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Implicit time discretization of the mean curvature flow with a discontinuous forcing term

We consider an implicit time discretization for the motion of a hypersurface driven by its anisotropic mean curvature. We prove some convergence results of the scheme under very general assumptions on the forcing term, which include in particular the case of a typical path of the Brownian motion. We compare this limit with other available solutions, whenever they are defined. As a by-product of the analysis, we also provide a simple proof of the coincidence of the limit flow with the regular evolutions, defined for small times, in the case of a regular forcing term.

Introduction

Mean curvature flow has attracted a lot of attention in the past few years. Being one of the simplest evolution of hypersurfaces of R n , in its analysis arise many difficult issues mainly related to the formation of singularities, which sometimes lead to changes of the topology. To deal with this phenomenon, several notions of weak solutions have been proposed, such as (only to mention some) the varifold theory of Brakke [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF], the level-set solution defined through the viscosity theory [START_REF] Evans | Motion of level sets by mean curvature[END_REF][START_REF] Evans | Motion of level sets by mean curvature[END_REF][START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF], the minimal barrier method of De Giorgi [START_REF] Giorgi | New ideas in calculus of variations and geometric measure theory[END_REF], the limit of a reaction-diffusion equations [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF][START_REF] Ilmanen | Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[END_REF] and the minimizing movements method [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF][START_REF] Ambrosio | Movimenti minimizzanti[END_REF], that corresponds to an implicit time-discrete scheme.

Each of these methods has different features and presents advantages and disadvantages. In particular, the level-set method always provides a unique solution, globally defined in time in the class of compact subsets of R n , but it is often very difficult to prove that such a solution is a regular hypersurface. There are even some singular situations in which this solution becomes a compact set with nonempty interior, showing the so-called fattening phenomenon. The minimal barrier method is a geometric counterpart of the level-set method and produces essentially the same solution [START_REF] Bellettini | Comparison results between minimal barriers and viscosity solutions for geometric evolutions[END_REF].

On the contrary, the minimizing movements method produces a solution, called the flat flow, which can be nonunique but is always a (possibly nonsmooth) hypersurface. One of the difficulties in this approach is to show that the solution coincides with the classical smooth solution, whenever the latter exists, a property which is very easy to prove in the context of level-set viscosity solutions. One faces similar difficulties in proving that the flat flow is always contained in the level-set solution.

In this paper we study the (anisotropic) mean curvature flow with a possibly discontinuous driving force, by adapting the minimizing movements method, which has been originally developed without any forcing term. More precisely, we consider the evolution E(t) of a set whose boundary is driven by the velocity

V (x, t) = -(κ φ (x, t) + g(x, t))n φ (x, t) (1) 
for any x ∈ ∂E(t), where κ φ (x, t) and n φ (x, t) are respectively the φ-curvature and φ-normal to ∂E(t) at x (see Section 2 for the precise definitions, and [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF] for a general introduction on curvatures in Finsler geometry).

The purpose of this paper is twofold:

1. We extend the method of minimizing movements (and the proofs of consistency in [START_REF] Chambolle | Approximation of the anisotropic mean curvature flow[END_REF]) to evolutions with a driving force, providing simple proofs of the coincidence with regular solutions and the inclusion in the level-set solution (see Cor. 4.6, Prop. 4.8, 4.9).

2. Our approach applies to the case where the forcing term is discontinuous. One important example is a forcing term which is the time derivative of an Hölder continuous function G(t), e.g., a typical path of the Brownian motion dW/dt.

It also covers the case of spatially correlated Brownian motion, typically of the form g(x, t) = dW/dt(t) + g 0 (x, t) where g 0 is Lipschitz-continuous in x and continuous in t (see [START_REF] Evans | Motion of level sets by mean curvature[END_REF] for a precise formulation). A theory yielding existence and uniqueness for such evolutions, based on a level-set formulation in the framework of the viscosity theory, has been recently developed in [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF], and a corresponding theory in the framework of minimal barriers, valid only for xindependent forcing terms, has been proposed in [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF]. We also refer to [START_REF] Yip | Stochastic motion by mean curvature[END_REF][START_REF] Yip | Stochastic curvature driven flows[END_REF] for a similar approach to a related problem, which still uses an implicit time discretization procedure.

We do not address in the present paper the issue of continuity in time (in a suitable topology) of the limit flat flow, even if we prove some weaker continuity results with respect to the Hausdorff distance (see Propositions 4.3,4.4 and Remark 4.5).

The plan of this paper is as follows: in Section 2, we define the appropriate notion of sub-and superflow associated to the evolution equation ( 1), and we recall the definition of maximal and minimal barriers in the sense of De Giorgi. These allow to define generalized evolutions, which are essentially equivalent to the evolutions defined in terms of level sets of viscosity solutions, when the forcing term is regular enough.

Then, our implicit time-discretization scheme is defined in Section 3, and we show that it is consistent with our sub-and superflows (Thm. 3.3). As a corollary, we obtain a comparison results for sub-and superflows, which follows from the monotonicity of our scheme.

This consistency result is used in Section 4 to study the convergence of our time-discrete scheme, as the time step goes to zero. We define a notion of weak solution starting from an initial surface ∂E (given by Γ(t) = E * (t) \ E * (t), where

E * (t) ⊂ E * (t) are two evolving sets with E * (0) = int(E), E * (0) = E), which
coincides with the barrier solution as long as the latter is unique (Cor. 4.6). Under additional assumptions on the evolution law, we deduce that it is contained in the zero level-set of the viscosity solution (Prop. 4.8). This is also true for a particular class of stochastic evolutions (Prop. 4.9).

In Sections 4.2-4.3, under some further assumption on the forcing term (which still allows a stochastic forcing), we build a level-set evolution u(t) starting from any bounded, uniformly continuous function u 0 . In particular, for all initial data {u 0 = s} but a countable number, it shows that we can define a generalized flow {u(t) = s} which remains a continuous hypersurface (with possible singularities).

We do not prove that it is unique, though. If the forcing is regular, u(t) is the same as the unique viscosity solution of the geometric equation associated to the flow. In general, we expect it to coincide with the solution defined by Lions and Souganidis in [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF].

Preliminary definitions and results

Let φ : R N → R be a norm on R N (that is, an even, convex, one-homogeneous function) such that φ ∈ C 2 (R N \ {0}) (we shall simply say that φ is smooth) and ∇ 2 (φ 2 ) ≥ c Id for some c > 0, so that φ is uniformly convex or elliptic. Most of our results could be extended to more general norms (or even possibly non-even convex one-homogeneous functions), but the proof of the consistency theorem 3. 

(ξ) := sup φ(η)≤1 ξ • η, for all ξ ∈ R N . It
turns out that also φ • is smooth and elliptic. In the sequel, the couple (φ, φ • ) will be referred as the anisotropy. A ball of radius r > 0 centered in x 0 ∈ R N for the norm φ, i.e., the set W φ (x 0 , r) := {φ(xx 0 ) ≤ ρ}, will be called a Wulff shape (we set for simplicity W φ := W φ (0, 1)).

