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Implicit time discretization of the mean curvature flow

with a discontinuous forcing term

A. Chambolle ∗ , M. Novaga †

Abstract

We consider an implicit time discretization for the motion of a hypersur-

face driven by its anisotropic mean curvature. We prove some convergence

results of the scheme under very general assumptions on the forcing term,

which include in particular the case of a typical path of the Brownian mo-

tion. We compare this limit with other available solutions, whenever they are

defined. As a by-product of the analysis, we also provide a simple proof of

the coincidence of the limit flow with the regular evolutions, defined for small

times, in the case of a regular forcing term.

1 Introduction

Mean curvature flow has attracted a lot of attention in the past few years. Being one

of the simplest evolution of hypersurfaces of Rn, in its analysis arise many difficult

issues mainly related to the formation of singularities, which sometimes lead to

changes of the topology. To deal with this phenomenon, several notions of weak

solutions have been proposed, such as (only to mention some) the varifold theory

of Brakke [10], the level-set solution defined through the viscosity theory [18, 19,

15], the minimal barrier method of De Giorgi [16], the limit of a reaction-diffusion

equations [14, 21] and the minimizing movements method [1, 25, 2], that corresponds

to an implicit time-discrete scheme.

Each of these methods has different features and presents advantages and dis-

advantages. In particular, the level-set method always provides a unique solution,

globally defined in time in the class of compact subsets of Rn, but it is often very

difficult to prove that such a solution is a regular hypersurface. There are even some

singular situations in which this solution becomes a compact set with nonempty in-

terior, showing the so-called fattening phenomenon. The minimal barrier method is

a geometric counterpart of the level-set method and produces essentially the same

solution [6].
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On the contrary, the minimizing movements method produces a solution, called

the flat flow, which can be nonunique but is always a (possibly nonsmooth) hyper-

surface. One of the difficulties in this approach is to show that the solution coincides

with the classical smooth solution, whenever the latter exists, a property which is

very easy to prove in the context of level-set viscosity solutions. One faces similar

difficulties in proving that the flat flow is always contained in the level-set solution.

In this paper we study the (anisotropic) mean curvature flow with a possibly

discontinuous driving force, by adapting the minimizing movements method, which

has been originally developed without any forcing term. More precisely, we consider

the evolution E(t) of a set whose boundary is driven by the velocity

V (x, t) = −(κφ(x, t) + g(x, t))nφ(x, t) (1)

for any x ∈ ∂E(t), where κφ(x, t) and nφ(x, t) are respectively the φ-curvature and

φ-normal to ∂E(t) at x (see Section 2 for the precise definitions, and [9] for a general

introduction on curvatures in Finsler geometry).

The purpose of this paper is twofold:

1. We extend the method of minimizing movements (and the proofs of consis-

tency in [13]) to evolutions with a driving force, providing simple proofs of the

coincidence with regular solutions and the inclusion in the level-set solution

(see Cor. 4.6, Prop. 4.8, 4.9).

2. Our approach applies to the case where the forcing term is discontinuous. One

important example is a forcing term which is the time derivative of an Hölder

continuous function G(t), e.g., a typical path of the Brownian motion dW/dt.

It also covers the case of spatially correlated Brownian motion, typically of the

form g(x, t) = dW/dt(t) + g0(x, t) where g0 is Lipschitz-continuous in x and

continuous in t (see (18) for a precise formulation). A theory yielding existence

and uniqueness for such evolutions, based on a level-set formulation in the

framework of the viscosity theory, has been recently developed in [23, 24], and

a corresponding theory in the framework of minimal barriers, valid only for x-

independent forcing terms, has been proposed in [17]. We also refer to [26, 27]

for a similar approach to a related problem, which still uses an implicit time

discretization procedure.

We do not address in the present paper the issue of continuity in time (in a suitable

topology) of the limit flat flow, even if we prove some weaker continuity results with

respect to the Hausdorff distance (see Propositions 4.3, 4.4 and Remark 4.5).

The plan of this paper is as follows: in Section 2, we define the appropriate notion

of sub- and superflow associated to the evolution equation (1), and we recall the

definition of maximal and minimal barriers in the sense of De Giorgi. These allow

to define generalized evolutions, which are essentially equivalent to the evolutions

defined in terms of level sets of viscosity solutions, when the forcing term is regular

enough.
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Then, our implicit time-discretization scheme is defined in Section 3, and we

show that it is consistent with our sub- and superflows (Thm. 3.3). As a corollary,

we obtain a comparison results for sub- and superflows, which follows from the

monotonicity of our scheme.

This consistency result is used in Section 4 to study the convergence of our

time-discrete scheme, as the time step goes to zero. We define a notion of weak

solution starting from an initial surface ∂E (given by Γ(t) = E∗(t) \ E∗(t), where

E∗(t) ⊂ E∗(t) are two evolving sets with E∗(0) = int(E), E∗(0) = E), which

coincides with the barrier solution as long as the latter is unique (Cor. 4.6). Under

additional assumptions on the evolution law, we deduce that it is contained in the

zero level-set of the viscosity solution (Prop. 4.8). This is also true for a particular

class of stochastic evolutions (Prop. 4.9).

In Sections 4.2-4.3, under some further assumption on the forcing term (which

still allows a stochastic forcing), we build a level-set evolution u(t) starting from

any bounded, uniformly continuous function u0. In particular, for all initial data

{u0 = s} but a countable number, it shows that we can define a generalized flow

{u(t) = s} which remains a continuous hypersurface (with possible singularities).

We do not prove that it is unique, though. If the forcing is regular, u(t) is the same

as the unique viscosity solution of the geometric equation associated to the flow. In

general, we expect it to coincide with the solution defined by Lions and Souganidis

in [23, 24].

2 Preliminary definitions and results

Let φ : RN → R be a norm on RN (that is, an even, convex, one-homogeneous

function) such that φ ∈ C2(RN \ {0}) (we shall simply say that φ is smooth) and

∇2(φ2) ≥ c Id for some c > 0, so that φ is uniformly convex or elliptic. Most of

our results could be extended to more general norms (or even possibly non-even

convex one-homogeneous functions), but the proof of the consistency theorem 3.3,

in the form presented here, needs such a regularity. Moreover, providing a clear and

sound definition of a sub/superflow, as in Definition 2.1 below, is more difficult if

the anisotropy is only Lipschitz-continuous, or non elliptic.

Let φ◦ be the polar norm, that is, φ◦(ξ) := supφ(η)≤1 ξ · η, for all ξ ∈ RN . It

turns out that also φ◦ is smooth and elliptic. In the sequel, the couple (φ, φ◦) will

be referred as the anisotropy. A ball of radius r > 0 centered in x0 ∈ RN for the

norm φ, i.e., the set Wφ(x0, r) := {φ(x− x0) ≤ ρ}, will be called a Wulff shape (we

set for simplicity Wφ := Wφ(0, 1)).

When E,F ⊂ RN , we denote by distφ(E,F ) the distance between E and F with

respect to φ:

distφ(E,F ) := inf
x∈E, y∈F

φ(x− y).

Given a set E ⊂ RN , we also define dE(x), the signed distance function to ∂E (with
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respect to the norm φ), by

dE(x) := inf
y∈E

φ(x− y) − inf
y∈RN\E

φ(y − x).

