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Abstract 
 
Detecting the presence of non-stationarity events in a signal is a challenge that is still 
not taken up. The aim of this paper is to make a contribution to this key issue. We 
already proposed a non-stationarity detection defined in time-frequency domain in order 
to control the invariance of the time-frequency statistics. In this paper, in order to be not 
limited by the time and frequency resolution of a time-frequency approach, we propose 
another test in frequency domain. In frequency domain, the problem can be cast by 
taking advantage of the normalized-variance properties of a spectral estimator when 
analyzing non-stationary signals. This second test will confirm, invalidate or detect new 
frequency localizations of non-stationarities. Finally, the main contribution of the paper 
is to propose a stationary index defined so as to merge the information given by these 
two tests and to allow an alarm to be raised for a high level of non-stationarities. 
Applications on real-world signals show the pertinence of this new index. 
 
 
 
1.  Introduction 
 
When processing signals, knowing that the underlying physical phenomena are non-
stationary is of the first importance. Moreover, lots of processing methods rely on a 
stationarity assumption, which could be useful to test before any analysis. The aim of 
this paper is to propose a full methodology, for testing this stationarity assumption 
without any a priori hypothesis about the nature of the possibly non-stationarity events. 
In order to be of practical use, the methodology proposed will conclude with an index 
ranged between 0 and 100 so as to evaluate a level of non-stationarity. 
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In many applications, and above all in condition monitoring, Fourier analysis and 
spectrograms are standard and powerfull tools for studying time-varying signals. Great 
progress has been made in this area in order to improve resolution but this last point is 
not of importance when the issue is not to estimate and to detect. In addition, the main 
advantages of these classical transforms are their robustness and the fact that statistical 
properties are theoretically well known, which is of the first concern for this study. 
Finally, devising tests from these signal representations is motivated by the TetrAS 
project, in which signal-processing tools are developed around Fourier-based transforms 
(http://www.gipsa-lab.inpg.fr/index.php?id=304) and in which takes place this work. 
 
According to the definition of the stationarity of a process, a stationarity test should 
result in the control of its statistical properties versus time. Such an approach first 
requires a time-observation scale. The time-observation scale will be set by the time 
resolution of the time-frequency representation, which will infer the definition of the 
minimal size of the non-stationary event the test would be able to detect. This size 
becomes then an a priori assumption. Second, in order to control the process statistics, 
this approach needs a way of measuring and tracking either the probability law 
parameters, or the moment invariance. The tests proposed in this paper completes the 
one presented in a previous publication(1) and will be limited to the second order. Lastly, 
the methodology aims at estimating also both time and frequency locations of each 
nonstationary occurrence detected. Casting a test in a time-frequency domain plan is 
obviously well-fitted for solving this localization problem. 
 
Early papers on the subject (see (1) for the references) deal with optimal criterions, 
which rules out the time-frequency interest, deal with methods adapted to some 
particular event detection as certain transients, or need a preliminary training data set. 
More recently, a method based on surrogates, stationarized data get from the data itself 
in order to get rid of a well-defined structuration in time(2), do not seem to be well-
adapted to mixed signals. Its current implementation needs a number of choices, that the 
method proposed in this paper tries to avoid. Although the test gives also a final index, 
no time-frequency localizations are provided. 
 
This paper is organized as follows. Section 2 describes the framework of this study. In 
section 3, the test proposed in (1) is recalled whereas a new test is elaborated upon. In 
section 4 a classification based upon a signal non-stationarity level is proposed from an 
original index computed with the proposed tests. In all of the sections, the performance 
of the methodology is dicussed around a number of real-world signals. Finally, Section 
5 looks at the conclusions that can be drawn from the work. 
 
2.  Framework 
 
Let [ ]x n  be a discrete time signal of length N and frequency sampling Fs. The 

observation set [ ]k
x nL  is a subset of 2

R  so that 

 

[ ] ( ) [ ]{ }2, / , and for a givenk
x xn n k S n k k= ∈ ∃L R , (1) 
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with k  the frequency variable and [ ],xS n k  a time-frequency representation of [ ]x n . As 

such, [ ]k
x nL

 
includes a cross-section of [ ],xS n k at a constant frequency k. The time-

frequency estimator is either a spectrogram, 
 

[ ] [ ] [ ]
21

2 jk /
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with [ ]w m  a time window, D the window time-shift and K being the Fourier bin 

number, or a gliding correlogram evaluated from a biaised autocorrelation estimate, 
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Figure 1. Time signals and their spectrograms (with segment length equal to the 
close power of 2 of 2 % signal length, 50%overlapping, no zero padding and 
Hanning window), (from left to right) a magnetic Barkhausen noise, dolphin 

whistles, a boat passing and gearbox vibrations. 
 