When E, F ⊂ R N , we denote by dist φ (E, F ) the distance between E and F with respect to φ:

dist φ (E, F ) := inf x∈E, y∈F φ(x -y).
Given a set E ⊂ R N , we also define d E (x), the signed distance function to ∂E (with respect to the norm φ), by

d E (x) := inf y∈E φ(x -y) -inf y∈R N \E φ(y -x).
We let n φ (x) := ∇φ • (∇d E (x)) and κ φ (x) := divn φ (x) be respectively the φ-normal and the φ-curvature of ∂E at x. Notice that if ∂E is of class C 2 , then the functions n φ and κ φ are defined and continuous in an open neighbourhood of ∂E. We refer to [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF] for a general introduction to the anisotropic curvature flow.

We say that E satisfies an interior (resp. exterior) εW φ -condition, ε > 0, if

E = {d E < -ε} + εW φ (resp. R N \ E = {d E > ε} + εW φ )
, which is equivalent to require that at each point of ∂E, there is a Wulff shape of radius ε inside E (resp., outside E), that is tangent to ∂E at x. 

Evolution law

> 0, such that d(x, t) = d E(t) (x) ∈ C 0 ([t 0 , t 1 ]; C 2 (A)), and 
d(x, s) -d(x, t) ≥ s t div ∇φ • (∇d)(x, τ ) dτ + G(x, s) -G(x, t) + δ(s -t), (2) 
for a.e. x ∈ A and any t, s with t 0 ≤ t ≤ s ≤ t 1 , where G(x, t) := t 0 g(x, s) ds. We say that E(t) is a subflow whenever there exist A ⊂ R N as above and δ < 0, such that the reverse inequality holds in [START_REF] Ambrosio | Movimenti minimizzanti[END_REF].

We indicate with F + (resp. F -) the family of all superflows (resp. subflows) of [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF].

We observe that if g is continuous in (x, t), and

d is C 1 in t, condition (2) is equivalent to require ∂d ∂t > div ∇φ • (∇d) + g in A × [t 0 , t 1 ]
. On the other hand, Definition 2.1 still makes sense if the driving term is the "time-derivative" of a function G ∈ C 0 ([t 0 , t 1 ]; L ∞ (A)), even when G is nondifferentiable with respect to t.

Barriers

We recall the definition of minimal and maximal barrier in the sense of De Giorgi.We refer to [START_REF] Bellettini | Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature[END_REF][START_REF] Bellettini | Minimal barriers for geometric evolutions[END_REF][START_REF] Bellettini | Some aspects of De Giorgi's barriers for geometric evolutions[END_REF] for a more general introduction to this topic.

Definition 2.2. We say that a function Φ : [t 0 , +∞) → P(R N ) (P(R N ) is the set of all subsets of R N ) is a barrier with respect to

F + if for any Σ(t) ∈ F + , t ∈ [a, b] ⊂ [t 0 , +∞), Σ(a) ⊆ Φ(a) implies Σ(b) ⊆ Φ(b).
Similarly, we say that Φ is a barrier with respect to F -if for any

Σ(t) ∈ F -, t ∈ [a, b] ⊂ [t 0 , +∞), Σ(a) ⊇ Φ(a) implies Σ(b) ⊇ Φ(b).
In the following we denote by B ± t0 the class of all barriers with respect to F ± , defined on [t 0 , +∞).

Definition 2.3. Let E ⊆ R N , t 0 ∈ R.
The minimal barrier M(E, t 0 ) : [t 0 , +∞) → P(R N ) starting from E at time t 0 is defined as:

M(E, t 0 )(t) := Φ(t) : Φ ∈ B + t0 , Φ(t 0 ) ⊇ E .
We define the maximal barrier N (E, t 0 ) : [t 0 , +∞) → P(R N ) starting from E at time t 0 as:

N (E, t 0 )(t) := Φ(t) : Φ ∈ B - t0 , Φ(t 0 ) ⊆ E .
We also define the upper and lower regularized barriers as

M * (E, t 0 )(t) := ρ>0 M(E - ρ , t 0 )(t) M * (E, t 0 )(t) := ρ>0 M(E + ρ , t 0 )(t), N * (E, t 0 )(t) := ρ>0 N (E - ρ , t 0 )(t) N * (E, t 0 )(t) := ρ>0 N (E + ρ , t 0 )(t)
,

where E ± ρ = {d E ≤ ±ρ}.
We recall the following result, proved in [START_REF] Bellettini | Comparison results between minimal barriers and viscosity solutions for geometric evolutions[END_REF] (see also [START_REF] Ilmanen | The level-set flow on a manifold[END_REF] for the case of the motion by mean curvature).

Theorem 2.4. Assume that G(x, t) = t 0 g(x, s) ds, with g continuous. Then, we have M * (E, t 0 )(t) = N * (E, t 0 )(t) and M * (E, t 0 )(t) = N * (E, t 0 )(t) for any E ⊂ R N and t ≥ t 0 . Moreover, the set M * (E, t 0 )(t) \ M * (E, t 0 )(t) coincides with the zero level-set of the viscosity solution of the parabolic equation corresponding to [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF].

The parabolic equation which is mentioned here is equation [START_REF] Ilmanen | Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature[END_REF] or [START_REF] Ilmanen | The level-set flow on a manifold[END_REF]. In the sequel, we shall omit the explicit dependence of barriers on t 0 whenever t 0 = 0.

Anisotropic total variation

The total variation of a function w ∈ L 1 (Ω) is defined as

sup Ω u(x) div ψ(x) dx : ψ ∈ C 1 0 (Ω; R N ), |ψ(x)| ≤ 1 ∀ x ∈ Ω .
It turns out that it is finite if and only if the distributional derivative Dw is a bounded Radon measure. In this case, the total variation is equal to the variation |Dw|(Ω) = Ω |Dw| of the measure Dw, and w belongs to the space BV (Ω) of functions with bounded variation.

Given (φ, φ • ) a couple of mutually polar norms in R N (an anisotropy), one defines in the same way the anisotropic total variation

Ω φ • (Dw) = sup Ω u(x) div ψ(x) dx : ψ ∈ C 1 0 (Ω; R N ), φ(ψ(x)) ≤ 1 ∀ x ∈ Ω .
Clearly, it is finite if and only if w ∈ BV (Ω). In the case w = χ E , the characteristic function of a measurable set E, then w ∈ BV (Ω) if and only if E is a set of finite perimeter in Ω (a Caccioppoli set ). In this case, one can define a reduced boundary ∂ * E (which is H N -1 -equivalent to the measure theoretical boundary, that is, the set of points where E has Lebesgue density neither 0 nor 1), on which is well defined a normal unit vector ν E (x), and such that

Dχ E = ν E H N -1 ∂ * E. Then, one has Ω |Dχ E | = H N -1 (∂ * E) and Ω φ • (Dχ E ) = ∂ * E φ • (ν E (x)) dH N -1 (x).
See [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for more details.

The implicit time discretization

Let Ω be a bounded, convex, open subset of

R N . Let G ∈ C 0 ([0, +∞), L ∞ (Ω)) and
let ω G,T its modulus of continuity in [0, T ]. Let (φ, φ • ) be the anisotropy, which we assume to be smooth and elliptic. Let E ⊆ R N . Given s > t ≥ 0, let w denote the unique solution of min

w∈L 2 (Ω) Ω φ • (Dw) + 1 2(s -t) Ω w(x) -d E (x) -G(x, s) + G(x, t) 2 dx . (3) 
We let T t,s (E) = {x ∈ Ω : w(x) < 0}. The existence and uniqueness of w minimizing (3) does not raise any difficulty, since the energy which is minimized is trivially strictly convex, and lower-semicontinuous in L 2 (Ω).