We let nφ(x) := ∇φ◦(∇dE(x)) and κφ(x) := divnφ(x) be respectively the φ-normal

and the φ-curvature of ∂E at x. Notice that if ∂E is of class C2, then the functions

nφ and κφ are defined and continuous in an open neighbourhood of ∂E. We refer

to [9] for a general introduction to the anisotropic curvature flow.

We say that E satisfies an interior (resp. exterior) εWφ-condition, ε > 0, if

E = {dE < −ε} + εWφ (resp. RN \ E = {dE > ε} + εWφ), which is equivalent to

require that at each point of ∂E, there is a Wulff shape of radius ε inside E (resp.,

outside E), that is tangent to ∂E at x.

2.1 Evolution law

Definition 2.1. Let E(t) ⊂ RN , t ∈ [t0, t1] be closed sets. We say that E(t) is a

superflow of (1), if there exist a bounded open set A ⊂ RN , with
⋃

t0≤t≤t1
∂E(t) ×

{t} ⊂ A× [t0, t1], and δ > 0, such that d(x, t) = dE(t)(x) ∈ C0([t0, t1];C
2(A)), and

d(x, s) − d(x, t) ≥
∫ s

t

div∇φ◦(∇d)(x, τ) dτ + G(x, s) − G(x, t) + δ(s− t), (2)

for a.e. x ∈ A and any t, s with t0 ≤ t ≤ s ≤ t1, where G(x, t) :=
∫ t

0
g(x, s) ds.

We say that E(t) is a subflow whenever there exist A ⊂ RN as above and δ < 0,

such that the reverse inequality holds in (2).

We indicate with F+ (resp. F−) the family of all superflows (resp. subflows)

of (1).

We observe that if g is continuous in (x, t), and d is C1 in t, condition (2) is

equivalent to require
∂d

∂t
> div∇φ◦(∇d) + g

in A × [t0, t1]. On the other hand, Definition 2.1 still makes sense if the driving

term is the “time-derivative” of a function G ∈ C0([t0, t1];L
∞(A)), even when G is

nondifferentiable with respect to t.

2.2 Barriers

We recall the definition of minimal and maximal barrier in the sense of De Giorgi.We

refer to [8, 5, 7] for a more general introduction to this topic.

Definition 2.2. We say that a function Φ : [t0,+∞) → P(RN ) (P(RN ) is the

set of all subsets of RN ) is a barrier with respect to F+ if for any Σ(t) ∈ F+,

t ∈ [a, b] ⊂ [t0,+∞), Σ(a) ⊆ Φ(a) implies Σ(b) ⊆ Φ(b).

Similarly, we say that Φ is a barrier with respect to F− if for any Σ(t) ∈ F−,

t ∈ [a, b] ⊂ [t0,+∞), Σ(a) ⊇ Φ(a) implies Σ(b) ⊇ Φ(b).
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In the following we denote by B±
t0 the class of all barriers with respect to F±,

defined on [t0,+∞).

Definition 2.3. Let E ⊆ RN , t0 ∈ R. The minimal barrier M(E, t0) : [t0,+∞) →
P(RN ) starting from E at time t0 is defined as:

M(E, t0)(t) :=
⋂

{

Φ(t) : Φ ∈ B+
t0 , Φ(t0) ⊇ E

}

.

We define the maximal barrier N (E, t0) : [t0,+∞) → P(RN ) starting from E at

time t0 as:

N (E, t0)(t) :=
⋃

{

Φ(t) : Φ ∈ B−
t0 , Φ(t0) ⊆ E

}

.

We also define the upper and lower regularized barriers as

M∗(E, t0)(t) :=
⋃

ρ>0

M(E−
ρ , t0)(t) M∗(E, t0)(t) :=

⋂

ρ>0

M(E+
ρ , t0)(t),

N∗(E, t0)(t) :=
⋃

ρ>0

N (E−
ρ , t0)(t) N ∗(E, t0)(t) :=

⋂

ρ>0

N (E+
ρ , t0)(t) ,

where E±
ρ = {dE ≤ ±ρ}.

We recall the following result, proved in [6] (see also [22] for the case of the

motion by mean curvature).

Theorem 2.4. Assume that G(x, t) =
∫ t

0 g(x, s) ds, with g continuous. Then, we

have M∗(E, t0)(t) = N ∗(E, t0)(t) and M∗(E, t0)(t) = N∗(E, t0)(t) for any E ⊂ RN

and t ≥ t0. Moreover, the set M∗(E, t0)(t) \M∗(E, t0)(t) coincides with the zero

level-set of the viscosity solution of the parabolic equation corresponding to (1).

The parabolic equation which is mentioned here is equation (21) or (22). In the

sequel, we shall omit the explicit dependence of barriers on t0 whenever t0 = 0.

2.3 Anisotropic total variation

The total variation of a function w ∈ L1(Ω) is defined as

sup

{
∫

Ω

u(x) divψ(x) dx : ψ ∈ C1
0 (Ω; RN ), |ψ(x)| ≤ 1 ∀ x ∈ Ω

}

.

It turns out that it is finite if and only if the distributional derivative Dw is a

bounded Radon measure. In this case, the total variation is equal to the variation

|Dw|(Ω) =
∫

Ω
|Dw| of the measure Dw, and w belongs to the space BV (Ω) of

functions with bounded variation.

Given (φ, φ◦) a couple of mutually polar norms in RN (an anisotropy), one

defines in the same way the anisotropic total variation
∫

Ω

φ◦(Dw) = sup

{
∫

Ω

u(x) divψ(x) dx : ψ ∈ C1
0 (Ω; RN ), φ(ψ(x)) ≤ 1 ∀ x ∈ Ω

}

.

Clearly, it is finite if and only if w ∈ BV (Ω). In the case w = χE , the characteristic

function of a measurable set E, then w ∈ BV (Ω) if and only if E is a set of finite
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perimeter in Ω (a Caccioppoli set). In this case, one can define a reduced boundary

∂∗E (which is HN−1–equivalent to the measure theoretical boundary, that is, the

set of points where E has Lebesgue density neither 0 nor 1), on which is well defined

a normal unit vector νE(x), and such that DχE = νEHN−1 ∂∗E. Then, one has

∫

Ω

|DχE | = HN−1(∂∗E) and

∫

Ω

φ◦(DχE) =

∫

∂∗E

φ◦(νE(x)) dHN−1(x).

See [20, 3] for more details.

3 The implicit time discretization

Let Ω be a bounded, convex, open subset of RN . Let G ∈ C0([0,+∞), L∞(Ω)) and

let ωG,T its modulus of continuity in [0, T ]. Let (φ, φ◦) be the anisotropy, which we

assume to be smooth and elliptic. Let E ⊆ RN . Given s > t ≥ 0, let w denote the

unique solution of

min
w∈L2(Ω)

∫

Ω

φ◦(Dw) +
1

2(s− t)

∫

Ω

(

w(x) − dE(x) −G(x, s) +G(x, t)
)2

dx . (3)

We let Tt,s(E) = {x ∈ Ω : w(x) < 0}. The existence and uniqueness of w minimiz-

ing (3) does not raise any difficulty, since the energy which is minimized is trivially

strictly convex, and lower-semicontinuous in L2(Ω).

