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X-FEM a good candidate for energy conservation in simulation
of brittle dynamic crack propagation

A. Combescure a,*, A. Gravouil a, D. Grégoire a, J. Réthoré b

a LaMCoS, INSA-Lyon, CNRS UMR5259, F69621, France
b Aerospace Engineering Department, Tu-Delft, Netherlands

This paper is devoted to the simulation of dynamic brittle crack propagation in an isotropic medium. It focuses on cases where the crack
deviates from a straight-line trajectory and goes through stop-and-restart stages. Our argument is that standard methods such as element
deletion or remeshing, although easy to use and implement, are not robust tools for this type of simulation essentially because they do not
enable one to assess local energy conservation. Standard cohesive zone models behave much better when the crack’s path is known in
advance, but are difficult to use when the crack’s path is unknown. The simplest method which consists in placing the cohesive segments
along the sides of the finite elements leads to crack trajectories which are mesh-sensitive. The adaptive cohesive element for-mulation,
which adds new cohesive elements when the crack propagates, is shown to have the proper energy conservation properties during
remeshing. We show that the X-FEM is a good candidate for the simulation of complex dynamic crack propagation. A two-dimensional
version of the proposed X-FEM approach is validated against dynamic experiments on a brittle isotropic plate.
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1. Introduction

The calculation of dynamic crack propagation remains a
difficult challenge. Many contributions have been made on
this topic. For the mechanical part, one may mention the
works of Freund [14], Bui [19] and Lemaitre [15]. For the
computational aspects, many authors have also addressed
the problem using different methods, such as local smeared
cracking, which relies on material models which include
damage [7,6,10], or cohesive zone models, which are clearly
related to fracture mechanics concepts and have been pro-
ven effective for localized fracture Falk [30–32]. Cohesive
zone models have been used extensively, especially in cases
where the crack’s trajectory is known in advance, and more
recently have also been extended to adaptive calculations in
which cohesive elements are inserted into the mesh progres-

sively as the crack travels or branches [33–35,28,29].
X-FEM simulation of dynamic crack propagation was first
presented by Krysl and Belytschko [25]. The present paper
focuses on the comparison of standard FEM dynamic
crack propagation simulation with X-FEM simulation.
Experimental results are used to assess the validity of the
calculations. First, the paper presents the computational
models commonly used for crack propagation. We intro-
duce the global theory of dynamic rupture, based on the
evaluation of stress intensity factors, followed by the local
approach to rupture. Next, we present three usual calcula-
tion strategies for the simulation of dynamic crack propa-
gation: element deletion, remeshing, and the use of
cohesive zone elements. Then, we briefly present the
X-FEM formulation and compare it to the other methods
using the same DCB example. We explain the good quality
of the dynamic crack propagations obtained using the
X-FEM by applying the conservation of energy principle
and proving mathematically that the X-FEM method
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guarantees exact energy conservation when the crack prop-
agates. This proof is also valid for the adaptive cohesive
zone formulation of dynamic fracture problems using con-
stant strain finite elements. Finally, we apply the X-FEM
to the prediction of a crack’s propagation in a simple
experiment involving a complex crack path with kinks
and a stop-and-restart history.

2. Mechanical modeling of dynamic crack propagation

2.1. Global and local approach of rupture

Even though the simulation of dynamic brittle crack
propagation remains a difficult challenge, the underlying
physical fracture mechanics model is relatively simple and
based on three key concepts [19]:

(1) an equation which gives the crack propagation
direction;

(2) a criterion for the initiation of crack propagation;
(3) an equation which gives the crack’s velocity.

Usually, two approaches are in competition for this type
of prediction: a global energy approach, which is often pre-
ferred for brittle rupture, and an approach based on local
stresses, the latter more effective for ductile fracture. We
will limit ourselves to crack propagation driven by the
maximum hoop tensile stress alone. Let us recall the main
features of the two approaches.

2.1.1. The global energy approach to rupture

Brittle crack propagation is assumed to be governed by
the maximum value of the hoop stress rhh near the crack’s
tip, which is evaluated using the stress intensity factor khh:

khh ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
rhh; ð1Þ

where ðr; hÞ are the local polar coordinates of the crack’s
tip.

