electronic configuration (Marx et al., 2000). The major inconveniency of
such a description is its cost. A more pragmatic approach, that is used here (Zhou et
al., 1997; Sutmann, 2002), employs a classical molecular approach with interatomic
interactions being captured by a potential.

The coupling of the two descriptions is the major challenge of this contribution.
Indeed, away from the crack tip we have a classical continuum, but in its vicinity a
discrete atomistic model is used. A crucial difficulty of this approach is that charac-
teristic parameters in space and time are much smaller at the atomic level than those
at the continuum level, which are used in the finite element simulation.

Many coupling methods have been developed (Liu et al., 2006; Xiao et al., 2004).
Herein, we propose a weak coupling between the two models, namely an energy cou-
pling. Its major advantage is that energy has the same physical meaning in both do-
mains. To be more precise, the continuum equations are cast in a weak form and are
coupled to the atomic description via a partition of the energy.

2. Problem statement

2.1. Changing scales in the crack propagation problem

Dynamick crack propagation can be described as follows: A discontinuity, the
crack Γ, is included in a structure described as the closure of the connex open set Ω.
The displacements are fixed on a boundary ∂1Ω and external loads are given on ∂2Ω.
Finally, a volumic forces field, gd , is applied in Ω (Figure 1).

We consider a subdomain Ωm of Ω that includes the crack tip. The goal is to link
an atomic description in the subdomain Ωm to a continuum approach in Ω\Ωm, i.e.
outside the zone of the crack tip. In order to separate the two zones, Ωm can be defined
spatially as the crak tip domain to which the plastic zone is confined, so that the macro
subdomain outside this plastic zone can be captured by an elastic stress-strain relation.
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Figure 1. Global problem

2.2. Formulations

Denoting by u and d the displacements in the continuum and in the discrete zone,
respectively, we have the initial-value problem in the continuum subdomain:

For x ∈ ΩM (t) and t ∈ [0;T ] , knowing
(

u(x,0) , u̇(x,0)
)

,

find (u,σ) ∈Uad×Sad such that:

ρü= div σ+gd

[1]

with:

Uad =
{

u= u(x, t) ∈
[

H 1 (ΩM)
]3 ; u= ud on ∂1Ω , ∀t ∈ [0,T ]

}

Sad =
{

σ = Kε
(

u(x, t)
)

∈
[

L2 (ΩM)
]6 ; σ.n= Fd on ∂2Ω , ∀t ∈ [0,T ]

}

and in the discrete subdomain Ωm, where we build a discrete grid of Na atoms, the
second initial-value problem reads as follows:

For 1 ≤ i≤ Na (t) and t ∈ [0;T ] , knowing
(

d (0) , ḋ (0)
)

,

find (d, f ) ∈Dad×F ad such that:

mid̈i = f i

[2]



with:

Dad =
{

d =
(

di(t)
)

1≤i≤Na
, ∀t ∈ [0,T ]

}

F ad =
{

f =
(

f i(t) = −∇iW
(

d (t)
)

)

1≤i≤Na
, ∀t ∈ [0,T ]

}

The interatomic forces are given by differentation of a potential. A good descrip-
tion relies on the proper choice of this potential. To test the coupling method a classical
potential, such as that of Lennard-Jones or of Morse, suffices:

WL−J = 4ε

(

(σ

r

)12
−

(σ

r

)6
)

, WMorse = D
(

1− e−a(r−re)
)2

[3]

The parameters ε, σ, D and a are material properties and r is the interatomic dis-
tance, with re that at equilibrium. We note that other potentials have been developed,
allowing for a better description of the metallic bond, for example - EAM potential
(Daw, 1989). The atomic problem relies on the resolution of non-linear equations with
non-convex potentials. The study of existence and uniqueness properties for this kind
of problem is not the aim of this contribution, see e.g., (Lions et al., 1965) for more
information.

In order to get an energetic framework and allow for a discretization, the contin-
uum problem is rewritten in a weak format, as follows:

∀v∗ ∈ U̇ad,0 , knowing
(

u(x,0) , u̇(x,0)
)

,

find u ∈Uad such that:

Z

ΩM
ρü · v∗dΩ+

Z

ΩM
ε(u) : K : ε(v∗)dΩ =

Z

∂2Ω
Fd · v

∗dS+
Z

ΩM
gd · v

∗dΩ [4]

or, written in a more concise way:

aM (u,v∗) = lM (v∗) [5]

The atomic problem becomes:

∀w∗ ∈ Ḋad,0 , knowing
(

d (0) , ḋ (0)
)

,

find d ∈Dad such that:

Na

∑
i=1
mid̈i ·w

∗
i +

Na

∑
i=1

∇iW (d) ·w∗
i = am (d,w∗) = 0 [6]



2.3. Coupling models

In order to achieve an efficient coupling between the two problems introduced
before and to specify the coupling conditions, we assume a weak coupling on the
common zone. We consider the mechanical energy as a primordial quantity. Dual-
izing formulations and writing them in a weak format allows us to obtain a global
description that preserves the descriptive properties of each model, and focuses on the
quantity of interest, the energy, which must not depend on the model.