Notice that the set Tt,s(E) is the minimizer of a prescribed curvature problem,

with bounded mean curvature. Indeed, reasoning as in [12, 11, 4], one can check

that this set is a solution of the variational problem

min

(
∫

Ω∩∂∗F

φ◦(νF (x))dHN−1(x) +
1

s− t

∫

F

dE(x) +G(x, s) −G(x, t) dx

)

,

where the minimum is taken among the subsets F of Ω of finite perimeter. It

follows that the set Tt,s(E) has boundary of class C1,α inside Ω, outside a compact

singular set of zero HN−1-dimension [1] (when N = 2, the set Tt,s(E) has boundary

of class C1,1). The variational problem above is the generalization of the approach

proposed in [1, 25], for building mean curvature flows without driving terms, through

an implicit time discretization.

For s = t + h, the Euler-Lagrange equation for w at a point x ∈ ∂Tt,t+h(E)

formally reads as

dE(x) = −h
(

κφ(x) +
G(x, t+ h) −G(x, t)

h

)

,

with κφ being the φ-curvature at x of ∂Tt,t+h(E), so that it corresponds to an

implicit time-discretization of (1). Observe also that this approximation is mono-

tone: indeed if E ⊆ E′ then dE ≥ dE′ , which yields w ≥ w′, w and w′ being the

solutions of (3) for the distance functions dE and dE′ respectively. We deduce that

{w < 0} ⊆ {w′ < 0}, that is, Tt,s(E) ⊆ Tt,s(E
′).
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We will soon show (Theorem 3.3) that this scheme is also consistent, in some

sense, with the evolution (1). Before this, let us prove that it is independent on

Ω, in the sense that when ∂E ⊂ Ω, then for s − t is small enough the set Tt,s(E)

is also the zero sublevel-set of any function w′ solving (3) in any larger open set

Ω′ ⊇ Ω. This justifies why we may ignore the dependency on Ω in our notation.

Here and in the rest of the paper we shall assume that G is defined in the whole

space: G ∈ C0([0,+∞);L∞(RN )).

Proposition 3.1. For any δ > 0 and T > 0, there exists h0 > 0 such that if E is a

closed set with compact boundary ∂E ⊂ Ω, such that distφ(∂Ω, ∂E) ≥ δ, then when

h ≤ h0, for any t ≤ T , the set Tt,t+h(E) is the same if computed in Ω or in any

larger open set Ω′ ⊇ Ω.

Before proving this proposition, we show a result that allows us to control in

some uniform way the speed at which an initial Wulff shape {φ(x − x0) ≤ ρ}
decreases in an iteration of the algorithm. The convexity of Ω is needed in the

proof of this result.

Lemma 3.2. Let x0 ∈ Ω and ρ > 0, and let t ≥ 0. Let w solve

min
w∈L2(Ω)

∫

Ω

φ◦(Dw) +
1

2h

∫

Ω

(w(x)−(φ(x−x0)−ρ)−G(x, t+h)+G(x, t))2 dx . (4)

Then

w(x) ≤











φ(x − x0) + h
N − 1

φ(x − x0)
+ ∆h(t) − ρ if φ(x− x0) ≥

√

h(N + 1)

√
h

2N√
N + 1

+ ∆h(t) − ρ otherwise,
(5)

where ∆h(t) := ‖G(·, t+ h) −G(·, t)‖L∞(Ω).

Proof. The Euler-Lagrange equation for (4) can be written as follows: there exists

a field z ∈ L∞(Ω; RN ), with z ∈ ∂φ◦(∇w) a.e. and z · νΩ = 0 on ∂Ω, such that

w(x) − φ(x − x0) + ρ − G(x, t + h) + G(x, t) − h div z(x) = 0 , (6)

see for instance [11, 4].

Let w denote the function given in the right-hand side of equation (5). Let z be

the field given by

z(x) =



















x− x0

φ(x − x0)
if φ(x− x0) ≥

√

h(N + 1)
(

1 −
(

φ(x−x0)√
h(N+1)

− 1

)2
)

x− x0

φ(x − x0)
otherwise.

One checks, as in [11, App. B], that z ∈ ∂φ◦(∇w(x)) a.e., and

w(x) − φ(x − x0) + ρ

h
− div z(x) =

∆h(t)

h
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a.e. in Ω. Moreover, if x ∈ ∂Ω, z(x) · νΩ(x) has the sign of (x − x0) · νΩ(x), which

is nonnegative since Ω is convex. By definition of ∆h(t), we deduce that w is a

supersolution for (6). It follows that w ≥ w a.e. in Ω: indeed, we have

∫

Ω

[(w − w)+]2 =

∫

{w>w}

(w − w)(div z − div z)

=

∫

∂Ω∩{w>w}

(w − w)(z − z) · νΩ −
∫

{w>w}

(∇w −∇w) · (z − z)

≤ −
∫

∂Ω∩{w>w}

(w − w)z · νΩ ≤ 0 ,

which shows the inequality.

Proof of Proposition 3.1. We assume E ⊂ Ω, the proof being identical in the other

case RN \ E ⊂ Ω. Let w solve

min
w∈L2(Ω)

∫

Ω

φ◦(Dw) +
1

2h

∫

Ω

(

w(x) − dE(x) −G(x, t+ h) +G(x, t)
)2
dx ,

and let x ∈ Ω with dE(x) ≥ δ/2. One has dE ≥ δ/2 − φ(· − x) in Ω. Invoking

Lemma 3.2, we deduce that w(x) ≥ δ/2−∆h(t)− 2N
√
h/

√
N + 1. Hence if h0 ≤ 1

is such that ωG,T+1(h0) + 2N
√
h0/

√
N + 1 ≤ δ/4, we find that when h ≤ h0 we

have w(x) ≥ δ/4.

Let now Ω′ ⊇ Ω. If h ≤ h0, we have in particular that dE(x) + G(x, t + h) −
G(x, t) ≥ δ/4 for any x ∈ Ω′ \ Ω, t ≤ T . We can hence reproduce the proof of

Corollary A.2 in [12], that shows that if w′ is the solution of the same problem as

w, but in Ω′ instead of Ω, then w′ ∧ (δ/4) is the function equal to w ∧ (δ/4) in Ω

and to δ/4 in Ω′ \ Ω. We deduce {w < 0} = {w′ < 0}. Observe that in this proof,

the larger domain Ω′ does not need to be convex.

The previous proposition allows to define in a unique and intrinsic way the

evolution Tt,t+h(E) in RN for any t ≥ 0 and h > 0, of a set E with compact

boundary ∂E ⋐ RN , by considering the corresponding set computed in a ball with

radius large enough. Therefore, from now on we shall assume ∂E ⋐ RN and we

shall omit the dependence on Ω in the construction of the limit flow. We now prove

our main consistency result.

Theorem 3.3. Let E(t), t ∈ [t0, t1] be a superflow of (1). Then there exists h0

such that for any h < h0 and any t with t0 ≤ t < t+h ≤ t1, Tt,t+h(E(t)) ⊇ E(t+h).

Respectively, if E(t) is a subflow of (1), then Tt,t+h(E(t)) ⊆ E(t + h) for h small

enough.

Proof. Let A ⊂ RN be the open set associated to the superflow E(t) (cf. Defini-

tion 2.1) and let Ω be a bounded, convex open set with A ⋐ Ω.