The maximum hoop stress intensity factor and the cor-
responding local polar angle are denoted K* and h*

respectively:

K� ¼ max
h2��p;p½

khh ¼ kh�h� ð2Þ

The propagation begins when the maximum hoop stress
intensity factor is greater than a critical value called the dy-
namic crack initiation toughness. The direction of propa-
gation is that of the maximum hoop stress [27]. This
criterion can be written as follows:

K�
< K1d ðno initiationÞ;

K� ¼ K1d ; h� ¼ hc ðinitiationÞ:
ð3Þ

The dynamic crack initiation toughness is a material prop-
erty which is obtained from experiments.

During the dynamic growth of the crack, the velocity of
the crack’s tip _a adjusts itself so that the current maximum

hoop stress intensity factor K* remains equal to the
dynamic crack growth toughness:

K�ðt; _aÞP K1d ) K�ðt; _aÞ ¼ K1Dð _aÞ ðpropagationÞ: ð4Þ

The evaluation of K1Dð _aÞ was given by Kanninen [26], who
replaced the quasi-static toughness by the dynamic crack
initiation toughness. Then, the dynamic crack growth
toughness is assumed to be

K1Dð _aÞ ¼
K1d

1� _a
cR

� � : ð5Þ

In Eq. (5), cR is the velocity of the Rayleigh waves. Bui [19]
calculated the propagation direction h* analytically
through the following equation:

h� ¼ 2 arctan
1
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ð6Þ

The corresponding K* value is

K� ¼ cos3
h�

2

� �
K

dyn
1 � 3

2
cos

h�

2

� �
sinðh�ÞKdyn

2 : ð7Þ

These physical crack propagation laws provide the key to
the prediction of the change in the crack’s length at each
time step of a transient analysis as proposed by Bui, Fre-
und, or Tuler [19,14,21]. These laws can also be used, when
the crack is meshed explicitly or using cohesive zone mod-
els, to detect whether it should be remeshed. The calcula-
tion of the dynamic stress intensity factors K

dyn
1 and K

dyn
2

is necessary for this approach.

2.1.2. Approach based on the local stress and damage

In local fracture models, one dismisses the previous con-
cepts and uses an equivalent method based on the stress
and damage fields. The stress and damage states at the
crack’s tip [15] define how the crack progresses:

(1) the crack propagates if the maximum hoop stress at
the crack’s tip is greater than a critical value or if
damage reaches the critical value;

(2) the crack propagates in the direction of the maximum
hoop stress;

(3) in general, the crack propagation velocity is not
controlled.

However, this common method based on a local vision
of fracture is mesh-dependent: the finer the mesh, the faster
the crack’s propagation. In order to model brittle failure,
one introduces a simple elastic softening failure law.

Then, one calculates the principal stresses at all the inte-
gration points of all the elements. If one of these principal
tensile stresses exceeds the failure stress rc, damage starts
to grow. A typical stress–strain curve is shown in Fig. 1,
where one can also observe the effect of damage on the
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elastic properties. The Young’s modulus decreases as soon
as the strain is larger then ec and reaches zero when the
strain is greater then eR. As one can see, the model leads
to softening of the material: this softening is known to
induce a mesh dependant response if no special treatment
is introduced such as non-local damage or a control of
damage rate.

3. Numerical modeling of rupture

3.1. Remeshing

An alternative approach consists in meshing the crack at
its initial location, using the criterion given in Section 2.1.1
to predict the crack’s new location, then remeshing the vol-
ume of the body with the crack’s new geometry and per-
forming another time step with this new geometry. This
method seems rather simple, but presents a number of sig-
nificant drawbacks. Let us consider the cracked structure at
time n. Let X n

n and X nþ1
nþ1 designate the geometry and state

variables respectively before remeshing and at time n + 1
after remeshing. In the process, the crack’s length has
increased by Da.

