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Abstract

Differential equations, and particularly those governing mechanical system behavior,
can be transformed into algebraic equations by using the well known properties of
polynomial functions. In this paper, by using Chebyshev polynomials, improvements
of classical methods are proposed for the identification and inverse formulation of
mechanical systems. The drawbacks of these polynomials compel us to propose
alternative formulations by dissociating signal expansions and parameter estimation.

Before any identification, excitation and response signals have to be correctly
expanded in the polynomial basis. With Chebyshev polynomials, this requires the
signals to be in a the same narrow frequency bandwidth. In the presence of noisy
signals, correct parameter identification can be performed with a new formulation
by taking only central points within the time interval. This methodology can be
generalized by defining any other point selection criterion.

This new formulation is first tested on a linear 3-DOF mechanical system and
then extended to the parameter identification of a non linear mecahnical component
by using the product property of Chebyshev polynomials. The identification carried
out on the hysteretic behavior measured and exhibited by a tape-spring actuator

gives relevant parameter estimation.
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The proposed methodologies and formulations can be easily extended to other
orthogonal functions in association with differential or integral transformations of

differential equations.

Key words: polynomial, identification, Chebyshev, mechanical system, non linear

1 Introduction

Predicting the dynamic behavior of complex mechanisms and/or structures
requires reliable models. But boundary conditions, uncertain parameters, es-
pecially damping parameters make them difficult to formulate. Therefore, ex-
perimental models could be used in particular when operating conditions and
or mechanical properties change during the life-cycle of a mechanism. Gener-

ally speaking, experimental models are mainly used for:

e modeling behavior by identifying model parameters for given measured ex-
citations and responses. This identification problem is also related to the
updating of theoretical or numerical models.

e predicting responses due to a specific excitation. Models are solved with
differential equation resolution, by using classical integration methods.

e predicting excitations from the responses with a well defined model. These
inverse problems are used when the direct measurement of excitations is

ineffective or impossible.

In all these problems, the main difficulty lies in the transformation of differ-
ential equations into a set of easy to process algebraic equations.

Traditionally, a discrete form of these equations is obtained by applying the
7 transform on signals when linear assumptions are available. This leads to
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an equivalent recurrent equation when the signals are sampled at a constant
rate and when the Zero Order Holder assumption is assumed. However an
over-high sampling rate makes it difficult to obtain the physical parameter
[11]. Moreover, this method requires specific excitations (e.g. Pseudo-Random
Binary Signal, white noise, etc) which are not compatible with operating con-
ditions.

Over the last few decades, alternative methods have been proposed and gath-
ered under the banner of Continuous Time Identification methods (see [1; 5;
9; 11]). In these approaches, orthogonal functions are frequently used in an
integral formulation of differential equations. Their main advantage is that
they transform the integration of signals into a simpler integration of these
functions by making use of a square matrix that depends on the orthogonal
functions. Therefore, the differential equations governing the behaviour of the
mechanical system can be transformed into algebraic equations.

In [12], the authors describe several applications that have been developped
since the 1990’s for identifying controlled systems and MDOF systems. They
compare different kinds of orthogonal bases such as Jacobi, Legendre or Cheby-
shev polynomials, Block-Pulse or Walsh functions and, of course, Fourier se-
ries. They also mention the easiness of integral formulation in the field of
inverse problems and the simplification of the calculation in sensitivity analy-
sis problems. In [13], they also use this integral formulation in the presence
of nonlinearities such as the Duffing oscillator or dry friction damper. In the
field of identification of nonlinear behavior, other contributors have proposed
similar approaches using Chebyshev polynomials early in the 1980’s [4; 8; 10].
Other contributors (see [6; 7]) have proposed a similar approach based on a
derivative formulation with wavelet bases. The authors reach the same general
conclusions on the relevancy of the using of orthogonal functions for solving

problems based on differential equations, with linear, time variant or invari-



ant, or non linear behavior. However, the derivative formulation is much more
convenient for identification, where the estimation of initial states is not re-
quired, and for inverse problems, where no matrix inversion is necessary.