We first observe that there exists ε > 0 such that C := {(x, t) : t0 ≤ t ≤
t1, |d(x, t)| ≤ ε} ⊂ A × [t0, t1]. Since d(·, t) is uniformly bounded in C2(A), we can

also assume, possibly reducing ε, that E(t) satisfies for all t an interior and exterior
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εWφ-condition. Given t, h with t0 ≤ t < t + h ≤ t1, we build from d(·, t + h) a

supersolution for problem (3). Consider ψ : R → R a smooth increasing function

with ψ(s) ≥ s and ψ(s) = s for |s| ≤ ε/2. We set, for x ∈ B = {|d(·, t)| < ε},
v(x) := ψ(d(x, t + h)). Then, for x ∈ B, from (2) it follows

v(x) − dE(t)(x) −G(x, t + h) +G(x, t)

h

≥ d(x, t + h) − d(x, t) −G(x, t+ h) +G(x, t)

h

≥ 1

h

∫ t+h

t

(div∇φ◦(∇d)(x, s)) ds + δ .

Let now ω be a modulus of continuity for div∇φ◦(∇d) in C: we find

v(x) − dE(t)(x) −G(x, t+ h) +G(x, t)

h
≥ div∇φ◦(∇d)(x, t + h) + δ − ω(h).

Observe that for any x ∈ B it holds ∇v(x) = ψ′(d(x, t + h))∇d(x, t + h), so

that (recall that ∇φ◦ 0-homogeneous), ∇φ◦(∇v(x)) = ∇φ◦(∇d(x, t + h)) hence

div∇φ◦(∇d)(x, t + h) = div∇φ◦(∇v)(x). Therefore, if h is small enough so that

ω(h) ≤ δ, we get

v(x) − dE(t)(x) −G(x, t+ h) +G(x, t)

h
≥ div∇φ◦(∇v)(x).

Let w solve (3), with E = E(t) and s = t+ h. We will show that we may choose ψ

in order to have v ≥ w on ∂B, so that v is a supersolution for the problem

min

{

∫

B

φ◦(Du) +
1

2h

∫

B

(u(x) − dE(t)(x) −G(x, t+ h) +G(x, t))2 dx :

u = w on ∂B

}

(which is solved by w). We will deduce that v ≥ w in B, hence {w < 0} ⊇ {v <
0} = {d(·, t+ h) < 0}, that is, Tt,t+h(E(t)) ⊇ E(t+ h).

First of all, d is uniformly continuous in time, so that if h is small enough, one

has d(x, t + h) ≥ 3ε/4 if d(x, t) = ε. If M > diamΩ, then M ≥ w in Ω. We may

choose a function ψ with ψ(3ε/4) ≥M , so that v(x) ≥M ≥ w(x) if d(x, t) = ε.

On the other hand, since E(t) satisfies the interior εWφ-condition, one deduces

from Lemma 3.2 that w(x) ≤ 2N
√
h/

√
N + 1 + ∆h(t) − ε whenever d(x, t) = −ε.

We observe that ∆h(t) → 0 as h → 0 uniformly in [t0, t1]. Hence if h is small

enough, we find that w(x) ≤ −3ε/4. We can choose ψ such that ψ(s) ≥ −3ε/4 for

any s, so that v(x) ≥ w(x) if d(x, t) = −ε. We conclude that v ≥ w on ∂B. Hence

v is a supersolution for (3), which implies Tt,t+h(E(t)) ⊇ E(t+ h).

If E(t) is a subflow, we can reproduce the same proof to show that Tt,t+h(E(t)) ⊆
E(t+ h).

We deduce the following comparison result for sub/superflows.
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Corollary 3.4. Assume that E1(t), E2(t) are respectively a superflow and a subflow

of (1) on [t0, t1], such that E1(t0) ⊆ E2(t0). Then E1(t) ⊆ E2(t) for all t ∈ [t0, t1].

Proof. By the previous theorem, there exists h0 such that Tt,t+h(E1(t)) ⊇ E1(t+h)

and Tt,t+h(E2(t)) ⊆ E2(t + h) for any t ∈ [t0, t1 − h], as soon as h ≤ h0. Hence,

if t ∈ [t0, t1], we just let n ≥ 1 be such that (t − t0)/n = h ≤ h0. Then, letting

tk = t0 + kh, one can easily check by induction that E1(tk) ⊆ Ttk−1,tk
(E1(tk−1)) ⊆

Ttk−1,tk
(E2(tk−1)) ⊆ E2(tk) for any 1 ≤ k ≤ n, which implies the thesis since

t = tn.

Remark 3.5. It could be interesting, from a numerical analysis point of view,

to modify slightly the algorithm presented in this paper by introducing a threshold

S > 0 and replace in problem (3) the distance function dE with a truncated distance

function (−S ∧ dE) ∨ S. Almost all of the results presented in this paper would

remain identical (in particular, the consistency still holds). Only the comparison

results in section 4.2 are not completely clear, since they rely on comparisons of the

true distance functions. However, it is reasonable to believe that in the limit h→ 0

also these results hold.

4 Convergence of the algorithm

In this section, we study the limit of the iterates of our variational algorithm, as the

time-step goes to zero. First (Section 4.1), under some local boudedness assumption

on the forcing term, we find a limit which has some continuity properties (Prop. 4.3

and 4.4), and we show that it is consistent with other notions of weak solutions

(Cor. 4.6, and with further assumptions on the forcing term, Prop. 4.8 and 4.9).

Then in 4.2, assuming some spatial regularity (18) on the forcing term, we find a

comparison principle for our limits (however, with some limitation), and it allows to

build level-sets solutions starting from an arbitrary bounded uniformly continuous

function (Section 4.3).

4.1 The discrete flow and its limit

Given E ⊂ RN , closed with compact boundary, and h > 0, we define the “tube”

Eh ⊂ RN × [0,+∞) as follows

Eh(t) := T[ t
h ]h−h,[ t

h ]h · · ·T2h,3h Th,2h T0,h(E) , (7)

where [x] denotes the integer part of x. We then define Eh :=
⋃

t≥0 Eh(t) × {t}.
There exists a sequence (hn)n≥1 such that both Ehn

and RN × [0,+∞) \Ehn
=

cEhn
converge in the Hausdorff distance (locally in time) to E∗ and cE∗ respec-

tively. Such convergence is equivalent to the locally uniform convergence, in RN ×
[0,+∞), of the distance functions dist((x, t), Ehn

) and dist((x, t), cEhn
) to the dis-

tance functions dist((x, t), E∗) and dist((x, t), cE∗), see [11, App. A]. In particular,

10



for any (x, t) ∈ E∗ (resp., cE∗), there exists (xn, tn) ∈ Ehn
(resp., cEhn

) such that

(xn, tn) → (x, t), and if (xn, tn) ∈ Ehn
(resp., cEhn

) and converge to some point

(x, t) ∈ Ω × [0,+∞), then (x, t) ∈ E∗ (resp., cE∗). In the sequel we denote by

(h)h>0 the sequence (hn)n≥1.

Clearly, E∗ is open while E∗ is closed, and E∗ ⊂ E∗. For any t ≥ 0, we denote

by E∗(t) (resp. E∗(t)) the section {x : (x, t) ∈ E∗} (resp. {x : (x, t) ∈ E∗}).
For any t ≥ 0, we let Γ(t) = E∗(t) \ E∗(t), which in some sense is our generalized

evolution starting from ∂E.