In the common, or handshaking, zone Ωc = ΩM ∩ Ωm, a velocity coupling is
adopted using a weak format. Moreover, the energy is distributed between the two
models inside the coupling zone in a partition of the unity sense (Dhia et al., 2005).
More precisely, on the whole domain Ω we split the energy between the two models
in the following sense:

⎧

⎨

⎩

α(x) = 1 for x ∈ ΩM\Ωc
β(x) = 1 for x ∈ Ωm\Ωc

α(x)+β(x) = 1 for x ∈ Ωc

[7]

and we subsequently obtain the weak formulation for the distribution of the energy:

∀(v∗,w∗) ∈ U̇ad,0 × Ḋad,0 , knowing
(

u(x,0) , u̇(x,0) ,d (0) , ḋ (0)
)

,

find (u,d) ∈Uad×Dad such that:

αaM (u,v∗)+βam (d,w∗) = αlM (v∗) [8]

β
1

0
Ωm

Ωc

ΩM

α

Figure 2. Partition of unity for the energy distribution

As stated before, the displacement and velocity fields in the domains ΩM and Ωm
have a different nature. One field is a continuous in its definition space, while the other
has a discrete character and is only defined at the geometrical points that correspond
to the atoms. In order to construct a velocity coupling, we assume an equality between
the velocities as we go from one model to the other. This condition has to be written
in a weak form, which means in a “global”, or “integral” manner.

Accordingly, a new space is constructed, denoted by M and called the “mediator
space”, on which we will project the fields u̇ and ḋ in order to compare them. The



nature of M is determined by the discrete property of the atomic fields. Indeed, no
extrapolation outside the atomic positions is possible if we wish to keep a physical
sense at the fine scale. Then, M has to be a sub-space of the physical atomic space.

More precisely, through the operator Π we can project the velocities onto a dis-
crete subset Ωc of the atomic positions included in Ωc. Considering that M has been
constructed as a Hilbert space, we introduce a scalar product c from M ×M into R,
and we write the velocity coupling as:

∀μ∗ ∈M , c
(

μ∗,Πu̇−Πḋ
)

=< μ∗,Πu̇−Πḋ >M = 0 [9]

This formulation allows us to finally write the global equations coupled with Lagrange
multipliers:

∀(v∗,w∗,μ∗) ∈ U̇ad,0 × Ḋad,0 ×M , knowing
(

u(x,0) , u̇(x,0) ,d (0) , ḋ (0)
)

,

find (u,d,λ) ∈Uad×Dad×M such that:

αaM (u,v∗)+βam (d,w∗)+ c(λ,Πv∗−Πw∗) = αlM (v∗)
c
(

μ∗,Πu̇−Πḋ
)

= 0 [10]

3. Discretization

We now introduce two main discretizations. First, the macro-problem in ΩM has to
be discretized with a finite element interpolation, and subsequently, a time discretiza-
tion is needed to solve the dynamic global problem. Moreover, we will use a Heaviside
enrichment at the crack in order to avoid remeshing by exploiting the partition-of-unity
property of finite element shape functions (Moës et al., 1999; Remmers et al., 2003).

3.1. Spatial discretization for the continuum problem

The weak formulation allows us to adopt a finite element form for the macro-
problem. With the shape functions Ni and nodal unknown vectors ui, using the Heav-
iside step function to take into account the discontinuity, one obtains:

∀x ∈ ΩM , uh(x) = ∑
Ni

U iNi(x)+∑
Ne

UeiNi(x)H (x) = NTU [11]

With the latter notation, the bilinear form aM(., .) and the linear form, lM(.), become:

αaM (uh,v
∗
h) =V ∗TMÜ+V ∗TKU [12]

αlM (v∗h) =V ∗TFM [13]



Moreover, with the classical scalar product, the coupling term in the continuum be-
comes:

c(λ,Πv∗h) =V ∗TCMΛ =V ∗TFLM [14]

which leads to the typical matrix formulation:

MÜ+KU = FM−FLM = FM−CMΛ [15]

Remark 1: The added term FLM is a fictitious force due to the coupling with Lagrange
multipliers. This force has non-zero value only in the coupling zone Ωc.

Remark 2: The matrices M, K and the vector FM contain information about the en-
ergy distribution, i.e. in the domain Ωc, the repartition function α is used to
build their elementary terms.

Remark 3: The vector Λ stands for the Lagrange unknowns and its size is equal to
the Ωc subset cardinal times the dimension of the considered space.

3.2. Time integration scheme

In order to solve the coupled system we use a standard central difference scheme.
This scheme is widely used in classical molecular dynamics and is also known as
Verlet algorithm. Yet, as it is explicit, its stability relies on an appropriate choice of
the time step size. For the continuum problem other time schemes could have been
used, but for simplicity the central difference scheme has also been adopted for this
subdomain.