Moreover, Pacheco and Steffen in [12] showed that the results obtained with
Chebyshev, Jacobi or Legendre polynomials are not satisfactory when ran-
dom excitations are applied, although they provided no explanation for this.
This difficulty is mainly due to the particular shape of Chebyshev polynomi-
als which leads to very poor expansions for wide frequency bandwidth signals
or edges effects for smooth signals (Gibbs phenomenon). Therefore, attention
must be paid to the quality of the signal expansion before any parameter es-
timation. This drawback of Chebyshev polynomials compels us to propose a
more general identification methodology which can be easily extended to other

classical polynomials.

In Section 2 the properties of Chebyshev polynomials and a derivative formu-
lation based on these polynomials are recalled. In our approach, the general
identification process is clearly split into signal expansion and parameter es-
timation. Two general indicators are introduced in order to qualify these two
steps.

In Section 3, expansion quality is analysed through different excitations. An
improved general identification methodology is proposed for cases of poor sig-
nal expansion. An illustration is given for the case of noisy signal expansion.
Then, nonlinear behavior is identified by introducing the product property of
Chebyshev polynomials in this formulation.

A particular case of nonlinear identification is treated in Section 4. The hys-
teretic behavior of a tape-spring coiling device is taken as an experimental

application of the proposed method.



2 Chebyshev polynomials properties and derivative formulation
2.1 Basic properties of the Chebyshev polynomials

The n order Chebyshev polynomials defined in the interval [-1,4+1] by the

following equation :
Ty (1) = cos (n - arccos (1)) (1)
compose an orthogonal basis {T" (1)} = (Ty (1) Ty (1) To(7)---Tn (7))".

Any function z(7) can be expanded as follows :

o)1= (g 0y 70 2 )0 o)

where z; are the coordinates of (7) in the basis {T"(7)}.
The derivative of each polynomial can be expressed as a combination of poly-

nomials with a lower order, that leads to :

;

Ty forn=1
dT, 21
dr _12n X Do for n > 2 and n even (3)
m=0
n—1
2
nTy+2n Y, Ts, for n > 3 and n odd
\ m=1

Consequently, the derivation in the time domain of a function has a very

simple expression:

9 — (2o 21 Ty~ Tn) . {T"} = (zg 1 Ty---xy,).[D].{T"} (4)

dt



For instance, in the case of even n, the square matrix [D]

0000000

[D]nxn = T

50100100 ---0

0220 2n 0 2n --- 0
Let P(7) and Q(7) be two polynomials :
P(T) :kz—:gkak(T)

Q)= g Ti(r)

their product can be expressed as a linear combination of polynomials

P(r)- Q(r) = z Ty (r)

where :

;

n
Podo + 3 _lejq]' ifi=0
]:
_ 1 3 ln—i . .
%=33 Zoiji—j +5 _ZO (PjQjvi + Pjriq;) f1<i<n
i= i=

.

Il
-

J -n

1s :

(8)

This property is particularly interesting for non linear mechanical systems.



2.2  Derwative formulation in dynamics

Let the dynamic behavior of a N-DOF mechanical system be governed by the

following set of equations :

[M]-{& @)} + [C]-{& ()} + [K] - {= ()} = {f (1)} (9)

where [M], [C], [K] € RVN are the mass, viscous damping and stiffness matri-
ces respectively and {z(t)} € R™M! is the displacement vector. Expanding the
time history responses and excitations on the orthogonal basis and applying

the derivative operator yields :

[x]- (D)

| [x]-[p) | = [F] (10)

[[M] [C] [K]

[X]

where [X] and [F] € RV"*1 are the matrices of the expansion coefficients of
the time responses and excitations, respectively. This general formulation can

be expressed in the following compact form :

[H]N,3N : [J]3N,n+1 = [F]N,n—l-l (11)

In the case of inverse problems with a known model and responses, the deriv-
ative formulation permits the direct expression of the excitations without de-
termining initial conditions and without using a pseudo-inverse calculation.

In the case of identification, Eq. (11) can be solved with a least square ap-

proximation leading to the solution :

1

[H] = [F]- (7] - ((7]- (7]7) (12)



which can be achieved with a computationally stable method like the Singular
Value Decomposition Technique. It should be mentioned that the expansions

must contain n+1 > 3N terms in the basis. This formulation is exactly

equivalent to the integration formulation proposed in [12].