One can define the state X nþ1
n , which describes the state

at time n on the new geometry (increased crack’s length and
new mesh). A first approximation of this state is obtained
by a ‘‘projection’’ operation of state field X n

n onto the mesh
at time n + 1. This state must be in equilibrium with the
applied loads, and the increased crack segment Da must
be closed. This closing is achieved by applying the appro-
priate closing force to the extended crack’s lips. Equilib-
rium iterations are necessary in order to achieve
equilibrium of the projected field. To go from State X nþ1

n

to State X nþ1
nþ1, one must increase the applied loads while

simultaneously releasing the closing loads. These opera-
tions are very involved and require significant CPU time.
There are several possible strategies for releasing the
crack’s closing loads, and the choice of a strategy influences
the robustness of the method. It has been shown [24] that if

one uses a Newmark time integration scheme this type of
approach cannot preserve local energy. The Newmark
scheme is governed by the following equations:

unþ1 ¼ un þ Dt _un þ
Dt2

2
½ð1� 2bÞ€un þ 2b€unþ1�;

_unþ1 ¼ _un þ Dt½ð1� cÞ€un þ c€unþ1�;
ð8Þ

where b, c are the two integration parameters of the
scheme, and u, _u, €u designate the displacements, velocities
and accelerations respectively. The subscript n denotes
the time step number, and Dt is the time step. Let us now
introduce the following notations:

½X � ¼ X nþ1 � X n;

hX i ¼ 1

2
ðX n þ X nþ1Þ:

If one expresses the energy variation between state n with
Mesh n and state n + 1 with Mesh n + 1 and uses Eq. (8),
one gets [24]:

1

2
_unþ1T
nþ1 Mnþ1 _u

nþ1
nþ1 þ unþ1T

nþ1 Knþ1u
nþ1
nþ1

h i
� 1

2
_unTn Mn _u

n
n þ unTn Knu

n
n

h i

¼ c� 1

2

� �
½u�T½F ext� þ ½u�ThF exti � Dt2

2
ð2b� cÞ½€u�TMnþ1h€ui

� Dt2

2
c� 1

2

� �
ð2b� cÞ½€u�TMnþ1½€u� � c� 1

2

� �
½u�TKnþ1½u�

� ðc� 1Þ½u�Tð½M �€unþ1
n þ ½K�unþ1

n Þ: ð9Þ

In Eq. (9), one finds the standard terms of common New-
mark algorithms plus an additional last term

ððc� 1Þ½u�Tð½M �€unþ1
n þ ½K�unþ1

n ÞÞ: this term is due to the

change of discretization at time n. It cannot be proved to
be zero in the general case. It can only be calculated, to
check its relative value in each numerical experiment. This
is the intrinsic reason why energy conservation cannot be
ensured through remeshing. The remeshing operation itself
is delicate: it can either introduce energy into the calcula-
tion (which leads to an unstable computation scheme), or
dissipate energy in an uncontrolled manner. This remark
also holds for the simulation of evolving cracks with reme-
shing. The use of remeshing in 3D problems is not very
realistic because of the lack of robust remeshing tools for
3D situations.

3.2. Local damage models

The material softening behavior is known to make the
calculation dependent on the mesh size. The predicted fail-
ure load gets smaller as the mesh size decreases. It has been
shown analytically that, for a one-dimensional bar sub-
jected to a tensile step load, damage is always localized in
the smallest element. More generally, the failure prediction
is mesh-dependent. Non-local models enable such mesh
dependency to be avoided. Two classes of models are cur-
rently available, mainly for quasi-static cases: non-local
models, which have been widely used, and second-gradient

Fig. 1. Typical stress–strain curve for a brittle material.
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models, which require the resolution of an auxiliary prob-
lem. The two approaches have been applied successfully to
many static 2D problems. Their extension to 3D situations
is possible, but would involve high computational costs
because the size of the elements must be small. Many
authors have tried to overcome this difficulty, mainly by
using static concepts such as non-local measures of damage
or second-gradient theories. Others have introduced
delayed damage models, which are essentially based on
the idea that damage cannot extend at an infinite speed.
The approach first introduced by Seaman and Curran [6]
in their dynamic fracture constitutive model consists in lim-
iting the damage growth rate. A similar idea, called
‘‘delayed damage’’ modeling, was proposed later [10,2].
Limiting the damage growth rate leads, as is the case in
non-local damage models, to a converging solution when
the mesh size decreases [11]. This was proved mathemati-
cally and numerically in Suffis [16,17]. The damage rate is
bounded; consequently, when the mesh size tends to zero,
localization cannot take place in a single element alone
and the numerical localization effect disappears. An equiv-
alence between geometrical non-local models and delayed
damage models was proposed in Suffis [17]. The main
advantages of this local approach to fracture are that it
enables both initiation and propagation to be predicted
indifferently, that it can be easily extended to ductile frac-
ture, and that in a more basic sense fracture mechanics is
not needed in order to predict failure: all the information
is contained in the stress–strain representation of the mate-
rial. One must also mention that one can establish a con-
nection with the classical fracture mechanics energy
release rate Gc if one notes that the area of the triangle rce-