Notice that the set T t,s (E) is the minimizer of a prescribed curvature problem, with bounded mean curvature. Indeed, reasoning as in [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF][START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF][START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF], one can check that this set is a solution of the variational problem min

Ω∩∂ * F φ • (ν F (x))dH N -1 (x) + 1 s -t F d E (x) + G(x, s) -G(x, t) dx ,
where the minimum is taken among the subsets F of Ω of finite perimeter. It follows that the set T t,s (E) has boundary of class C 1,α inside Ω, outside a compact singular set of zero H N -1 -dimension [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] (when N = 2, the set T t,s (E) has boundary of class C 1,1 ). The variational problem above is the generalization of the approach proposed in [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF][START_REF] Luckhaus | Implicit time discretization for the mean curvature flow equation[END_REF], for building mean curvature flows without driving terms, through an implicit time discretization.

For s = t + h, the Euler-Lagrange equation for w at a point x ∈ ∂T t,t+h (E) formally reads as

d E (x) = -h κ φ (x) + G(x, t + h) -G(x, t) h ,
with κ φ being the φ-curvature at x of ∂T t,t+h (E), so that it corresponds to an implicit time-discretization of [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]. Observe also that this approximation is mono-

tone: indeed if E ⊆ E ′ then d E ≥ d E ′
, which yields w ≥ w ′ , w and w ′ being the solutions of (3) for the distance functions d E and d E ′ respectively. We deduce that

{w < 0} ⊆ {w ′ < 0}, that is, T t,s (E) ⊆ T t,s (E ′ ).
We will soon show (Theorem 3.3) that this scheme is also consistent, in some sense, with the evolution [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]. Before this, let us prove that it is independent on Ω, in the sense that when ∂E ⊂ Ω, then for st is small enough the set T t,s (E) is also the zero sublevel-set of any function w ′ solving (3) in any larger open set Ω ′ ⊇ Ω. This justifies why we may ignore the dependency on Ω in our notation.

Here and in the rest of the paper we shall assume that G is defined in the whole space:

G ∈ C 0 ([0, +∞); L ∞ (R N )).
Proposition 3.1. For any δ > 0 and T > 0, there exists

h 0 > 0 such that if E is a closed set with compact boundary ∂E ⊂ Ω, such that dist φ (∂Ω, ∂E) ≥ δ, then when h ≤ h 0 , for any t ≤ T , the set T t,t+h (E) is the same if computed in Ω or in any larger open set Ω ′ ⊇ Ω.
Before proving this proposition, we show a result that allows us to control in some uniform way the speed at which an initial Wulff shape {φ(xx 0 ) ≤ ρ} decreases in an iteration of the algorithm. The convexity of Ω is needed in the proof of this result.

Lemma 3.2. Let x 0 ∈ Ω and ρ > 0, and let t ≥ 0. Let w solve

min w∈L 2 (Ω) Ω φ • (Dw) + 1 2h Ω (w(x)-(φ(x-x 0 )-ρ)-G(x, t+h)+G(x, t)) 2 dx . (4) 
Then

w(x) ≤      φ(x -x 0 ) + h N -1 φ(x -x 0 ) + ∆ h (t) -ρ if φ(x -x 0 ) ≥ h(N + 1) √ h 2N √ N + 1 + ∆ h (t) -ρ otherwise, (5) 
where

∆ h (t) := G(•, t + h) -G(•, t) L ∞ (Ω) .
Proof. The Euler-Lagrange equation for (4) can be written as follows: there exists

a field z ∈ L ∞ (Ω; R N ), with z ∈ ∂φ • (∇w) a.e. and z • ν Ω = 0 on ∂Ω, such that w(x) -φ(x -x 0 ) + ρ -G(x, t + h) + G(x, t) -h div z(x) = 0 , (6) 
see for instance [START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF][START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF].

Let w denote the function given in the right-hand side of equation ( 5). Let z be the field given by

z(x) =          x -x 0 φ(x -x 0 ) if φ(x -x 0 ) ≥ h(N + 1) 1 -φ(x-x0) √ h(N +1) -1 2 x -x 0 φ(x -x 0 )
otherwise.

One checks, as in [11, App. B], that z ∈ ∂φ • (∇w(x)) a.e., and

w(x) -φ(x -x 0 ) + ρ h -div z(x) = ∆ h (t) h a.e. in Ω. Moreover, if x ∈ ∂Ω, z(x) • ν Ω (x) has the sign of (x -x 0 ) • ν Ω (x), which
is nonnegative since Ω is convex. By definition of ∆ h (t), we deduce that w is a supersolution for [START_REF] Bellettini | Comparison results between minimal barriers and viscosity solutions for geometric evolutions[END_REF]. It follows that w ≥ w a.e. in Ω: indeed, we have

Ω [(w -w) + ] 2 = {w>w} (w -w)(div z -div z) = ∂Ω∩{w>w} (w -w)(z -z) • ν Ω - {w>w} (∇w -∇w) • (z -z) ≤ - ∂Ω∩{w>w} (w -w)z • ν Ω ≤ 0 ,
which shows the inequality.

Proof of Proposition 3.1. We assume E ⊂ Ω, the proof being identical in the other case

R N \ E ⊂ Ω. Let w solve min w∈L 2 (Ω) Ω φ • (Dw) + 1 2h Ω w(x) -d E (x) -G(x, t + h) + G(x, t) 2 dx , and let x ∈ Ω with d E (x) ≥ δ/2. One has d E ≥ δ/2 -φ(• -x) in Ω. Invoking Lemma 3.2, we deduce that w(x) ≥ δ/2 -∆ h (t) -2N √ h/ √ N + 1. Hence if h 0 ≤ 1 is such that ω G,T +1 (h 0 ) + 2N √ h 0 / √ N + 1 ≤ δ/4, we find that when h ≤ h 0 we have w(x) ≥ δ/4. Let now Ω ′ ⊇ Ω. If h ≤ h 0 , we have in particular that d E (x) + G(x, t + h) - G(x, t) ≥ δ/4 for any x ∈ Ω ′ \ Ω, t ≤ T .
We can hence reproduce the proof of Corollary A.2 in [START_REF] Chambolle | An algorithm for mean curvature motion[END_REF], that shows that if w ′ is the solution of the same problem as w, but in Ω ′ instead of Ω, then w ′ ∧ (δ/4) is the function equal to w ∧ (δ/4) in Ω and to δ/4 in Ω ′ \ Ω. We deduce {w < 0} = {w ′ < 0}. Observe that in this proof, the larger domain Ω ′ does not need to be convex.