From the definition of E∗, E
∗ it follows

E∗(0) ⊆ int(E), E ⊆ E∗(0) , (8)

in particular Γ(0) ⊇ ∂E. If F (t) is a superflow on [t0, t1] such that F (t0) ⊂
E∗(t0), since (F (t) being assumed to be closed for any time t, and E∗ being

open) dist(F (t0) × {t0}, cE∗) > 0, one sees that for h small enough, F (t0) ⊂
Eh([t0/h]h) ∩ Eh([t0/h]h + h). It then follows from Theorem 3.3 that (if h is

enough small) F (t) ⊂ Eh(t) for any t ∈ [t0, t1], and passing to the limit we get

F ⊂ E∗ ∩ (RN × [t0, t1]). Hence E∗ satisfies a comparison principle for superflows

that start inside and analogously E∗ satisfies a comparision principle for subflows

starting outside, so that we have shown the following:

Proposition 4.1. The set-valued functions E∗(·) and E∗(·) are barriers on [0,+∞),

with respect to F+ and F− respectively, that is: E∗ ∈ B+ and E∗ ∈ B−. In

particular, we get from Definition 2.3 that for all t ≥ 0,

E∗(t) ⊇ M∗(E∗(0))(t) and E∗(t) ⊆ M∗(E∗(0))(t) . (9)

On the other hand, it is not clear if we also have E∗ ∈ B− and E∗ ∈ B+.

Let us now show that E∗(0) = int(E) and E∗(0) = E, so that we can substitute

E∗(0) and E∗(0) with E in (9). In order to do so, we further require that the

function G satisfies the following regularity assumption: for any T > 0 there exists

a constant C(T ) such that

∣

∣

∣

∣

G(x, s) −G(y, s) −G(x, t) +G(y, t)

s− t

∣

∣

∣

∣

≤ C(T ) , (10)

for any s, t ≤ T . Note that this is equivalent to require that G can be writ-

ten as the sum G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and G2 ∈
Liploc([0,+∞);L∞(RN )).

We first construct explicit super/subflows starting from a Wulff shape Wφ(x0, r)

of radius r > 0 (or its complement), at time t ≥ 0. More precisely, we construct

superflows W+
x0,t,r(s), with s ∈ [t,+∞), starting from Wφ(x0, r) at time t, which are

smooth on [t, t+τ ] and vanish after the time t+τ , where the duration τ depends only

on r, and such that for all h > 0, s ≥ t, we have Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+h).
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Lemma 4.2. Let x0 ∈ RN and r > 0. We consider the functions

d±(x, s) := ±
(

φ(x− x0) − r +
s− t

2τ
r

)

+ G(x0, s) −G(x0, t) , (11)

for (x, s) ∈ Rn × [t, t+ τ ], where τ is such that

ωG,t+τ(τ) ≤ r

4
, (12)

τ ≤ r2

2(C(t+ τ) + 4(N − 1))
∧ r2

16(N + 1)
, (13)

where ωG,t+τ is as before a modulus of continuity of G on [0, t+ τ ] and C(·) is the

constant appearing in (10).

Let W+
x0,t,r(s) := {d+(·, s) ≤ 0} when s ∈ [t, t+τ ], and W+

x0,t,r(s) := ∅ for s > t+

τ . Then, for any s ≥ t, h > 0, we have Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+ h). On the

other hand, if W−
x0,t,r(s) := {d−(·, s) ≤ 0} when s ∈ [t, t+ τ ], and W−

x0,t,r(s) := RN

for s > t+τ , then, for any s ≥ t, h > 0, we have Ts,s+h(W−
x0,t,r(s)) ⊆W−

x0,t,r(s+h).

Notice that, letting τ(r) be the maximal time τ satisfying (12) and (13) for a

given r > 0, we have τ(r) > 0 and

lim
r→∞

τ(r) = +∞ .

Notice also that the condition ωG,t+τ(τ) ≤ r
4 ensures the inclusion Wφ(x0, r/4) ⊆

W+
x0,t,r(s) for s ∈ [t, t + τ ], hence in particular the set W+

x0,t,r(s) is nonempty. In

fact, one could check that W+
x0,t,r is a superflow (in the sense of Definition 2.1) on

[t, t+τ ], while W−
x0,t,r is a subflow. Then, the thesis would follow from Theorem 3.3,

at least for h small enough. The statement of Lemma 4.2 is slightly more precise, as

it holds without any restriction on h so that the superflow property which is shown

is, in particular, uniform in x0.

Proof. Let s ∈ [t, t + τ ] and h > 0. If s + h > t + τ , W+
x0,t,r(s) = ∅ so that the

statement is obvious, hence we may assume s+h ≤ t+ τ . For any x ∈ RN , by (10)

we have

d+(x, s) + G(x, s+ h) −G(x, s)

= φ(x− x0) − r +G(x0, s) −G(x0, t) +G(x, s+ h) −G(x, s) +
s− t

2τ
r

≤ φ(x− x0) − r +G(x0, s+ h) −G(x0, t) +
s− t

2τ
r + C(t+ τ)h .

Let now Ω be an open and bounded subset of RN which is big enough to guarantee

that the set Ts,s+h(W+
x0,t,r(s)) does not depend on Ω (Proposition 3.1). Hence the

solution w of (3), with E replaced by W+
x0,t,r(s) and (t, s) replaced by (s, s+ h), is

less than the solution of

min
v∈BV (Ω)

∫

Ω

φ◦(Dv)

+
1

2h

∫

Ω

(

v − φ(x − x0) + r −G(x0, s+ h) +G(x0, t) −
s− t

2τ
r − C(t+ τ)h

)2
dx,
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which, in turn, is less (as shown in the proof of Lemma 3.2) than the function


















































φ(x− x0) + h
N − 1

φ(x− x0)
− r +G(x0, s+ h) −G(x0, t) +

s− t

2τ
r + C(t+ τ)h

if φ(x − x0) ≥
√

h(N + 1),

√
h

2N√
N + 1

− r +G(x0, s+ h) −G(x0, t) +
s− t

2τ
r + C(t+ τ)h

otherwise.

Hence, we see that

w(x) ≤ d+(x, s+ h) + h
N − 1

φ(x − x0)
− h

r

2τ
+ C(t+ τ)h

when φ(x − x0) ≥
√

h(N + 1). Now, since τ ≤ r2/(16(N + 1)) and h ≤ τ , we

get r/4 ≥
√

h(N + 1) so that we can replace the last condition with the stronger

condition φ(x − x0) ≥ r/4. On the other hand, if both φ(x − x0) ≥ r/4 and

τ ≤ r2/(2(C(t+ τ) + 4(N − 1))), then

r

2τ
≥ C(t+ τ) + 4(N − 1)

r
≥ C(t+ τ) +

N − 1

φ(x − x0)
,

so that w(x) ≤ d+(x, s+ h). This shows that Ts,s+h(W+
x0,t,r(s)) ⊇W+

x0,t,r(s+ h).

The proof of the similar thesis for W−
x0,t,r is analogous.

By the previous lemma, if Eh(t) ⊇Wφ(x0, r), then Eh(t+nh) ⊇W+
x0,t,r(t+nh)

for any n ≥ 1 and, in particular, Eh(t + nh) ⊇ Wφ(x0, r/4) as long as nh ≤ τ(r).