ceR is the released energy density of a fully damaged Gauss
point in an element. This energy is simply transferred to the
rest of the structure when the element disappears. Never-
theless, one can observe that the crack’s path and velocity
are obviously mesh-dependent, and that this dependence
decreases as the mesh size decreases Suffis [18]. Today,
there is no model capable of defining the velocity of the
crack’s tip. The local models rely on some simple basic
ideas. One makes a fine mesh of the structure being consid-
ered, which may or may not present an initial crack. These
models require very refined meshes in order to achieve cor-
rect crack propagation, and are certainly more appropriate
for ductile fracture [7]. In practice, these models are not
very powerful for extensive failure propagation in 3D
dynamic situations.

3.3. X-FEM modeling of dynamic crack propagation

In this section, we will show that the X-FEM used
appropriately to calculate the dynamic stress intensity fac-
tors provides a good model for the resolution of dynamic
crack propagation problems. We will also show that exact
energy conservation can be proved and achieved with this
method, even when the crack propagates. Finally, we will

compare the predictions using the X-FEM and the FEM
on the DCB specimen.

3.3.1. Calculation of the stress intensity factors

The accurate calculation of the stress intensity factors
K

dyn
1 and K

dyn
2 is an important requirement for this

approach. The most efficient method consists in using
interaction integrals, which are an efficient means of com-
puting these quantities with results which are not too
mesh-dependent as long as the calculated quantities are
not too close to the crack’s tip. The interaction integral I is

I ¼�
Z

X

qk;j raux
ml um;ldjk � raux

ij uj;k þ riju
aux
j;k

h i� �
dX

þ 2

Z

X

qk raux
ij;j ui;k þ q €uiu

aux
j;k þ _uauxi _ui;k þ _ui _u

aux
i;k

h i� �
dX:

ð10Þ

In Eq. (10), q is the virtual extension field, which must be
tangent to the crack’s surface and kinematically admissible;
u and r are the displacement and stress fields of the cracked
body; the superscript aux designates a virtual auxiliary dis-
placement field and the corresponding stress field. One can
prove that

I ¼ 2

E� K
dyn
1 Kaux

1 þ K
dyn
2 Kaux

2

� �
: ð11Þ

In Eq. (11), E* is the Young’s modulus in the plane stress
case and is equal to E/(1 � m2) in the plane strain case. If
one chooses the known analytical Mode-1 or Mode-2 fields
as the auxiliary displacement and stress fields, Eq. (11) en-
ables the direct calculation of the stress intensity factors
K

dyn
1 and K

dyn
2 . The surface integral evaluation of I [14] is

generally preferred to the standard J-integral approach
[20] because it is more compatible with the usual finite ele-
ment integration schemes. The best evaluation is obtained
with a q field whose spatial derivatives are zero close to
the crack’s tip [13]. This enables one to avoid the calcula-
tion of the K

dyn
i in the vicinity of the crack’s tip, where

the stress evaluation is rather poor.