The previous proposition allows to define in a unique and intrinsic way the evolution T t,t+h (E) in R N for any t ≥ 0 and h > 0, of a set E with compact boundary ∂E ⋐ R N , by considering the corresponding set computed in a ball with radius large enough. Therefore, from now on we shall assume ∂E ⋐ R N and we shall omit the dependence on Ω in the construction of the limit flow. We now prove our main consistency result. [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]. Then there exists h 0 such that for any h < h 0 and any t with We first observe that there exists ε > 0 such that C := {(x, t) : 

Theorem 3.3. Let E(t), t ∈ [t 0 , t 1 ] be a superflow of
t 0 ≤ t < t+h ≤ t 1 , T t,t+h (E(t)) ⊇ E(t+h). Respectively, if E(t) is a subflow of (1), then T t,t+h (E(t)) ⊆ E(t + h) for h small enough. Proof. Let A ⊂ R N
t 0 ≤ t ≤ t 1 , |d(x, t)| ≤ ε} ⊂ A × [t 0 , t 1 ]. Since d(•, t) is uniformly bounded in C 2 (A),
∈ B = {|d(•, t)| < ε}, v(x) := ψ(d(x, t + h)). Then, for x ∈ B, from (2) it follows v(x) -d E(t) (x) -G(x, t + h) + G(x, t) h ≥ d(x, t + h) -d(x, t) -G(x, t + h) + G(x, t) h ≥ 1 h t+h t (div ∇φ • (∇d)(x, s)) ds + δ .
Let now ω be a modulus of continuity for div ∇φ • (∇d) in C: we find

v(x) -d E(t) (x) -G(x, t + h) + G(x, t) h ≥ div ∇φ • (∇d)(x, t + h) + δ -ω(h).
Observe that for any

x ∈ B it holds ∇v(x) = ψ ′ (d(x, t + h))∇d(x, t + h), so that (recall that ∇φ • 0-homogeneous), ∇φ • (∇v(x)) = ∇φ • (∇d(x, t + h)) hence div ∇φ • (∇d)(x, t + h) = div ∇φ • (∇v)(x). Therefore, if h is small enough so that ω(h) ≤ δ, we get v(x) -d E(t) (x) -G(x, t + h) + G(x, t) h ≥ div ∇φ • (∇v)(x).
Let w solve [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], with E = E(t) and s = t + h. We will show that we may choose ψ in order to have v ≥ w on ∂B, so that v is a supersolution for the problem min

B φ • (Du) + 1 2h B (u(x) -d E(t) (x) -G(x, t + h) + G(x, t)) 2 dx : u = w on ∂B (which is solved by w). We will deduce that v ≥ w in B, hence {w < 0} ⊇ {v < 0} = {d(•, t + h) < 0}, that is, T t,t+h (E(t)) ⊇ E(t + h).
First of all, d is uniformly continuous in time, so that if h is small enough, one

has d(x, t + h) ≥ 3ε/4 if d(x, t) = ε. If M > diam Ω, then M ≥ w in Ω. We may choose a function ψ with ψ(3ε/4) ≥ M , so that v(x) ≥ M ≥ w(x) if d(x, t) = ε.
On the other hand, since E(t) satisfies the interior εW φ -condition, one deduces

from Lemma 3.2 that w(x) ≤ 2N √ h/ √ N + 1 + ∆ h (t) -ε whenever d(x, t) = -ε.
We observe that ∆ h (t) → 0 as h → 0 uniformly in [t 0 , t 1 ]. Hence if h is small enough, we find that w(x) ≤ -3ε/4. We can choose ψ such that ψ(s) ≥ -3ε/4 for any s, so that v(x) ≥ w(x) if d(x, t) = -ε. We conclude that v ≥ w on ∂B. Hence v is a supersolution for (3), which implies T t,t+h (E(t)) ⊇ E(t + h).

If E(t) is a subflow, we can reproduce the same proof to show that T t,t+h (E(t)) ⊆

E(t + h).

We deduce the following comparison result for sub/superflows. remain identical (in particular, the consistency still holds). Only the comparison results in section 4.2 are not completely clear, since they rely on comparisons of the true distance functions. However, it is reasonable to believe that in the limit h → 0 also these results hold.

(t k ) ⊆ T t k-1 ,t k (E 1 (t k-1 )) ⊆ T t k-1 ,t k (E 2 (t k-1 )) ⊆ E 2 (t k ) for any 1 ≤ k ≤ n,

Convergence of the algorithm

In this section, we study the limit of the iterates of our variational algorithm, as the time-step goes to zero. First (Section 4.1), under some local boudedness assumption on the forcing term, we find a limit which has some continuity properties (Prop. 4.3 and 4.4), and we show that it is consistent with other notions of weak solutions (Cor. 4.6, and with further assumptions on the forcing term, Prop. 4.8 and 4.9).

Then in 4.2, assuming some spatial regularity [START_REF] Evans | Motion of level sets by mean curvature[END_REF] on the forcing term, we find a comparison principle for our limits (however, with some limitation), and it allows to build level-sets solutions starting from an arbitrary bounded uniformly continuous function (Section 4.3).

The discrete flow and its limit

Given E ⊂ R N , closed with compact boundary, and h > 0, we define the "tube"

E h ⊂ R N × [0, +∞) as follows E h (t) := T [ t h ]h-h,[ t h ]h • • • T 2h,3h T h,2h T 0,h (E) , (7) 
where [x] denotes the integer part of x. We then define E h := t≥0 E h (t) × {t}.

There exists a sequence (h n ) n≥1 such that both E hn and R N × [0, +∞) \ E hn = c E hn converge in the Hausdorff distance (locally in time) to E * and c E * respectively. Such convergence is equivalent to the locally uniform convergence, in R N × [0, +∞), of the distance functions dist((x, t), E hn ) and dist((x, t), c E hn ) to the distance functions dist((x, t), E * ) and dist((x, t), c E * ), see [START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF]App. A]. In particular, for any (x, t) ∈ E * (resp., c E * ), there exists (x n , t n ) ∈ E hn (resp., c E hn ) such that (x n , t n ) → (x, t), and if (x n , t n ) ∈ E hn (resp., c E hn ) and converge to some point (x, t) ∈ Ω × [0, +∞), then (x, t) ∈ E * (resp., c E * ). In the sequel we denote by (h) h>0 the sequence (h n ) n≥1 .

Clearly, E * is open while E * is closed, and E * ⊂ E * . For any t ≥ 0, we denote by E * (t) (resp. E * (t)) the section {x : (x, t) ∈ E * } (resp. {x : (x, t) ∈ E * }).

For any t ≥ 0, we let Γ(t) = E * (t) \ E * (t), which in some sense is our generalized evolution starting from ∂E.

From the definition of E * , E * it follows 

E * (0) ⊆ int(E), E ⊆ E * (0) , (8) 
On the other hand, it is not clear if we also have E * ∈ B -and E * ∈ B + .

Let us now show that E * (0) = int(E) and E * (0) = E, so that we can substitute E * (0) and E * (0) with E in [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF]. In order to do so, we further require that the function G satisfies the following regularity assumption: for any T > 0 there exists

a constant C(T ) such that G(x, s) -G(y, s) -G(x, t) + G(y, t) s -t ≤ C(T ) , (10) 
for any s, t ≤ T . Note that this is equivalent to require that G can be writ-

ten as the sum G(x, t) = G 1 (t) + G 2 (x, t), with G 1 ∈ C 0 ([0, +∞)) and G 2 ∈ Lip loc ([0, +∞); L ∞ (R N )).
We first construct explicit super/subflows starting from a Wulff shape W φ (x 0 , r) of radius r > 0 (or its complement), at time t ≥ 0. More precisely, we construct superflows W + x0,t,r (s), with s ∈ [t, +∞), starting from W φ (x 0 , r) at time t, which are smooth on [t, t+τ ] and vanish after the time t+τ , where the duration τ depends only on r, and such that for all h > 0, s ≥ t, we have T s,s+h (W + x0,t,r (s)) ⊇ W + x0,t,r (s + h).