In other words, for any r > 0, then nh ≤ τ(r) yields

Eh(t+ nh) ⊇ {x : dEh(t)(x) ≤ −r}.

This shows that the (discrete) evolution will not vanish “suddenly”, in the sense

that any subset in the interior of Eh(t) remains in the interior of Eh(s) for s > t

sufficiently close to t.

We can easily deduce the same “semicontinuity” property for E∗: indeed, when

dE∗(t)(x) = −r, then, for any r′ < r, Wφ(x, r′) ⊂ Eh(t) as soon as h is small enough,

so that Wφ(x, r′/4) ⊂ Eh(t+ [τ/h]h) for all τ < τ(r′). Letting first h→ 0 and then

r′ → r, we find that, if τ < τ(r), it follows

E∗(t+ τ) ⊇ {x : dE∗(t)(x) ≤ −r}. (14)

In the same way we obtain

E∗(t+ τ) ⊆ {x : dE∗(t)(x) < r}. (15)

Moreover, one can easily verify that the same properties hold at t = 0 with E∗(t)

replaced with E and E∗(t) replaced with int(E), where E is the initial set. From (14)

and (15) we also get

Γ(t+ τ) ⊆ {distφ(·,Γ(t)) < r}. (16)
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As a consequence, we obtain the following semicontinuity property for the tubes

E∗, E
∗.

Proposition 4.3. Assume that G satisfies (10). Let E be a closed subset of RN

with compact boundary. Let O,F be an open and a closed subset of RN respectively.

Let t ≥ 0 and let (τn)n≥0 be a sequence of nonnegative numbers going to 0. Then

• If cE∗(t+ τn) → cO in the Hausdorff sense, E∗(t) ⊆ O ,

• If E∗(t+ τn) → F in the Hausdorff sense, F ⊆ E∗(t) ,

In particular, we deduce that any Hausdorff limit of a sequence Γ(t+τn) is contained

in Γ(t). Moreover, if t = 0, we can replace E∗(t) with int(E) in the first statement

and E∗(t) with E in the second. In particular, choosing τn ≡ 0, we get

int(E) ⊆ E∗(0) ⊆ E∗(0) ⊆ E ,

which implies, recalling (8), that

E∗(0) = int(E) and E∗(0) = E . (17)

Notice that (17) shows that Γ(0) = ∂E.

Since O ⊂ F in the above proposition, we see also that if E∗(t) = E∗(t), then

E∗(t + τ) → E∗(t) in the Hausdorff sense as τ → 0, whereas if E∗(t) = int(E∗(t)),

then cE∗(t+τ) → cE∗(t), and if both are true, then Γ(t+τ) = E∗(t+τ)\E∗(t+τ) →
∂E∗(t) as τ → 0. To show this one just needs to show that for any x ∈ ∂E∗(t),

there exists xτ ∈ Γ(t + τ) that converge to x as τ → 0. We know that there exists

yτ ∈ E∗(t+τ) and zτ 6∈ E∗(t+τ) such that both yτ and zτ converge to x. Then, the

segment [yτ , zτ ] must intersect the set Γ(t+ τ) and any point xτ in this intersection

will satisfy the desired property.

Notice also that, if E is such that E = int(E), we deduce that Γ(t) = E∗(t)\E∗(t)

converges to ∂E as t→ 0, in the Hausdorff sense.

The left continuity of the tubes E∗, E
∗ is given by the following proposition.

Proposition 4.4. Assume that G satisfies (10). Let E be a closed subset of RN

with compact boundary, and let t > 0. Then cE∗(t − τ) → cE∗(t) in the Hausdorff

sense as τ → 0, τ ≥ 0, while E∗(t− τ) → E∗(t). Moreover, Γ(t− τ) → Γ(t).

Proof. We sketch the proof of this proposition. As for the previous proposition,

one will deduce from (14) that if cE∗(t− τn) → cO in the Hausdorff sense, along a

subsequence τn going to 0, then O ⊆ E∗(t). On the other hand, since cE∗ is closed

in Ω× [0,+∞), one must have cO ⊆ cE∗(t). Thus O = E∗(t) and the thesis follows.

In the same way, (15) yields that if E∗(t − τn) → F in the Hausdorff sense, then

E∗(t) ⊆ F . From the closedness of F ∗ we conclude in the same way that F = E∗(t).

The last assertion follows from (16): first of all, any Hausdorff limit F of a

subsequence Γ(t−τn) = E∗(t−τn)\E∗(t−τn) is inside Γ(t) = E∗(t)\E∗(t), by the
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previous results. Now, since distφ(·,Γ(t − τn)) converges uniformly to distφ(·, F )

as n → ∞, Γ(t) ⊆ {distφ(·, F ) ≤ r} for any r > 0, hence it lies in F . Thus

F = Γ(t).

Remark 4.5. Notice that in general we cannot expect the maps t 7→ E∗(t) and

t 7→ E∗(t) to be continuous in the Hausdorff distance: indeed, this would prevent

small disconnected parts from disappearing in finite time, a phenomenon which is

known to happen even when G ≡ 0. On the other hand, these maps are likely to

be continuous in the L1-topology, under suitable assumptions on G (when G ≡ 0 it

is proved in [1, Theorem 4.4]).

From Propositions 4.1 and 4.3, and in particular (9) and (17), we get the fol-

lowing corollary.

Corollary 4.6. If G satisfies condition (10), we have

Γ(t) ⊆ N ∗(E, 0)(t) \M∗(E, 0)(t).

In particular, as long as N ∗(E, 0)(t) \ M∗(E, 0)(t) has no interior (nonfattening

condition), then the motions E∗(t) and E∗(t) are uniquely defined and do not depend

on the sequence along which the limits are obtained.

Remark 4.7. Notice that, as long as the set E has compact boundary, all the

resuls of this section can be easily extended to functions G which are only locally

bounded in x, i.e. G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and G2 ∈
Liploc([0,+∞);L∞

loc(R
N )).

Proposition 4.8. If G(x, t) =
∫ t

0 g(x, s) ds, with g continuous, then Γ(t) is con-

tained in the zero level-set of the corresponding viscosity solution.

Proof. It follows immediately from Theorem 2.4 and Corollary 4.6.

From Corollary 4.6 and from [17, Section 3] we also have the following consis-

tency result in the case of an x-independent forcing term.

Proposition 4.9. Let G(x, t) = G(t) ∈ C0([0,+∞)) and let φ(x) = |x| (i.e.

isotropic mean curvature flow). Then Γ(t) is contained in the minimal barrier

solution defined in [17]. In particular, if ∂E is of class C2,α, E∗(t) = E∗(t) and

Γ(t) = ∂E∗(t) coincides with the unique (local in time) solution of (1) given in [17].

Remark 4.10. As already pointed out in the Introduction, the viscosity theory

can be applied under more general assumptions on G than what is required in

Proposition 4.8 (see [23, 24]). However, it is still not clear which is the relation

between the limit set Γ(t) and the zero level-set of such viscosity solutions, except

for the particular case of an x-independent forcing term, where the equality holds

for small times as a consequence of Proposition 4.9 (if ∂E is regular enough).
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4.2 An inclusion principle

Let us now consider the case where the driving term is the “time-derivative” of a

function G(x, t) that satisfies

∣

∣

∣

∣

G(x, s) −G(y, s) −G(x, t) +G(y, t)

s− t

∣

∣

∣

∣

≤ C(T )|x− y|. (18)

This condition is stronger than condition (10) (see also Remark 4.7) and is for

instance true whenever G(x, t) = G1(t) + G2(x, t), with G1 ∈ C0([0,+∞)) and

G2 ∈ C1([0,+∞); Lip(RN )). In particular, all the results of Section 4.1 still hold

under assumption (18).