3.3.2. The X-FEM and energy conservation

The method is now well-known, having been described
by many authors, such as Black [22], Belytschko [23], and
Moes [5,8]. The crack is represented independently of the
structure, either by using a discretized mesh (2-node seg-
ments in 2D or 3-node triangles in 3D) or by level set rep-
resentation [9]. The latter constitutes the main practical
advantage of the method, first because it enables one to
introduce new cracks without remeshing the structure
(and, therefore, leads to a very easy parametric analysis
of cracked structures) and, second, because it enables one
to propagate the cracks without remeshing the structure,
which makes the crack propagation analysis automatic
and easy. Usually, one uses the structural mesh to represent
the level set values, but the simple explicit algorithms used
to move the level set when the discontinuity evolves require
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a fine, regular mesh of the finite-difference type. Hence, in
the case of an unstructured mesh, one observes level set dis-
tortions. A simple, pragmatic way of avoiding this problem
consists, as explained in Prabel [1], in using a specific, fine
and regular mesh (distinct from that used for structural cal-
culations and limited to the regions where the crack might
propagate) to represent the level set values. The usual con-
tinuous displacement field is enriched with two sets of func-
tions: discontinuous Heavyside-type functions for the
nodes of the elements completely traversed by the crack,
and singular enrichment for the nodes of the elements only
partially cut.

The approximate displacement field in an element is

u ¼
X

i¼1;nodes

N i ui þ
X

k¼1;p

Ukbik

!
: ð12Þ

In this equation, Ni denotes the standard shape function, ui
is the continuous displacement vector and bik is the value of
the kth enrichment function at node i. When the crack tra-
verses the element entirely, the enrichment function Uk can
be chosen as the Heavyside function, while when the ele-
ment is only partially traversed (i.e. the crack’s tip lies
somewhere within the element) the singularity is defined
by the following four enrichment functions:

fUkðr; hÞgk2f1;4g ¼
ffiffi
r

p
sin

h

2
; cos

h

2
; sin

h

2
sin h; sin

h

2
cos h

� �
:

ð13Þ

In Eq. (13), r designates the distance to the crack’s tip and h

designates the angle between the point and the tangent at
the crack’s tip. This second part of the model makes the
method very efficient and attractive because one introduces
the analytical singular solutions in the vicinity of the
crack’s tip, thus suppressing the need for a very refined
mesh near the crack’s tip. This method has been used in
the context of dynamic crack propagation [4]. Crack prop-
agation is achieved either by adding a new segment to the
representation of the crack or by updating the crack’s level
set representation and adding new degrees of freedom (be-
cause the set of elements traversed by the crack and the set
of elements at the crack’s tip both change).

3.3.3. Proof of energy conservation

Let us now assume, as before, that the crack is at its ori-
ginal position at time n. The mass matrix is denoted Mn,
the stiffness Kn, the velocity field _un ¼ _uold, and the displace-
ment un = uold. The crack extends by Da and reaches its
final position at time n + 1. If one adds new degrees of free-
dom corresponding to the new position of the crack’s tip,
the velocity field _u and the displacement field u are
extended by two velocity and displacement fields as shown
in the following equations:

unþ1 ¼
uold

unew

( )
;

_unþ1 ¼
_uold

_unew

( )
:

Consequently, the new mass matrix is

Mnþ1 ¼
Mn

gMno

gMno
T dMnew

" #
: ð14Þ

A similar equation holds for the stiffness matrix.

Knþ1 ¼
Kn

gKno

gKno
T dKnew

" #
: ð15Þ

The following extension strategy is chosen: the crack is
moved by Da at time n. New (extended) degrees of freedom
are added at time n and initialized to zero. One obtains:

_unþ1
n ¼

_unn

0

� �
; ð16Þ

unþ1
n ¼

unn

0

� �
: ð17Þ

Then, the change in kinetic energy when one moves the
crack at time n is

2½W kinetic� ¼ _unþ1T
n Mnþ1 _u

nþ1
n � _unTn Mn _u

n
n: ð18Þ

The change in potential energy for the extended crack at
time n is

2½W def � ¼ unþ1T
n Knþ1u

nþ1
n � unTn Knu

n
n: ð19Þ

First, let us observe that with this initialization choice the
additional segment Da closes at time n. The forces applied
to close the new crack segment are given by Eq. (20):