2.8 lllustration of the derivative formulation

The 3-DOF system sketched in Fig.1 permits illustrating the use of the deriva-
tive formulation with no loss of generality. Let the displacement of each DOF
be known and only the first DOF be subjected to an excitation force. The

equations governing the dynamic behavior can be written in the following

state-space form :

S 0 0 0 1 0 0 zW 0

e 0 0 0 0 1 0 ) 0

23 0 0 0 0 0 1 z®) 0

= +
(4 _kitks  ka 0 —ate < 0 24 FO /my
mi mi mi1 mi
(5 ky  _kothks ks £ _cote e z®) 0
mao mo mao m2 ma m2
L ) | ms ms ms3 ms )
(13)




Expanding the vectors on the Chebyshev basis leads to two algebraic equations

<x(1)> <x(4)>
(2 |- [D] = (2) (14)
<x(3)> <x(6)>
and
Eom| a0 mmoa o +(r0)
<$(5)> [D] = ko _ ka+tks k3 Cc2  __catcs c3 . [XSS]-l- 0
m2 ma m2 m2 m2 m2
<x(6)>[D] 0 ks _katka e _cates 0
] | ms3 ms3 ms3 m3
(15)
Transposing Eq. 15 and rearranging all the terms yields:
__kitks
mi
ko ko 0
mi mo
. 0 __ka+tks ks ) \
mo ms
[XSS]T [0] [0] {F(l)} [D]T {x(4)}
_cite ks __katks
m1 mo ms
0] [Xssl™ [0 {0} =\ D" {=®}
<2 <2 0
mi mo
0] [0 [Xss]" {0} (D] {=®}
4 O N 02+C3 c3 \ /
mi ms
€3 __c3tea
mo ms
1
(16)



which makes the identification of the mass, damping and stiffness parameters
possible and where [Xss]" = [{x(l)} [2®} {20} fz@] [p@) L0} |- Tt
should be mentioned that the procedure presented can be performed with

velocity or acceleration states.

3 How to improve polynomial identification ?

In [12], the authors reported that Chebyshev, Legendre and Jacobi polynomi-
als estimate parameters badly. This fact is mainly due to the poor expansion of
the excitation signals (impulse and random) on these polynomials. In order to
underline this point regarding the Chebyshev polynomials, let an indicator be
used to estimate the quality of the excitation expansions and response signals
given by the 3DOF mechanical system presented in Fig.1. The coefficients of
the expansion (2) are obtained by the measure of the signal at N, points, not
necessarily equally distributed within the time interval. Then, let the Average
Deviation be an indicator of the expansion quality and defined as follows:
1 X

AD =+ ; |z (t:) — (z5) - {T" (t:)}] (17)
where t; are the instants of the signal measurements. A Total Average Devi-
ation gives the same information by taking into account all the signals. For
the harmonically excited 3-DOF system, Fig.2 shows that the size of the basis
must be large enough but not too large in order to describe excitation and
response signals accurately.
A similar indicator can be formulated for describing the quality of the para-

meter estimation for the identification problem. To estimate N, parameters,

let an Average Absolute Deviation be defined by:

1 &
FZ D — pil (18)

P =1

AAD =

10



where p; are the parameters and p; their estimates. Table 1 associates the
AAD indicator with the quality of the parameter estimation and shows that
an AAD less than the unit can be considered as a very good identification.
The largest deviation on the worst estimated parameter is about 5%.

Fig. 3 gives the evolution of the error on the identified parameters versus the
number of polynomials in the basis. Estimation performance decreases with
the size of the basis.

From Figs. 2 and 3, a necessary condition to obtain a good identification first
resides in the correct expansion of the excitation and response signals. For
Chebyshev polynomials, this correct description can be obtained by increas-
ing the size of the basis when the signals are smooth enough on the interval.
However, increasing basis size increases the number of equations to be satisfied
by the parameters, thus explaining the loss of quality for large sizes in Fig. 3.
This indicates clearly that Chebyshev expansion must be dedicated to identi-

fication in the presence of smooth excitations.

3.1 Utilisation of adapted excitation signals

Traditionally, excitations with a large bandwidth are preferred for identifica-
tion, such as random noise or impulse signals. Appropriate signals for classi-
cal identification must also be persistent such as random noise and Pseudo-
Random Binary Signals. When using orthogonal decomposition methods, these
signals are not suitable for identification due to the difficulty of obtaining a
good expansion in the polynomial basis, see [12]. The orthogonal polynomials
have to be chosen for their ability to describe both excitation and response
signals with the same accuracy. Then, excitation has to be chosen in the same
frequency bandwidth of natural responses of the mechanical system to be iden-

tified. Thus, it is more relevant to choose a pure harmonic excitation in order

11



to keep both excitation and response signals in the same frequency range.