Lemma 4.2. Let x 0 ∈ R N and r > 0. We consider the functions

d ± (x, s) := ± φ(x -x 0 ) -r + s -t 2τ r + G(x 0 , s) -G(x 0 , t) , (11) 
for (x, s) ∈ R n × [t, t + τ ],
where τ is such that

ω G,t+τ (τ ) ≤ r 4 , (12) 
τ ≤ r 2 2(C(t + τ ) + 4(N -1)) ∧ r 2 16(N + 1) , ( 13 
)
where ω G,t+τ is as before a modulus of continuity of G on [0, t + τ ] and C(•) is the constant appearing in [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF]. Notice that, letting τ (r) be the maximal time τ satisfying ( 12) and ( 13) for a given r > 0, we have τ (r) > 0 and lim r→∞ τ (r) = +∞ .

Let W + x0,t,
Notice also that the condition ω G,t+τ (τ ) ≤ r 4 ensures the inclusion W φ (x 0 , r/4) ⊆ W + x0,t,r (s) for s ∈ [t, t + τ ], hence in particular the set W + x0,t,r (s) is nonempty. In fact, one could check that W + x0,t,r is a superflow (in the sense of Definition 2.1) on [t, t+τ ], while W - x0,t,r is a subflow. Then, the thesis would follow from Theorem 3.3, at least for h small enough. The statement of Lemma 4.2 is slightly more precise, as it holds without any restriction on h so that the superflow property which is shown is, in particular, uniform in x 0 . Proof. Let s ∈ [t, t + τ ] and h > 0. If s + h > t + τ , W + x0,t,r (s) = ∅ so that the statement is obvious, hence we may assume s + h ≤ t + τ . For any x ∈ R N , by [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF] we have

d + (x, s) + G(x, s + h) -G(x, s) = φ(x -x 0 ) -r + G(x 0 , s) -G(x 0 , t) + G(x, s + h) -G(x, s) + s -t 2τ r ≤ φ(x -x 0 ) -r + G(x 0 , s + h) -G(x 0 , t) + s -t 2τ r + C(t + τ )h .
Let now Ω be an open and bounded subset of R N which is big enough to guarantee that the set T s,s+h (W + x0,t,r (s)) does not depend on Ω (Proposition 3.1). Hence the solution w of (3), with E replaced by W + x0,t,r (s) and (t, s) replaced by (s, s + h), is less than the solution of min

v∈BV (Ω) Ω φ • (Dv) + 1 2h Ω v -φ(x -x 0 ) + r -G(x 0 , s + h) + G(x 0 , t) - s -t 2τ r -C(t + τ )h 2 dx,
which, in turn, is less (as shown in the proof of Lemma 3.2) than the function

                         φ(x -x 0 ) + h N -1 φ(x -x 0 ) -r + G(x 0 , s + h) -G(x 0 , t) + s -t 2τ r + C(t + τ )h if φ(x -x 0 ) ≥ h(N + 1), √ h 2N √ N + 1 -r + G(x 0 , s + h) -G(x 0 , t) + s -t 2τ r + C(t + τ )h otherwise.
Hence, we see that

w(x) ≤ d + (x, s + h) + h N -1 φ(x -x 0 ) -h r 2τ + C(t + τ )h when φ(x -x 0 ) ≥ h(N + 1)
. Now, since τ ≤ r 2 /(16(N + 1)) and h ≤ τ , we get r/4 ≥ h(N + 1) so that we can replace the last condition with the stronger condition φ(xx 0 ) ≥ r/4. On the other hand, if both φ(xx 0 ) ≥ r/4 and

τ ≤ r 2 /(2(C(t + τ ) + 4(N -1))), then r 2τ ≥ C(t + τ ) + 4(N -1) r ≥ C(t + τ ) + N -1 φ(x -x 0 ) , so that w(x) ≤ d + (x, s + h). This shows that T s,s+h (W + x0,t,r (s)) ⊇ W + x0,t,r (s + h).
The proof of the similar thesis for W - x0,t,r is analogous.

By the previous lemma, if E h (t) ⊇ W φ (x 0 , r), then E h (t + nh) ⊇ W + x0,t,r (t + nh) for any n ≥ 1 and, in particular, E h (t + nh) ⊇ W φ (x 0 , r/4) as long as nh ≤ τ (r).

In other words, for any r > 0, then nh ≤ τ (r) yields

E h (t + nh) ⊇ {x : d E h (t) (x) ≤ -r}.
This shows that the (discrete) evolution will not vanish "suddenly", in the sense that any subset in the interior of E h (t) remains in the interior of E h (s) for s > t sufficiently close to t.

We can easily deduce the same "semicontinuity" property for E * : indeed, when

d E * (t) (x) = -r, then, for any r ′ < r, W φ (x, r ′ ) ⊂ E h (t) as soon as h is small enough, so that W φ (x, r ′ /4) ⊂ E h (t + [τ /h]h) for all τ < τ (r ′ ).
Letting first h → 0 and then r ′ → r, we find that, if τ < τ (r), it follows

E * (t + τ ) ⊇ {x : d E * (t) (x) ≤ -r}. ( 14 
)
In the same way we obtain

E * (t + τ ) ⊆ {x : d E * (t) (x) < r}. ( 15 
)
Moreover, one can easily verify that the same properties hold at t = 0 with E * (t)

replaced with E and E * (t) replaced with int(E), where E is the initial set. From [START_REF] Chen | Generation and propagation of interfaces for reaction-diffusion equations[END_REF] and ( 15) we also get

Γ(t + τ ) ⊆ {dist φ (•, Γ(t)) < r}. ( 16 
)
As a consequence, we obtain the following semicontinuity property for the tubes

E * , E * .
Proposition 4.3. Assume that G satisfies [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF]. Let E be a closed subset of R N with compact boundary. Let O, F be an open and a closed subset of R N respectively.

Let t ≥ 0 and let (τ n ) n≥0 be a sequence of nonnegative numbers going to 0. Then

• If c E * (t + τ n ) → c O in the Hausdorff sense, E * (t) ⊆ O , • If E * (t + τ n ) → F in the Hausdorff sense, F ⊆ E * (t) ,
In particular, we deduce that any Hausdorff limit of a sequence Γ(t+τ n ) is contained in Γ(t). Moreover, if t = 0, we can replace E * (t) with int(E) in the first statement and E * (t) with E in the second. In particular, choosing τ n ≡ 0, we get

int(E) ⊆ E * (0) ⊆ E * (0) ⊆ E ,
which implies, recalling [START_REF] Bellettini | Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature[END_REF], that

E * (0) = int(E) and E * (0) = E . (17) 
Notice that [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF] shows that Γ(0) = ∂E.