Given a closed set E ⊂ RN with nonempty compact boundary ∂E, we define

the maximal existence time T ∗
E ∈ [0,+∞] for the flow E∗ as the supremum of all

times t such that E∗(t) 6= ∅ and E∗(t) 6= RN . The fact that T ∗
E > 0 is ensured by

Proposition 4.3, whenever int(E) 6= ∅.
Consider now two closed sets E1 and E2, with nonempty compact boundary,

and assume E1 ⊂ E2 and D := distφ(∂E1, ∂E2) > 0. Notice that, if G depends

only on time, then for each z such that φ(z) ≤ D, we have z + E1 ⊂ E2, so

that T0,h(z + E1) ⊂ T0,h(E2) for any h > 0. Since G does not depend on x,

we get T0,h(z + E1) = z + T0,h(E1). It follows Wφ(0, D) + T0,h(E1) ⊂ T0,h(E2),

which implies distφ(∂T0,h(E1), ∂T0,h(E2)) ≥ D. By induction, we deduce that

distφ(∂E1
h(t), ∂E2

h(t)) ≥ D for any t ≥ 0 (where we set the distance equal to +∞ if

one of the two sets disappears).

For a general G the estimate is slightly trickier, even if it follows the same idea.

Assume T ∗ = min{T ∗
E1, T ∗

E2} > 0 and let T < T ∗. By Proposition 3.1, we can find

a “large” bounded open set Ω ⊂ RN such that the sets E1
h(t) and E2

h(t) defined

in (7) do not depend on Ω, for t ∈ [0, T ] and h small enough. In particular, we

can assume that ∂E1
h(t) and ∂E2

h(t) remain at a positive distance from ∂Ω for any

t ∈ [0, T ]. Let w1, w2 be the solutions of the variational problem (3), for t = 0 and

s = h, with dE replaced by dE1 , dE2 respectively. Notice that, for z ∈ RN , the set

z + T0,h(E1) = z + {w1 < 0} coincides with the set {x ∈ z + Ω : w1(x − z) < 0},
and the function w̃1(x) = w1(x− z), defined in z + Ω, is the solution of

min
w∈L2(z+Ω)

∫

z+Ω

φ◦(Dw) +
1

2h

∫

z+Ω

(w(x)−dE1 (x−z)−G(x−z, h)+G(x−z, 0))2 dx .

Possibly enlarging the set Ω, we can assume that both functions w2 and w̃1 are

solutions of their respective variational problems in the same domain (for instance,

Ω ∪ (z + Ω)). Then, since dE1(x − z) ≥ dE1(x) − φ(z) ≥ dE2(x) +D − φ(z) and,

using (18), −G(x − z, h) +G(x − z, 0) ≥ −G(x, h) +G(x, 0) − C(T )|z|h, one finds

that w̃1 ≥ w2 + D − φ(z) − C(T )|z|h. In particular, if φ(z) ≤ D/(1 + hC′(T ))

with C′(T ) = C(T ) supz 6=0 |z|/φ(z), we get {w̃1 ≤ 0} ⊂ {w2 ≤ 0}, which in turn

implies distφ(∂T0,h(E1), ∂T0,h(E2)) ≥ D/(1 + hC′(T )). By an induction argument,

we deduce that distφ(∂E1
h(t), ∂E2

h(t)) ≥ D(1 + hC′(T ))−[t/h] for any t ∈ [0, T − h]
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and h > 0 small enough. Observe that, as h → 0, we have D(1 + hC′(T ))−[t/h] →
De−C′(T )t. We will show that this estimate also holds in the limit, for the motions

(E1)∗ and (E2)∗, obtained along the same subsequence (hk)k≥1 (which we will still

denote by (h)h>0).

Fix δ < De−C′(T )T . Then, if h is small enough, we have δ ≤ distφ(E1
h(t),Ω \

E2
h(t)) for any t ∈ [0, T ). Given a fixed t < T , choose a subsequence (hk) such that

both Hausdorff limits of E1
hk

(t) and Ω \ E2
hk

(t) exist in Ω, and denote by K and

L, respectively, these limits. Since distφ(E1
h(t),Ω \ E2

h(t)) ≥ δ, in the limit we find

distφ(K,L) ≥ δ. We also have K ⊆ (E1)∗(t) and L ⊆ Ω \ (E2)∗(t). Define now

Kδ/2 = K + Wφ(0, δ/2), which has its boundary between ∂K and ∂L and lies at

distance at least δ/2 from both boundaries. Let δ′ < δ and set δ′′ = (δ+δ′)/2. If x ∈
∂Kδ/2, then Wφ(x, δ′′/2) ⋐ Ω\(K∪L) so that if hk is small enough, Wφ(x, δ′′/2) ⊂
E2

hk
(t) and Wφ(x, δ′′/2)∩E1

hk
(t) = ∅. By Lemma 4.2 there exists τ > 0, depending

only on δ′′ and δ′ < δ′′, such thatWφ(x, δ′/2) ⊂ E2
hk

(s) andWφ(x, δ′/2)∩E1
hk

(s) = ∅
for all t ≤ s < t+ τ . In the limit, this implies that for t ≤ s < t+ τ , Wφ(x, δ′/2) ⊂
(E2)∗(s) and (E1)∗(s)∩Wφ(x, δ′/2) = ∅. Since x is an arbitrary point of ∂Kδ/2, this

implies that both distφ(∂Kδ/2, ∂(E1)∗(s)) ≥ δ′

2 and distφ(∂Kδ/2, ∂(E2)∗(s)) ≥ δ′

2 .

We deduce that for any s in (t, t + τ), distφ(∂(E1)∗(s), ∂(E2)∗(s)) ≥ δ′. Since t

is arbitrary in [0, T ) and τ does not depend on t, we deduce that in fact for any

t ∈ [0, T ), distφ(∂(E1)∗(t), ∂(E2)∗(t)) ≥ δ′. (The case t = 0 follows directly from

Proposition 4.3.) We may send δ′ → δ to see that the inequality holds with δ

instead od δ′. In fact, we can deduce from the previous argument that the distance

between the two sets decreases at most like De−C′(T )t, t ∈ [0, T ).

We have obtained the following result.

Proposition 4.11. Let E1 ⊂ E2 ⊂ RN be two closed sets with nonempty compact

boundary, and assume distφ(∂E1, ∂E2) > 0. Denote by E1
h and E2

h, h > 0, the

corresponding discrete evolutions in RN × [0,+∞). Let (hk) be a subsequence such

that E1
hk

→ (E1)∗, and cE2
hk

→ c(E2)∗ in the Hausdorff sense. Assume also that

E2
hk

→ (E2)∗. Then, for any t ≥ 0 we have (E1)∗(t) ⊆ (E2)∗(t).