When the mechanical system is harmonically excited, the quality of the iden-
tification is better in the bandwidth of its natural frequencies, as shown in
Fig.4. The natural frequencies of the 3-DOF system are 9.7, 22.2 and 25.8
Hz for the parameter values of Table 1. Applying a pure harmonic excitation
generates both transient and steady-state components and makes it possible

to estimate the whole set of parameters (see Table 1).

3.2 By identifying adapted mechanical systems

In order to test the robustness of the proposed identification method, the
previous investigation is performed on the stiffness and damping parameters
varying within [100, 20000 N/m] and [1,200 Ns/m] intervals respectively and
assuming m; = lkg, k; = k and ¢; = ¢. Then, the AAD is calculated on damp-
ing coefficient —% and on stiffness coefficient —% and plotted in Fig. 5.
The two graphs show that stiffness (damping) parameter identification be-
comes unreliable for a stiffness parameter in the presence of high damping
and low stiffness, and vice versa for a damping parameter. In comparison, the
system chosen in [12] is defined by low stiffness and damping parameters that
corresponds to an advantageous configuration.

This result clearly indicates that the proposed method is well adapted to the

identification of reasonably damped systems.

3.8 Selection of only a few points within the interval

In the case of noisy signals, the natural property of low-pass filtering of the
polynomials should constitute an advantage although the edge effects repre-

sent an important drawback. In fact, signal expansion requires a minimum

12



number of polynomials which involves an oscillating shape on the edges of the
time interval. Therefore a part of the noise is captured on the edges through
the expansion process (see Fig. 6). Moreover the use of the derivative form is
prejudicial since it increases these oscillations on the estimate of velocity and
acceleration.

Consequently, astute use of Chebyshev polynomials is required for obtaining
a satisfactory parameter estimation. The proposed alternative formulation re-
sides in the possibility to satisfy the algebraic equations [11] only at some
particular points selected to avoiding the Gibbs phenomenon. According to
equation [13], the relation remains valid at any point ¢; where the signals are

measured and can be written as:
[X].[D] AT™ (t:)} = [A]. [X] AT™ (&)} + [U] AT (4)} (19)

The parameter estimation is then processed only on points where the expan-
sion is satisfactory. Table 2 gives the parameters estimated by taking only
the points located in the time interval [0.2 s; 1.8 s] with simulated noise on
the displacements (Signal to Noise Ratio of 20 dB). The values identified are
acceptable for the set of parameters. In comparison, the non-improved poly-
nomial identification gives a value of 8412.6(Z for the 1’;—2‘1 parameter.
Moreover, this alternative method is an efficient way to dissociate the number
of polynomials, critical for good signal expansion, and the number of equations
to be satisfied by the set of parameters to be identified. As shown in Fig.7,
simulations are performed on the 3-DOF system with the approach proposed
in Section 2.2 and by retaining only a few points on the interval (20, 50, 100
or 200 points).

For all these simulations, the signals without noise are known in the time in-

terval [0 s, 2 s|] with a sampling frequency of 2000 Hz. In the case of solving the

equations for only a low number of points, they are regularly sampled within
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the time interval [0.2 s, 1.8 s]. Quality is improved initially by eliminating edge
effects. Then, reducing the number of equations degrades identification quality
as the AAD indicator increases but remains at a value below the AAD indica-
tor that is obtained by keeping the whole time interval (2000 points, without
noise). Moreover, the number of polynomials can be chosen in a larger range
since the AAD indicator remains constant when the size of the basis increases.
This method can be applied and generalized to other polynomial basis (see
for example [7]) and to any kind of point selection used for identification. Re-
taining only the points where signals are close to their expansion should im-
prove identification quality and reduce calculation time. The demonstration
described for the derivative form can evidently be extended to the integral

form proposed by [12].