Since O ⊂ F in the above proposition, we see also that if E * (t) = E * (t), then

E * (t + τ ) → E * (t) in the Hausdorff sense as τ → 0, whereas if E * (t) = int(E * (t)),
then c E * (t+τ ) → c E * (t), and if both are true, then Γ(t+τ ) = E * (t+τ )\E * (t+τ ) → ∂E * (t) as τ → 0. To show this one just needs to show that for any x ∈ ∂E * (t), there exists x τ ∈ Γ(t + τ ) that converge to x as τ → 0. We know that there exists y τ ∈ E * (t+τ ) and z τ ∈ E * (t+τ ) such that both y τ and z τ converge to x. Then, the segment [y τ , z τ ] must intersect the set Γ(t + τ ) and any point x τ in this intersection will satisfy the desired property.

Notice also that, if E is such that E = int(E), we deduce that Γ(t) = E * (t)\E * (t) converges to ∂E as t → 0, in the Hausdorff sense.

The left continuity of the tubes E * , E * is given by the following proposition.

Proposition 4.4. Assume that G satisfies [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF]. Let E be a closed subset of R N with compact boundary, and let t > 0.

Then c E * (t -τ ) → c E * (t) in the Hausdorff sense as τ → 0, τ ≥ 0, while E * (t -τ ) → E * (t). Moreover, Γ(t -τ ) → Γ(t).
Proof. We sketch the proof of this proposition. As for the previous proposition, one will deduce from (14 In the same way, [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] 

) that if c E * (t -τ n ) → c O
yields that if E * (t -τ n ) → F in the Hausdorff sense, then E * (t) ⊆ F .
From the closedness of F * we conclude in the same way that F = E * (t).

The last assertion follows from ( 16): first of all, any Hausdorff limit

F of a subsequence Γ(t -τ n ) = E * (t -τ n ) \ E * (t -τ n ) is inside Γ(t) = E * (t) \ E * (t), by the previous results. Now, since dist φ (•, Γ(t -τ n )) converges uniformly to dist φ (•, F )
as n → ∞, Γ(t) ⊆ {dist φ (•, F ) ≤ r} for any r > 0, hence it lies in F . Thus

F = Γ(t).
Remark 4.5. Notice that in general we cannot expect the maps t → E * (t) and

t → E * (t) to be continuous in the Hausdorff distance: indeed, this would prevent small disconnected parts from disappearing in finite time, a phenomenon which is known to happen even when G ≡ 0. On the other hand, these maps are likely to be continuous in the L 1 -topology, under suitable assumptions on G (when

G ≡ 0 it is proved in [1, Theorem 4.4]).
From Propositions 4.1 and 4.3, and in particular ( 9) and ( 17), we get the following corollary.

Corollary 4.6. If G satisfies condition [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF], we have

Γ(t) ⊆ N * (E, 0)(t) \ M * (E, 0)(t).
In particular, as long as N * (E, 0)(t) \ M * (E, 0)(t) has no interior ( nonfattening condition), then the motions E * (t) and E * (t) are uniquely defined and do not depend on the sequence along which the limits are obtained.

Remark 4.7. Notice that, as long as the set E has compact boundary, all the resuls of this section can be easily extended to functions G which are only locally bounded in x, i.e. G(

x, t) = G 1 (t) + G 2 (x, t), with G 1 ∈ C 0 ([0, +∞)) and G 2 ∈ Lip loc ([0, +∞); L ∞ loc (R N )).
Proposition 4.8. If G(x, t) = t 0 g(x, s) ds, with g continuous, then Γ(t) is contained in the zero level-set of the corresponding viscosity solution.

Proof. It follows immediately from Theorem 2.4 and Corollary 4.6.

From Corollary 4.6 and from [17, Section 3] we also have the following consistency result in the case of an x-independent forcing term.

Proposition 4.9. Let G(x, t) = G(t) ∈ C 0 ([0, +∞)) and let φ(x) = |x| (i.e.
isotropic mean curvature flow). Then Γ(t) is contained in the minimal barrier solution defined in [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF]. In particular, if ∂E is of class C 2,α , E * (t) = E * (t) and Γ(t) = ∂E * (t) coincides with the unique (local in time) solution of (1) given in [START_REF] Dirr | A stochastic selection principle in case of fattening for curvature flow[END_REF].

Remark 4.10. As already pointed out in the Introduction, the viscosity theory can be applied under more general assumptions on G than what is required in Proposition 4.8 (see [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF]). However, it is still not clear which is the relation between the limit set Γ(t) and the zero level-set of such viscosity solutions, except for the particular case of an x-independent forcing term, where the equality holds for small times as a consequence of Proposition 4.9 (if ∂E is regular enough).

An inclusion principle

Let us now consider the case where the driving term is the "time-derivative" of a function G(x, t) that satisfies

G(x, s) -G(y, s) -G(x, t) + G(y, t) s -t ≤ C(T )|x -y|. ( 18 
)
This condition is stronger than condition [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF] (see also Remark 4.7) and is for instance true whenever G(x, t) = G 1 (t) + G 2 (x, t), with G 1 ∈ C 0 ([0, +∞)) and

G 2 ∈ C 1 ([0, +∞); Lip(R N )).
In particular, all the results of Section 4.1 still hold under assumption [START_REF] Evans | Motion of level sets by mean curvature[END_REF].

Given a closed set E ⊂ R N with nonempty compact boundary ∂E, we define the maximal existence time T * E ∈ [0, +∞] for the flow E * as the supremum of all times t such that E * (t) = ∅ and E * (t) = R N . The fact that T * E > 0 is ensured by Proposition 4.3, whenever int(E) = ∅.

Consider now two closed sets E 1 and E 2 , with nonempty compact boundary, and assume E 1 ⊂ E 2 and D := dist φ (∂E 1 , ∂E 2 ) > 0. Notice that, if G depends only on time, then for each z such that φ(z) ≤ D, we have z + E 1 ⊂ E 2 , so that T 0,h (z + E 1 ) ⊂ T 0,h (E 2 ) for any h > 0. Since G does not depend on x,

we get T 0,h (z + E 1 ) = z + T 0,h (E 1 ). It follows W φ (0, D) + T 0,h (E 1 ) ⊂ T 0,h (E 2 ),
which implies dist φ (∂T 0,h (E 1 ), ∂T 0,h (E 2 )) ≥ D. By induction, we deduce that dist φ (∂E 1 h (t), ∂E 2 h (t)) ≥ D for any t ≥ 0 (where we set the distance equal to +∞ if one of the two sets disappears).

For a general G the estimate is slightly trickier, even if it follows the same idea.