F nþ1
n

close ¼ gKno
T

h i
uold: ð20Þ

Introducing Eqs. (14) and (16) into Eq. (18), one gets no
change in kinetic energy. The same result holds for the po-
tential energy by introducing Eq. (17) into Eq. (19). The
work of the external loads at this instant is also unchanged.
Thus, one can observe that the proposed strategy is such
that the change of discretization at time n preserves the en-
ergy exactly, both locally and globally, even if the ‘‘mesh’’
is changed at this instant. It is impossible to prove this
property for other types of ‘‘adaptive’’ meshes. Neverthe-
less, it is possible to set constraints on the adaptive meshing
process so that the global energy remains constant. This,
however, does not guarantee energy conservation at the
crack’s tip and makes the progress of the crack’s tip diffi-
cult to control. Conversely, if one constrains the energy
to remain in the vicinity of the crack’s tip, it is very difficult
to enforce conservation over the whole structure. In all
cases, this conservation property is only approximate,
whereas in the proposed X-FEM approach energy conser-
vation holds exactly.
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Then, Newmark’s standard scheme is used to update
time from n to n + 1. During this time increment, the crack
extends by Da and the closing forces 20 at time step n are
automatically released to zero at time step n + 1. The X-
FEM formulation chosen, which includes the singular
fields, ensures that the work of the closing forces during
opening corresponds exactly to the energy release rate [4].

3.4. Cohesive zone models

3.4.1. Description of the family of models

The cohesive zone model is a good candidate for the
simulation of crack propagation, even in 3D dynamics,
when the crack’s path is known a priori. Then, the method
is very simple: one meshes the future crack path, even in
3D, using a set of cohesive zone elements. These elements
are initially closed except at the location of the initial crack,
and they progressively open as the (dynamic) loading is
applied [12]. In these elements, one uses a cohesive law
model similar to that of Fig. 2. The cohesive zone model
relates the displacement jump across the interface to the
traction at the interface. Again, with this model, there is
no law giving the velocity of the crack’s tip. The most sta-
ble solutions are obtained with [un]c = 0.

If the crack’s path is not known a priori, which is the
case when one wants to predict the crack’s propagation
for a future experiment, the standard method for practical
industrial applications is the following: one puts cohesive
zone elements at all element side segments (or, in 3D, sur-
faces) connected to the crack’s tip. Then, the crack’s tip can
progress. Nevertheless, it is natural to consider this method
to be mesh-dependent, especially when the crack does not
propagate in a straight line, and it has been very frequently
observed that the final shape of the cracked structure
depends on the chosen mesh. Therefore, the method should
be used with an adaptive strategy which consists in insert-
ing cohesive elements which ‘‘cut’’ the old mesh: thus, dur-

ing the simulation of a crack’s propagation in the general
case, the mesh changes with time.

3.4.2. energy conservation in case of adaptative cohesive zone

elements

The same type of approach and demonstration also
applies to the conservation of the kinetic energy when
one adds a cohesive zone element, provided that the added
nodes have no mass. In this case, the additional mass
matrices gMno and dMnew are null matrices. Now, let us make
the following three assumptions:

(a) the basic finite elements are constant strain elements
only,

(b) the mesh created after updating the cohesive zone ele-
ments contains constant strain elements only (e.g. in
2D, 3-node constant strain triangles),

(c) the displacements and velocities of the added nodes at
time step n are interpolated within the old elements
through the shape functions.

Then, the strain energy is the same before and after
remeshing at time n. This property is obvious because the
strain is constant within an element and if this element is
subdivided into any number of constant strain elements
these inherit the same strain as the father element. The total
strain energy is unchanged. Moreover, it is also obvious
that if the material is history-dependent (for instance in
the case of plasticity) and the internal variables as well as
the stress states are copied to the Gauss points of the
new elements, the irreversible energy is also preserved
through this remeshing strategy.

Then, the implicit Newmark scheme can be applied as
usual between time steps n and n + 1. The cohesive zone
formulation ensures that the energy released in the propa-
gation is the fracture energy release rate.

If the mass matrix changes within the element cut by the
new cohesive segment, the kinetic energy distribution
within this element changes slightly, but the total kinetic
energy within the element can be kept constant with appro-
priate velocity initialization at the added nodes. Energy
conservation at time n is then still preserved.

3.5. Application to the DCB virtual test

Let us now consider the example of a DCB specimen,
which is rather simple because the crack’s propagation fol-
lows a straight line and presents no stop-and-restart effects.
The geometry is described in Fig. 3. The specimen is loaded
by two opposite ±0.0025 m vertical step displacements at
Nodes A and A 0. The material’s data are: Young’s modulus
186 GPa, Poisson’s ratio 0.3, specific mass 8000 kg/m3 and
fracture toughness KIC ¼ 100 MPa

ffiffiffiffi
m

p
.