4 Non linear identification

The product property of polynomial approach (see Egs. 7 and 8) has a great
advantage in the field of non linear system identification. Two original ap-
proaches are described in a SDOF system in order to aid comprehension
though without any loss of generality. Particularly, extension to non linearity
with higher order like Duffing oscillator lies on the iteration of the product
property (equation 8) of the following formulations. A comparison between
the two methods is here the main objective and focuses on identification qual-
ity. The first method is then applied to an actual mechanical system with

hysteretic behavior.
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4.1 Identification by using the truncated formulation

Parameter nonlinearity can be easily described by using Expression (7). Let

the following equation governs the non-linear behavior of an SDOF system:

z(t)+ —a (t) + ExZ (t) = Ef(t) (20)

The square of a function expanded on the Chebyshev basis is expressed by

the truncated form:

$2:<g>.{:rn}:<§0 € 6y - §n>-{T"} (21)

with
1 LU . .
ToTo + 5 2, T;T; ifi=0
i=1

&= (22)

7 n—i
1 1 . .
5 'Zo T+ 5 'Zo (Tjzjpi+xjz;) if1<i<n
= =

After rewriting the governing equation (20) in a state-space form, the formu-

lation for the parameter estimation is given by:

[{5} {x@)}]. "= - ol {e) (23)

£
m

with {x(2)} = [D]*{z}. A Least Square solution leads to the estimation of the
unknown stiffness and damping parameters for a given mass (which can be
estimated by another formulation). In what follows, this formulation is called

the truncated form.
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4.2 Identification by using a non truncated formulation

Another way to take into account the nonlinear term is to express this term

naturally as the product of the signal expansion by:

2*(1) = (z) AT™(7)} . (2) {T™(7)} (24)

Therefore it is no longer possible to take the problem as a whole and it must

be solved on a set of sampled points:

3=

(o) AT"(0)} - (@) AT" (00} () AT} |- (=

3o

AT () A S} = (T"(8)) - [D) {=®} (25)

1
m

4.8 Comparison between the truncated and non-truncated formulations

Evaluation of the loss of accuracy induced by the truncation is based on the
AAD plot versus the basis order, Fig. 8. The truncation leads to a significant
difference, but for a basis size greater than 40, the quality of the parameter
estimation remains acceptable because the AAD is below the accuracy thresh-
old. Therefore the truncated form can be used without any significant loss of
estimation quality or any significant increase of basis size. For more complex
systems, the truncated form requires particular attention as presented in the

appendix.
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4.4 Application on an real nonlinear system

The truncated formulation is applied to a tape-spring coiling device with non
linear behavior. This component is implemented as a one-dimensional actu-
ator in a self-deployable hexapod, previously described in [3]. This actuator
contains a rotating roll module with a spiral groove in order to guide the tape-
spring. The coiling of the strip leads to the flattening of the natural curved
section. The tape-spring tends to naturally recover its curved section due to
the stress generated by its elastic deformation. Fig. 9 shows the coiling de-
vice and the experimental set-up used for its characterization. The hub of the
spool is fixed on a frame, which alloxs changes in the length of the unrolled
tape-spring. Moreover, the spool is free to rotate. The unrolled end of the
tape-spring is connected to a load sensor and sine excited in displacement by
an electro-dynamic shaker.

The global behavior of the coiling device can be described by force-deflection
loops that exhibit hysteretic behavior. Different models are available for the
description of such hysteretic loops. In 1976, Dahl proposed a dynamic model
to avoid discontinuity which he introduced in a classical Coulomb friction
model. The generalized Dahl model, developed by Al Majid [2], is a more gen-
eral restoring force model. For the coiling device, this model can be simplified

and described by the following first order differential equation:
R=0-4-(h(u)—R-sgn(w)) (26)

where R is the restoring force, « is the elongation velocity of the tape-spring
length, S a parameter that adjusts the shape of the friction slope function.