Assume T * = min{T * E 1 , T * E 2 } > 0 and let T < T * . By Proposition 3.1, we can find a "large" bounded open set Ω ⊂ R N such that the sets E 1 h (t) and E 2 h (t) defined in [START_REF] Bellettini | Some aspects of De Giorgi's barriers for geometric evolutions[END_REF] do not depend on Ω, for t ∈ [0, T ] and h small enough. In particular, we can assume that ∂E 1 h (t) and ∂E 2 h (t) remain at a positive distance from ∂Ω for any t ∈ [0, T ]. Let w 1 , w 2 be the solutions of the variational problem (3), for t = 0 and s = h, with d E replaced by d E 1 , d E 2 respectively. Notice that, for z ∈ R N , the set z + T 0,h (E 1 ) = z + {w 1 < 0} coincides with the set {x ∈ z + Ω : w 1 (xz) < 0}, and the function w1 (x) = w 1 (xz), defined in z + Ω, is the solution of min

w∈L 2 (z+Ω) z+Ω φ • (Dw) + 1 2h z+Ω (w(x)-d E 1 (x-z)-G(x-z, h)+G(x-z, 0)) 2 dx .
Possibly enlarging the set Ω, we can assume that both functions w 2 and w1 are solutions of their respective variational problems in the same domain (for instance,

Ω ∪ (z + Ω)). Then, since d E 1 (x -z) ≥ d E 1 (x) -φ(z) ≥ d E 2 (x) + D -φ(z) and, using (18), -G(x -z, h) + G(x -z, 0) ≥ -G(x, h) + G(x, 0) -C(T )|z|h, one finds that w1 ≥ w 2 + D -φ(z) -C(T )|z|h. In particular, if φ(z) ≤ D/(1 + hC ′ (T ))
with C ′ (T ) = C(T ) sup z =0 |z|/φ(z), we get { w1 ≤ 0} ⊂ {w 2 ≤ 0}, which in turn implies dist φ (∂T 0,h (E 1 ), ∂T 0,h (E 2 )) ≥ D/(1 + hC ′ (T )). By an induction argument,

we deduce that dist φ (∂E 1 h (t), ∂E 2 h (t)) ≥ D(1 + hC ′ (T )) -[t/h] for any t ∈ [0, T -h]
and h > 0 small enough. Observe that, as h → 0, we have D(1 + hC ′ (T )) -[t/h] → De -C ′ (T )t . We will show that this estimate also holds in the limit, for the motions (E 1 ) * and (E 2 ) * , obtained along the same subsequence (h k ) k≥1 (which we will still denote by (h) h>0 ).

Fix δ < De -C ′ (T )T . Then, if h is small enough, we have δ ≤ dist φ (E 1 h (t), Ω \ E 2 h (t)) for any t ∈ [0, T ). Given a fixed t < T , choose a subsequence (h k ) such that both Hausdorff limits of E 1 h k (t) and Ω \ E 2 h k (t) exist in Ω, and denote by K and L, respectively, these limits. Since dist φ (E 1 h (t), Ω \ E 2 h (t)) ≥ δ, in the limit we find dist φ (K, L) ≥ δ. We also have K ⊆ (E 1 ) * (t) and L ⊆ Ω \ (E 2 ) * (t). Define now K δ/2 = K + W φ (0, δ/2), which has its boundary between ∂K and ∂L and lies at distance at least δ/2 from both boundaries. Let δ ′ < δ and set

δ ′′ = (δ+δ ′ )/2. If x ∈ ∂K δ/2 , then W φ (x, δ ′′ /2) ⋐ Ω \ (K ∪ L) so that if h k is small enough, W φ (x, δ ′′ /2) ⊂ E 2 h k (t) and W φ (x, δ ′′ /2) ∩ E 1 h k (t) = ∅.
By Lemma 4.2 there exists τ > 0, depending only on δ ′′ and δ

′ < δ ′′ , such that W φ (x, δ ′ /2) ⊂ E 2 h k (s) and W φ (x, δ ′ /2)∩E 1 h k (s) = ∅ for all t ≤ s < t + τ . In the limit, this implies that for t ≤ s < t + τ , W φ (x, δ ′ /2) ⊂ (E 2 ) * (s) and (E 1 ) * (s)∩W φ (x, δ ′ /2) = ∅. Since x is an arbitrary point of ∂K δ/2 , this implies that both dist φ (∂K δ/2 , ∂(E 1 ) * (s)) ≥ δ ′ 2 and dist φ (∂K δ/2 , ∂(E 2 ) * (s)) ≥ δ ′ 2 . We deduce that for any s in (t, t + τ ), dist φ (∂(E 1 ) * (s), ∂(E 2 ) * (s)) ≥ δ ′ . Since t
is arbitrary in [0, T ) and τ does not depend on t, we deduce that in fact for any

t ∈ [0, T ), dist φ (∂(E 1 ) * (t), ∂(E 2 ) * (t)) ≥ δ ′ .
(The case t = 0 follows directly from Proposition 4.3.) We may send δ ′ → δ to see that the inequality holds with δ instead od δ ′ . In fact, we can deduce from the previous argument that the distance between the two sets decreases at most like De -C ′ (T )t , t ∈ [0, T ).

We have obtained the following result. 

with t < t ′ < T , dist φ (∂(E 1 ) * (t), ∂(E 2 ) * (t)) ≥ dist φ (∂E 1 , ∂E 2 )e -C ′ (t ′ )t > 0 ( 19 
)
where C ′ is proportional to the constant in [START_REF] Evans | Motion of level sets by mean curvature[END_REF].

Remark 4.12. Notice that the inclusions (E hj (respectively) along different subsequences. This would be an important result, yielding for instance the uniqueness of the level-set solution u(x, t), defined in Section 4.3.

The level-set approach

Consider now a function u 0 ∈ BU C(R N ), such that for each t ∈ R, the level-set ∂{u 0 > t} is bounded. For all q ∈ Q consider the level-sets E q := {u 0 ≥ q} and let E q h ⊂ R N × [0, +∞) be the discrete evolutions of E q . Then, a diagonal argument shows that, along a subsequence (h k ) k≥1 , we have E q h k → (E q ) * and c E q h k → c (E q ) * locally in the Hausdorff sense, i.e. the distance functions dist(•,

E q h k ) and dist(•, R N ×[0, +∞)\E q h k ) converge to dist(•, (E q ) * ) and dist(•, R N ×[0, +∞)\(E q ) * ) respectively, uniformly in R N × [0, T ] for any T > 0.
Observe that (Remark 4.12) for each q, r ∈ Q with q ≥ r, we have (E q ) * (t) ⊆ (E r ) * (t) and (E q ) * (t) ⊆ (E r ) * (t), for any t ≥ 0. Hence we can define two functions u * , u * : R N × 0, +∞) → R, by letting

u * (x, t) := sup{q ∈ Q : x ∈ (E q ) * (t)} , u * (x, t) := sup{q ∈ Q : x ∈ (E q ) * (t)}.
By Proposition 4.11, we know that (E q ) * (t) ⊂ (E r ) * (t) for any t ≥ 0 whenever q > r, which implies u * (x, t) = u * (x, t) for any (x, t) ∈ R N × [0, +∞). Indeed, if q > u * (x, t), then x ∈ (E q ) * (t), so that it is neither in (E q ) * (t), hence u * (x, t) ≤ u * (x, t);

on the other hand, if q > u * (x, t), then if q ′ ∈ (u * (x, t), q) ∩ Q, x ∈ (E q ′ ) * (t) ⊃ (E q ) * (t), hence x ∈ (E q ) * (t): we deduce u * (x, t) ≤ u * (x, t).
We simply denote by u(x, t) this common value.