This example was calculated in plane strain using the
remeshing method and cohesive zone modeling. The same
calculation was also performed with the X-FEM: this will
be discussed in the next section. A relatively coarse meshFig. 2. Cohesive zone stress–strain law.
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was used in order to emphasize the difficulties associated
with the remeshing phase of the operation. The initial mesh
is shown in Fig. 4.

The remeshing strategy was applied using two different
algorithms: the first consisted simply of remeshing and
transferring the fields to the new geometry: this is the basic
method in usual explicit dynamic codes, which generally
ignore equilibrium iterations. The second strategy con-
sisted in re-equilibrating the fields transferred to the new
mesh and, in the same equilibrium iterations, applying
forces to the crack’s extension so that it closes at the begin-
ning of the time step. This example was also calculated
using the X-FEM. The mesh consisted of 400 4-node ele-
ments. As can be observed in Fig. 5, which compares the
crack’s evolutions with time given by 4 different
approaches, the crack progresses much too fast when the

equilibrium step is ignored during remeshing (Curve I).
When using the remeshing algorithms, the crack ends up
splitting the specimen into two parts, whereas when using
a cohesive model or the X-FEM energy conserving scheme
the crack stops, which is consistent with experimental
observation.

The energy conservation check is presented in Fig. 6. An
exact calculation should produce no energy. A huge
amount of energy is introduced into the calculation if one
does not re-equilibrate the structure after remeshing
(FEM curve), but this input is drastically reduced if one
re-equilibrates the structure (FEM+ curve). The cohesive
zone model and the X-FEM simulation have much better
energy conservation properties.

4. An original experiment

The objective of this section is to present the validation
of the X-FEM in reference to an original dynamic crack
growth experiment and to show that the X-FEM provides
a good prediction of a crack’s path and velocity and can
even predict the interesting crack stop-and-restart phenom-
enon which is observed experimentally.

4.1. Description of the experiment and main results

The proposed experiment, described in Fig. 7, is based
on a Hopkinson bar impact system. The specimen’s mate-
rial is PMMA and the cylindrical bars are made of Nylon
in order for them to have the right impedance.

Fig. 8 shows the geometry of the test specimen, whose
thickness is 15 mm.

The material properties for Nylon and PMMA are given
in Table 1.

The experiments were performed on the Hopkinson bar
system of the LMS Laboratory at Ecole Polytechnique,
France. They are highly reproducible. A high speed camera
was used to follow the crack’s tip. Only four pictures could

Fig. 3. DCB geometry.

Fig. 4. Mesh of the DCB specimen.

Fig. 5. Compared crack evolution: I – FEM without equilibrium control;

II – FEM with equilibrium iterations, III – X-FEM and cohesive elements.

Fig. 6. Energy conservation check on the DCB specimen test.
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be taken during the crack’s propagation time. Reproduc-
ibility was used: by repeating the same experiment the
desired number of times with different trigger times for
the camera, we were able to catch about 20 different posi-
tions of the crack’s tip. The tests were repeated five times
for each experiment.

The evolution of the crack’s length as a function of time
is shown in Fig. 9.

One can observe a first propagation stage at 200 ls with
a velocity close to 260 ms�1. Then, the crack stopped for
50 ls, after which it restarted with a speed of 160 ms�1

before coming to a final stop.
The crack’s trajectory is shown in Fig. 10.
One can observe a first kink of about 38� at the begin-

ning of the propagation, then a second kink after the first
stop. This test enables one to test situations of dynamic
crack propagation with mixed-mode loading and complex
stop-and-restart. These experimental results are challeng-
ing for calculation tools. Yet, the test remains relatively
simple because linear material behavior is sufficient to pre-
dict the response.

4.2. X-FEM predictions

Let us now present the X-FEM simulation of this
experiment. A plane strain model was used. Had the
crack’s path been known, a cohesive zone approach could
have been successful, but it could not be used in order to
predict the crack’s path prior to the experiment. A deli-
cate point in setting up the X-FEM model is the model-
ing of the experimental Hopkinson bar system. One could
mesh the two bars, but this would lead to long and use-
less calculations. We chose to model the test specimen
alone. The mesh, consisting of 1500 4-node elements, is
shown in Fig. 11. One can observe that the mesh also
covers the hole. This is normal with the X-FEM, which
is not required to follow the structure’s boundaries
exactly.