In particular, for any t ∈ [0, T ), with T := max{T ∗
E1, T ∗

E2}, we have, for any t′

with t < t′ < T ,

distφ(∂(E1)∗(t), ∂(E2)∗(t)) ≥ distφ(∂E1, ∂E2)e−C′(t′)t > 0 (19)

where C′ is proportional to the constant in (18).

Remark 4.12. Notice that the inclusions (E1)∗(t) ⊆ (E2)∗(t) and (E1)∗(t) ⊆
(E2)∗(t) always hold (without any assumption on distφ(∂E1, ∂E2)).

Remark 4.13. We remark that we do not know if the thesis of Proposition 4.11

still holds if (E1)∗ and (E2)∗ are limits of E1
hk

and E2
hj

(respectively) along dif-

ferent subsequences. This would be an important result, yielding for instance the

uniqueness of the level-set solution u(x, t), defined in Section 4.3.
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4.3 The level-set approach

Consider now a function u0 ∈ BUC(RN ), such that for each t ∈ R, the level-set

∂{u0 > t} is bounded. For all q ∈ Q consider the level-sets Eq := {u0 ≥ q} and let

Eq
h ⊂ RN × [0,+∞) be the discrete evolutions of Eq. Then, a diagonal argument

shows that, along a subsequence (hk)k≥1, we have Eq
hk

→ (Eq)∗ and cEq
hk

→
c(Eq)∗ locally in the Hausdorff sense, i.e. the distance functions dist(·, Eq

hk
) and

dist(·,RN×[0,+∞)\Eq
hk

) converge to dist(·, (Eq)∗) and dist(·,RN×[0,+∞)\(Eq)∗)

respectively, uniformly in RN × [0, T ] for any T > 0.

Observe that (Remark 4.12) for each q, r ∈ Q with q ≥ r, we have (Eq)∗(t) ⊆
(Er)∗(t) and (Eq)∗(t) ⊆ (Er)∗(t), for any t ≥ 0. Hence we can define two functions

u∗, u∗ : RN × 0,+∞) → R, by letting

u∗(x, t) := sup{q ∈ Q : x ∈ (Eq)∗(t)} , u∗(x, t) := sup{q ∈ Q : x ∈ (Eq)∗(t)}.

By Proposition 4.11, we know that (Eq)∗(t) ⊂ (Er)∗(t) for any t ≥ 0 whenever

q > r, which implies u∗(x, t) = u∗(x, t) for any (x, t) ∈ RN × [0,+∞). Indeed, if q >

u∗(x, t), then x 6∈ (Eq)∗(t), so that it is neither in (Eq)∗(t), hence u∗(x, t) ≤ u∗(x, t);

on the other hand, if q > u∗(x, t), then if q′ ∈ (u∗(x, t), q) ∩ Q, x 6∈ (Eq′

)∗(t) ⊃
(Eq)∗(t), hence x 6∈ (Eq)∗(t): we deduce u∗(x, t) ≤ u∗(x, t). We simply denote by

u(x, t) this common value.

Let us observe that, for each t ≥ 0, from Proposition 4.11 (more exactly from

the estimate (19)) it follows that u(·, t) is uniformly continuous on RN (with the

same modulus of continuity as u0 if C(T ) = 0 in (18)). It also follows easily from

Propositions 4.3 and 4.4 that if (xn, tn) → (x, t), then u(xn, tn) → u(x, t): indeed,

for instance, one sees that if u(xn, tn) < q for n large enough, then xn 6∈ (Eq)∗(tn),

hence in the limit x 6∈ (Eq)∗(t) so that u(x, t) ≤ q. This means that the function

u is globally continuous on RN × [0,+∞). In particular, we have the inclusions

(Eq)∗(t) ⊂ (Es)∗(t) for any t ≥ 0 whenever q > s, q, s ∈ R. We deduce easily that

(letting now Γs(t) := (Es)∗(t) \ (Es)∗(t))

⋃

t≥0

Γs(t) = (Es)∗ \ (Es)∗ ⊆ {(x, t) : u(x, t) = s} (20)

Now, letN := {s ∈ R : |{(x, t) ∈ RN×[0,+∞) : u(x, t) = s}| = 0}. The setN is at

most countable. If s 6∈ N , then (20) is in fact an equality: one has {u > s} = (Es)∗

and {u ≥ s} = (Es)∗. One can deduce that ∂Es
hk

converges to {u = s} in the local

Hausdorff sense. For these values of s, the flow defined by our algorithm is a “true”

evolution of hypersurfaces. Indeed, at any time t ≥ 0, we can show that {u(·, t) = s}
has empty interior. Otherwise, there would exist Wφ(x, ρ) ⊆ {u(·, t) = s}. In

particular, if q > s > q′, q, q′ ∈ Q, we would have Wφ(x, ρ) ⊆ (Eq′

)∗(t) while

Wφ(x, ρ) ∩ (Eq)∗(t) = ∅. By (14) and (15), it would follow that, if t ≤ t′ <

t + τt+1(ρ/2), then Wφ(x, ρ/2) ⊂ (Eq′

)∗(t) and Wφ(x, ρ/2) ∩ (Eq)∗(t) = ∅, which

would imply that {u = s} has nonempty interior, leading to a contradiction. We
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can not prove in general the uniqueness of the flow (Es)∗, since it could depend

on the subsequence (hk) along which the first limits have been taken. If on the

contrary s ∈ N , then a fattening of the corresponding level-set happens, and we

can only deduce the inclusion (20). As in the case of classical level-set solutions, we

expect nonuniqueness of the limit flow in this situation (and in this situation only).

If G(x, t) =
∫ t

0 g(x, s) ds with g continuous, then (by Proposition 4.8), one sees

that u is the unique viscosity solution [15] of

∂u

∂t
= φ◦(∇u) (div∇φ◦(∇u) + g) . (21)

In particular, in this case, the limit u is the same along any subsequence. We can

then deduce that ∂Es
h(t) → {u(·, t) = s} as h → 0, for each level s 6∈ N , or each

time t before the moment the level s ∈ N fattens.

In case G is an arbirary driving term satisfying (18), we conjecture that our u

is still the viscosity solution of

∂u

∂t
= φ◦(∇u)

(

div∇φ◦(∇u) +
∂G

∂t

)

(22)

built by Lions and Souganidis [23, 24]. However, to show this, we would need either

to show the stability of our construction under small perturbations of G (that

would allow us to approximate G with smooth functions), or a comparison result

like Theorem 2.4 between barriers and viscosity solutions (in the sense of [23, 24])

and then use Corollary 4.6.

Let us eventually make a few remarks. We first observe that our construction

can still be performed if φ and φ◦ are nonsmooth: typically, in the crystalline case,

where the Wulff shape {φ ≤ 1} is a polyhedron. In this case, our proof of consistency

does not hold (neither is clear how to extend the definition of a sub/superflow). On

the other hand, most of the results are still valid, including the comparison principle

in Proposition 4.11, and the construction of the level-set function u starting from

u0 still makes sense.

We also mention that in the convex case, if G = G(t), by the same arguments

as in [11] we can show that the evolution (defined in RN ) remains convex for all

time, including when the anisotropy is nonsmooth. We also expect that the results

in [4] still hold with similar proofs, and that a unique “regular” evolution can be

defined for small times as the unique limit of our algorithm, when the initial convex

set satisfies an interior εWφ-condition. This would in turn yield the uniqueness of

the level-set function defined above.
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