The global coupling equations are:

⎧

⎨

⎩

MÜ+KU = FM−FLM
md̈ = f + f Lm

∀μ∗ ∈M , c
(

μ∗,Πu̇h−Πḋ
)

= 0
[16]

Similar to the continuum model, the equation for the atomic scale includes the repar-
tition function β, and a fictitious coupling force f Lm is introduced. The matrix m is
diagonal with elementary term βmi, and the coupling force is:

f Lm =CmΛ [17]

The system can be rewritten with the three main vectors (U ,d,Λ):
⎧

⎨

⎩

MÜ+KU = FM−CMΛ
md̈ = f +CmΛ
CTMU̇ =CTmḋ

[18]



The time scheme relies on discretization with a time step Δ t and has four stages:

– given the quantities at step n, compute the displacementsUn+1 and dn+1,
– compute the accelerations Ün+1 and d̈n+1, neglecting the Lagrange forces,
– compute the predictive velocities U̇∗

n+1 and ḋ∗n+1,
– adjust these velocities to give the final velocities U̇n+1 and ḋn+1 by taking into

account the coupling terms and Lagrange multipliers Λn+1.

The three first steps are simple and do not need further explanation. The last step
computes the coupling terms and enforces condition (9).

From (9) and (18) with the matrix M̃ standing for Mlumped , the coupling condition
becomes:

CTM

(

U̇
∗
n+1 − M̃

−1
CMΛ̃n+1Δ t

)

=CTm

(

ḋ
∗
n+1 +m−1CmΛ̃n+1Δ t

)

[19]

where Λ̃n+1 = 1
2 (Λn+1 +Λn). The new Lagrange multipliers Λ̃n+1 are subsequently

computed by solving:

AΛ̃n+1 = bn+1 [20]

with:
{

A =
(

CTMM̃
−1
CM+CTmm

−1Cm

)

Δ t

bn+1 = CTMU̇
∗
n+1 −C

T
mḋ

∗
n+1

[21]

and bn+1 stands for the weak coupling condition on the predictive velocities. Thus,
this term is a measure of the error compared to the solution that satisfies the system
(18).

3.3. A multiscale time decomposition

As we have very different orders of magnitude in the models, it is useful to con-
struct a multiscale time integration scheme. Indeed, at the atomic scale, we need a
very fine time scale to achieve sufficient accuracy and to satisfy the critical time step
condition. The concept is simple: Let Δ t be the fine time step, i.e. for the atomistic
problem, and ΔT be the coarse time step, such that ΔT = kΔ t with k ∈ N

∗. The entire
atomistic resolution is done at the fine scale, but the macro-problem is solved only at
coarse time steps. For consistency between the models, the coupling condition has
been enforced at each fine time step, via an interpolation of the macro acceleration.
Indeed, there is no need to compute all the macro quantities on the fine grid, but we
must approximate the acceleration in order to update the velocities for the coupling
condition.
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Figure 3. Wave propagation in a one-dimensional beam



4. One-dimensional results

As an example we consider a longitudinal bar, which is described with finite el-
ements and with molecular dynamics, with a coupling region in between. The bar
is submitted to a traction wave, the initial configuration being displaced on the left-
most ten elements. The right-hand side is fixed. The whole domain is 88.1563nm
long and we put 176 atoms in the molecular domain. The interatomic distance is
re = 0.3253nm, and the finite elements size is h = 4re. In the molecular model, we
use a Lennard Jones potential, with ε = 43.306zJ and a mass m = 0.00448yg. These
parameters come from FCC Al properties, and the proper material properties for the
finite element model are derived from the atomic properties. In Figure 3, we see the
displacements in the bar as the wave propagates. The zoom 3(e) shows how the atoms
fit the travelling wave in the coupling zone.

We now focus on the mechanical energy transfer when the wave passes through the
coupling zone from the finite elements to the molecular domain. In the first case (Fig-
ure 4(a)), the coupling length Lc covers 4 elements. The wave passes from one domain
to the other, but there is a non-negligible energy loss. When Lc covers 10 elements,
i.e. the second case (Figure 4(b)), the mechanical energy transfer has improved. A
good transfer is reached when γ = Lc

Li
→ 1, and then we have negligible energy losses

(< 1%). On the contrary, when the coupling length is too small compared to the wave
length, there is some reflection in the finite element domain.
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(a) Coupling length: Lc = 4h
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(b) Coupling length: Lc = 10h

Figure 4. Mechanical energy transfer from FE to MD

In Figure 4, we have plotted the energy transfer ratio - when the wave passes
from the finite element to the molecular domain - as a function of the number of
atoms involved in the coupling domain, for different multscale ratios (from h = re to
h = 10re). We observe that it does not depend on the multiscale aspect. Only the
number of atoms has an influence. To achieve a good energy balance, a sufficient
number of atoms in the coupling zone is needed: With approximately 20 atoms we
obtain less than 2% of energy loss.
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Figure 5. Energy transfer ratio depending on the multiscale ratio

5. Conclusion

We have given the theoretical concepts of a coupling method between two models
that are physically different. The formulation has been written in a weak format in
order to preserve the accuracy of each model and the mechanical energy as the funda-
mental quantity. We have studied this method in a one-dimensional example and have
observed the energy transfer as information passes from one domain to the other. The
coupling length and the number of atoms involved in the transition zone have a major
influence on the energy balance.
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