Fig. 10. The experimental crack’s final path.

Fig. 7. Hopkinson test setup.

Fig. 8. Geometry of the PMMA specimen tested.

Table 1

Material properties for the experimental test

Property Name Unit PMMA Nylon

Static Young’s modulus E GPa 3.3 3.5

Dynamic Young’s modulus ED GPa 4.25 3.6

Poisson’s ratio m – 0.42 0.41

Density q kg m�3 1180 1145

Rayleigh wave velocity cR m s�1 1064 996

Fracture toughness KIC MPa
ffiffiffiffi
m

p
1.47 –

Fig. 9. Experimental horizontal crack propagation history.
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The measured velocities were prescribed on the left-hand
side of the model. They are shown in Fig. 12.

An impedance (or adsorbing) condition was prescribed
on the part of the right-hand side of the specimen in con-
tact with the nylon bar. The equation giving the associated
load is

F xðtÞ ¼ �Z _ux ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Enylonqnylon

q
_ux:

The theory described in the previous section was applied.
The calculation was carried out using Newmark’s implicit
mean acceleration scheme with 100 constant time steps of
5 ls each. The calculated crack’s path is compared to the
experimental path in Fig. 13: this result is rather good,
which indicates that the angle model is reasonable and that
static crack initiation values are sufficient to obtain a good
approximation of the crack’s trajectories. The crack’s devi-
ations (especially the two kinks after the stops) and the fi-
nal length are well-reproduced. This indicates that the
directional criterion given by Eq. (6) and the crack’s initia-
tion criterion 7 and values were correctly chosen.

Similarly, the calculated horizontal crack’s velocity is
compared to the measured results in Fig. 14 and the com-
parison is reasonable. One can observe the stop-and-restart
behavior, but the calculated restart time is slightly different
from the measured value. The calculation leads to the cor-
rect crack velocities in the two propagating phases as well
as in the stop-and-restart: this inspires confidence in the
equation proposed for the crack’s propagation velocity. The stopping phase is due to wave reflections within the

specimen which ‘‘close’’ the crack’s tip.

5. Conclusions

This paper showed that the X-FEM is an interesting tool
for the simple and efficient simulation of dynamic crack
propagation. Other methods based on local fracture
mechanics require very refined meshes and have not yet
been proven efficient and precise enough. Remeshing meth-
ods are not very robust. Cohesive zone models are interest-
ing for the interpretation of known crack paths, but are
difficult to use and not yet very robust for unknown crack
paths and coarse meshes. Based on the cases presented here
as well as other situations (such as those presented in Pra-
bel [1] for 2D elastic–plastic simulation or in Menouillard

Fig. 11. Mesh and boundary conditions used for the simulation.

Fig. 13. Comparison of calculated (continuous lines) vs. experimental

(dotted lines) crack’s paths.

Fig. 14. Comparison of calculated vs. experimental horizontal crack tip

velocities.

Fig. 12. History of the prescribed velocity on the left-hand side of the

model.
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[3] for elastic crack propagation of other complex experi-
ments using an explicit implementation of the X-FEM),
the method clearly appears really promising and precise
in predicting elastic and confined elastic–plastic dynamic
crack propagation. The simple crack propagation laws
based on an initiation, a directional criterion and a speed
criterion seem sufficient to reproduce experimental obser-
vations. One can note that the results presented here con-
cern only two-dimensional examples. The X-FEM seems
to be a good candidate for a 3D extension of the proposed
strategy to the case of elastic or confined plastic crack
propagation. Of course, the computation time would be
larger but, thanks to the limited mesh size constraints com-
pared with other usual methods, one can reasonably expect
that it would at least be possible to derive a good predictive
tool based on 3D X-FEM. The determination of ad hoc,
true 3D crack propagation criteria remains an open ques-
tion, but the comparison of 3D X-FEM simulations with
3D dynamic crack propagation experiments should foster
the development of interesting 3D dynamic crack propaga-
tion theories and models.
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