The hysteretic behavior is captured by defining the function h(u) as:

A(w) = 3 [(h + ) sign@) + (b — ho)] 1)

17



with the two limit curves h, and h; defined by:

hu =a;-u-+ b1
(28)

h; = as-u+ by

Fig. 10 shows an example of a hysteretic loop and the two limit curves.
By expanding the restoring force and the displacement in the Chebyshev basis,

using the truncated formulation and combining Eq. (26),(27) and (28), we

obtain:
B a B ar
B by B b
ABCDE|{B ay (= F)3B.ay(=2T"[DI'{R}  (29)
B - by B by
p p
with R=(R).{T"} u=(u). {T"}

A = (sgn(a) — 1) (T") {a} (T") {u} B = (sign(a) — 1) (T") {a}
C = (sgn(i) + 1) (T") {a} (T") {u} D = (sign(i) + 1) (T") {ui}

E = —=2sgn(a) (T") {R} (T") {u}

Therefore, the terms which depend on the displacement and the velocity can

18



be evaluated for any sampling point, leading to the formulation:

(F(r) | () (T (7))
Bay
(F(7iy1)) (T™(Ti11))
Bby
(F(Tiy2)) (T™(Tit2)) ;
Bay { =2 D) {R} (30)
<F(Ti+3)> <Tn(Ti+3)>
Bby
B
() | T [T

solved by the Least Square Method.

The measurements of the restoring force and the displacement are acquired
during 2 seconds. Fig. 11 shows the force simulated with the identified model
compared to the measured restoring force. The estimation of the generalized
Dahl model obtained by a regression method exposed in [3] is also reported.
Furthermore, it can be noticed that the restoring force oscillations are not
correctly described. In order to illustrate the compliance of the method, a
simple modification is proposed to take these oscillations into account, leading
to the introduction of an additional parameter. This is done by implementing

a sinusoid in the definition of the upper limit curve as follows:

hy = a1u + by + Asin(wu — ¢) (31)

Then, it is possible to introduce the sine magnitude A as a new parameter to

estimate, the angular frequency w and phase ¢ being imposed. The equation

19



to be solved is re-written in the following way:

( )

ABCDEG =2(T") [D]' {R} (32)

with G = (T™) {u} (sgn(4). sin(wu — ¢) — sin(wu — ¢)). This equation is solved
for all the data acquired and the results are grouped in Table 3, proving the
good agreement of the estimated values. It should be mentionned that the
value given by [3] is not completely reliable.

Fig. 12 shows the improvement obtained on the restoring force in the time
domain. In conclusion, this example highlights the simplicity of implementing

of new specific nonlinearities with the proposed formulation.

5 Conclusions

This paper presents improved methods for identifying the parameters of me-
chanical systems through expansion using a Chebyshev polynomial basis. Its
chief contribution is to propose formulations and methodology in which the
drawbacks of Chebyshev polynomial are avoided. Thus their interesting prop-
erties can be explored to achieve an efficient description of linear and non
linear behaviors.

When noisy signals are recorded, it is possible to identify parameters correctly

20



by taking only central points within the time interval. This solution leads to a
new formulation by using only a few points from the acquired data, improving
the quality of parameter estimation. The general identification procedure is
then divided into two main parts: first by expanding signals in the basis and
then by solving parameter estimation using a Least Square Approach.

In the case of nonlinear behavior, advantage can be taken of the product prop-
erty of Chebyshev polynomials, leading to a truncated formulation. The loss
of accuracy caused is shown to be insignificant and nonlinear systems can be
identified. Applying this approach to a real system whith hysteretic behavior
permits identifying a generalized Dahl model. Moreover, this model can be
improved by introducing a more complex formulation without any difficulty
and any loss of efficiency.

All the developments are proposed in a differential form, for which inverse
problems can also be solved directly without any inverse matrix calculation.
Extensions to a classical integral formulation can obviously be obtained and
adapted. All the approaches and results presented in this paper can also be

extended to other polynomials or orthogonal functions without any difficulty.
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Appendix : remark on the truncated form for a non linear system

The truncated form of a non linear system requires a particular arrangement of

equations. Considering a 3-DOF system similar to the one shown in Fig. 1 but

with nonlinear stiffnesses (K; = ky.xq1, Ky = ko.(x2 — x1), K3 = ks3.(23 — 22)

23



and Ky = k4.x3), the second part of the state-space form (Eq. 15) is given by :

_ k1.w1+k2.(a:2—a:1) kz.(a:z—a:l) 0
mi ml
k2.(av2—:cl) o k2.(:v2—:z:1)+k3.(:v3—wz) k3.(:1:3—:l:2)
ma m2 m2
0 ks.(z3—x2) o ks.(zs—z2)+ks.z3

m3

m3

[C]

where [C] is the damping matrix. The latter equation must be rewritten to

estimate the parameters only once, taking into account the nil valued para-

meters. This specific expression is given by:

~B kg0 0 0
m1  ma

0 —k0 k& g o
mo mso

0 0 0—fsqg—2
m3

m3
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[C]

(zg — 331)2
(z3 — 22)

T

T4

Ts

Te

(34)




Applying a Chebyshev expansion on all the signals and expressing the un-

known parameters as a column vector results in:

_ k1
k2 ko k3
FT 0[] 0 ko
0] [R]" [0] —ate o 71;_; =
i (0] [0] [F3]T_ 7;—21 —C2T+2“= 0
0 ;—32 ;_e;
__c3teq
(z3)
(w2 —21)?)
<(372 - 371)2>
(w3 — 3?2)2>
(r3)
Wlth [Fl] = , [F2] — <x4>
(r4)
(zs5)
(ws5)
(z6)
(z6) ]

N
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[D]" {*}

[D]" {z°}

[D]" {z°}

and [F3] =

()




Figure 1. Scheme of the 3-DOF system used for performance characterisation.
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Total Average Deviation
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Number of orthogonal functions in the basis

Figure 2. Total Average Deviation for a harmonic excitation (N, = 2000 in Eq.(17)).
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Average Absolute Deviation

50 100 150 200 250 /300 350 400
Number of orthonormal functions in the basis

Figure 3. Average Absolute Deviation of all parameters in the case of a harmonic

excitation (N, = 2000). The red line represents the accuracy threshold.
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Average Absolute Deviation
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Figure 4. Evolution of Average Absolute Deviation with frequency of a pure har-

monic excitation.
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(b)
Figure 5. Evolution of Average Absolute Deviation on the stiffness coefficient %

(a) and on the damping coefficient % (b).
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Figure 6. (a) Displacement with noise (SNR = 20 dB) and its expansion on a

Chebyshev basis (order 100) (b) Speed signal after derivation on the right edge of

the time interval.
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Figure 7. Improvement of identification capability by retaining only a few points for

identification.
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Figure 8. Influence of truncation on identification quality for an SDOF system. The

red line represents the accuracy threshold.
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Load sensor - 20N
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Accuracy : 10um

Electro-dynamic shaker
- U=Uy+U,sin(mt)

Figure 9. (a) Tape-spring coiling device and (b) test apparatus for nonlinear behavior

characterization.
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Figure 10. Hyteretic loop of a tape-spring coiling device under forcing deflection.
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Figure 11. Hysteretic loops: measured and simulated with the proposed method or

with [3].
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Figure 12. (a) Measured and simulated time evolution

corresponding hysteretic loops.
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parameter | actual | estimated || parameter | actual | estimated
ki+k +
S -3000 -3000.6 — %ﬁ -4 -4
k
o 2000 1998.8 % 2 2
0 0 0.0044 0 0 0.0001
i k
—% -6 -6.1 — 1000 1000.5
k3+k
;’721 4 4.1 — -3000 -3001.1
0 0 0.0001 0 0 0.0001
k
. 1000 999.7 % 4 4
kaot+k 4
- -1500 -1498.6 —% -6 -6
k 1
. 500 495.9 P 1 1
£2 2 2.1
ma
Average Absolute Deviation 0.752

Table 1

Parameters values and AAD indicator level
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coefficient | actual | estimated || coefficient | actual | estimated
ki1+k +
—%12 -3000 | -2991.42 —CQT;”L -4 -3.7
k
o 2000 1961.4 % 2 1.34
0 0 68.15 0 0 0.01
k
—ate -6 -5.94 n 1000 | 999.97
ka+k
72—21 4 3.91 et -3000 | -2999.95
0 0 0.2 0 0 0.000007
k
P 1000 1003.1 % 4 4
ka+k
—Rzth | 11500 | -1504.4 —eta -6 -6
k
P 500 509.13
% 2 1.93
Average Absolute Deviation 7.4

Table 2
Parameter values for noisy signal and level of AAD indicator
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parameter

Chebyshev

estimation

Limit curves

estimation [3]

ai

b1

a2

bo

-0.0190

3.1324

-0.0106

2.9140

26.7025

0.0063

-0.0244

3.1943

-0.0150

2.9710

35.4010

Table 3

Comparison of estimated parameter values.
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