Let us observe that, for each t ≥ 0, from Proposition 4.11 (more exactly from the estimate ( 19)) it follows that u(•, t) is uniformly continuous on R N (with the same modulus of continuity as u 0 if C(T ) = 0 in [START_REF] Evans | Motion of level sets by mean curvature[END_REF]). It also follows easily from Propositions 4.3 and 4.4 that if (x n , t n ) → (x, t), then u(x n , t n ) → u(x, t): indeed, for instance, one sees that if u(x n , t n ) < q for n large enough, then x n ∈ (E q ) * (t n ), hence in the limit x ∈ (E q ) * (t) so that u(x, t) ≤ q. This means that the function u is globally continuous on R N × [0, +∞). In particular, we have the inclusions (E q ) * (t) ⊂ (E s ) * (t) for any t ≥ 0 whenever q > s, q, s ∈ R. We deduce easily that (letting now Γ s (t) := (E s ) * (t) \ (E s ) * (t)) and {u ≥ s} = (E s ) * . One can deduce that ∂E s h k converges to {u = s} in the local Hausdorff sense. For these values of s, the flow defined by our algorithm is a "true" evolution of hypersurfaces. Indeed, at any time t ≥ 0, we can show that {u(•, t) = s} has empty interior. Otherwise, there would exist W φ (x, ρ) ⊆ {u(•, t) = s}. In particular, if q > s > q ′ , q, q ′ ∈ Q, we would have W φ (x, ρ) ⊆ (E q ′ ) * (t) while W φ (x, ρ) ∩ (E q ) * (t) = ∅. By ( 14) and [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF], it would follow that, if t ≤ t ′ < t + τ t+1 (ρ/2), then W φ (x, ρ/2) ⊂ (E q ′ ) * (t) and W φ (x, ρ/2) ∩ (E q ) * (t) = ∅, which would imply that {u = s} has nonempty interior, leading to a contradiction. We can not prove in general the uniqueness of the flow (E s ) * , since it could depend on the subsequence (h k ) along which the first limits have been taken. If on the contrary s ∈ N , then a fattening of the corresponding level-set happens, and we can only deduce the inclusion [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]. As in the case of classical level-set solutions, we expect nonuniqueness of the limit flow in this situation (and in this situation only).

If G(x, t) = t 0 g(x, s) ds with g continuous, then (by Proposition 4.8), one sees that u is the unique viscosity solution [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] of

∂u ∂t = φ • (∇u) (div ∇φ • (∇u) + g) . (21) 
In particular, in this case, the limit u is the same along any subsequence. We can then deduce that ∂E s h (t) → {u(•, t) = s} as h → 0, for each level s ∈ N , or each time t before the moment the level s ∈ N fattens.

In case G is an arbirary driving term satisfying [START_REF] Evans | Motion of level sets by mean curvature[END_REF], we conjecture that our u is still the viscosity solution of

∂u ∂t = φ • (∇u) div ∇φ • (∇u) + ∂G ∂t (22) 
built by Lions and Souganidis [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF]. However, to show this, we would need either to show the stability of our construction under small perturbations of G (that would allow us to approximate G with smooth functions), or a comparison result like Theorem 2.4 between barriers and viscosity solutions (in the sense of [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF]) and then use Corollary 4.6.

Let us eventually make a few remarks. We first observe that our construction can still be performed if φ and φ • are nonsmooth: typically, in the crystalline case, where the Wulff shape {φ ≤ 1} is a polyhedron. In this case, our proof of consistency does not hold (neither is clear how to extend the definition of a sub/superflow). On the other hand, most of the results are still valid, including the comparison principle in Proposition 4.11, and the construction of the level-set function u starting from u 0 still makes sense.

We also mention that in the convex case, if G = G(t), by the same arguments as in [START_REF] Caselles | Anisotropic curvature-driven flow of convex sets[END_REF] we can show that the evolution (defined in R N ) remains convex for all time, including when the anisotropy is nonsmooth. We also expect that the results in [START_REF] Bellettini | Crystalline mean curvature flow of convex sets[END_REF] still hold with similar proofs, and that a unique "regular" evolution can be defined for small times as the unique limit of our algorithm, when the initial convex set satisfies an interior εW φ -condition. This would in turn yield the uniqueness of the level-set function defined above.

  be the open set associated to the superflow E(t) (cf. Definition 2.1) and let Ω be a bounded, convex open set with A ⋐ Ω.

which implies the thesis since t = t n . Remark 3 . 5 .

 35 It could be interesting, from a numerical analysis point of view, to modify slightly the algorithm presented in this paper by introducing a threshold S > 0 and replace in problem (3) the distance function d E with a truncated distance function (-S ∧ d E ) ∨ S. Almost all of the results presented in this paper would

  in the Hausdorff sense, along a subsequence τ n going to 0, then O ⊆ E * (t). On the other hand, since c E * is closed in Ω × [0, +∞), one must have c O ⊆ c E * (t). Thus O = E * (t) and the thesis follows.

t≥0Γ

  s (t) = (E s ) * \ (E s ) * ⊆ {(x, t) : u(x, t) = s} (20) Now, let N := {s ∈ R : |{(x, t) ∈ R N ×[0, +∞) : u(x, t) = s}| = 0}. The set N is at most countable. If s ∈ N , then[START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] is in fact an equality: one has {u > s} = (E s ) *

  Corollary 3.4. Assume that E 1 (t), E 2 (t) are respectively a superflow and a subflow of[START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] on [t 0 , t 1 ], such that E 1 (t 0 ) ⊆ E 2 (t 0 ). Then E 1 (t) ⊆ E 2 (t) for all t ∈ [t 0 , t 1 ].Proof. By the previous theorem, there exists h 0 such that T t,t+h (E 1 (t)) ⊇ E 1 (t + h) and T t,t+h (E 2 (t)) ⊆ E 2 (t + h) for any t ∈ [t 0 , t 1h], as soon as h ≤ h 0 . Hence, if t ∈ [t 0 , t 1 ], we just let n ≥ 1 be such that (tt 0 )/n = h ≤ h 0 . Then, letting t k = t 0 + kh, one can easily check by induction that E 1

  r (s) := {d + (•, s) ≤ 0} when s ∈ [t, t+τ ], and W + x0,t,r (s) := ∅ for s > t+ τ . Then, for any s ≥ t, h > 0, we have T s,s+h (W +

x0,t,r (s)) ⊇ W + x0,t,r (s + h). On the other hand, if W - x0,t,r (s) := {d -(•, s) ≤ 0} when s ∈ [t, t + τ ], and W - x0,t,r (s) := R N for s > t+τ , then, for any s ≥ t, h > 0, we have T s,s+h (W - x0,t,r (s)) ⊆ W - x0,t,r (s+h).

  Proposition 4.11. Let E 1 ⊂ E 2 ⊂ R N be two closed sets with nonempty compact boundary, and assume dist φ (∂E 1 , ∂E 2 ) > 0. Denote by E 1h and E 2 h , h > 0, the corresponding discrete evolutions in R N × [0, +∞). Let (h k ) be a subsequence such that E 1 h

k → (E 1 ) * , and c E 2 h k → c (E 2 ) * in the Hausdorff sense. Assume also that E 2 h k → (E 2 ) * .

Then, for any t ≥ 0 we have (E 1 ) * (t) ⊆ (E 2 ) * (t).

In particular, for any t ∈ [0, T ), with T := max{T * E 1 , T * E 2 }, we have, for any t ′

  (t) always hold (without any assumption on dist φ (∂E 1 , ∂E 2 )).

	Remark 4.13. We remark that we do not know if the thesis of Proposition 4.11
	still holds if (E 1 )

1 ) * (t) ⊆ (E 2 ) * (t) and (E 1 ) * (t) ⊆ (E 2 ) * * and (E 2 ) * are limits of E 1 h k and E 2