Figure 1 shows time-frequency representations of four signals with segment length 
equal to the close power of 2 of 2 % signal length, 50% overlapping, no zero padding 
and Hanning window. The first one is a magnetic Barkhausen Noise (Fs=200 KHz over 
0.2 s) measured with a magnetoresistive magnetic field sensor in order to evaluate the 
microstructure and the stress behaviour of ferromagnetic steels (3), the second one is a 
bioacoustic signal (Fs=15 364 Hz over 17.64 s ) measured with an hydrophone in order 
to characterize dolphin whistles (4), the third one is an acoustic signal (Fs=5 KHz over 
20 s after a decimation by a factor 4) measured with an hydrophone during a boat 
passing, and the fourth one is a vibratory signal (Fs=6 365 KHz over 10.3 s) measured 
with an accelerometer on a test bench in order to identify vibrations induced by a 
gearbox. 
 

[ ]k
x nL  is then an horizontal line at frequency k in each spectrogram of Figure 1for n 

varying from 1 to P, the number of signal-windows. The union of sets [ ]k
x nL , with k 
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varying from 1 to K, contains all the time-frequency points of a spectrogram. The aim 
of the tests proposed is to extract from these sets a sub-set, which will contain all the 
points corresponding to non-stationary events. Proceeding with detection theory is then 
possible thanks to the use of Fourier-based transforms.  
 
3.  Two non-stationary detection tests 
 
The definition of a stationary process excuses for the nonexistence of an unique 
efficient test. An ergodic random process is completely stationary if its probability 
density function remains unaltered under a time shift. This definition is a severe 
requirement and should be relaxed. Many tests were derived according to the way you 
relax. In a previous paper of the authors (1), a time-frequency test was proposed. Being 
used in the final section, this test will be summed up in this section. Then, using the 
result of this time-frequency test, a second test based on the signal spectrum only will 
confirm, refute or eventually detect other types of non-stationarities. It will be the 
subject of the second sub-section. 
 
3.1 Time-frequency test 
As we did in (1), let us define two hypotheses: 
- H0 where the signal [ ]x n  is equal to [ ]b n , a stationary random process with zero 

mean, constant variance and time-frequency estimation [ ],bS n k , eventually added with 

a stationary deterministic signal [ ]d n  with time-frequency estimation [ ],dS n k ; and 

where [ ]
0

k
H nL  is defined as 

 

 [ ] ( ) [ ] [ ]( ){ }0 0 0, / , min for a given 
xH x xS Hk n k k p p et E S n k k= ∈ =

�
L L , (4) 

 
with [ ],xS n k  distributed as gamma ( )2, ,0Γ r α ,which defines 0p , the probability 

density function of [ ],xS n k  under this hypothesis. See (6) for further details about the 

chi-square approximation. 
- H1 where [ ]x n  is nonstationary and where [ ]

1

k
H nL  is by definition the complement 

of [ ]
0

k
H nL . 

 
The two parameters of the law 0p , parameter r, the equivalent degree of freedom, and 

parameterα  are defined as, 
 

 [ ]( )
[ ]( )( ) [ ]( )( )

[ ]( )( )

22

2

E , E , 2
Varn , =

r,

x x

x

x

S n k S n k
S n k

E S n k

−
=  and [ ]( ),bα E S k rν= , (5) 

 

with [ ]( )Varn ,xS n k  the normalized variance of the observation. The first moment 

about zero of [ ],bS n k , [ ]( ),bE S k ν , can be estimated from the average of the points 
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belonging to [ ]
0

k
H nL , which allow α  to be estimated as,  

 

 [ ] [ ]( ) [ ]
[ ] [ ]00

/ ,

1
ˆ ,

b H

b
n S n k kH

α k S n k r
card k ∈

= ∑
LL

, (6) 

 

[ ]α̂ k being an estimation of α  at frequency k . 

 
As a matter of fact, if a deterministic signal [ ]d n  is eventually present under H0, 

[ ],xS n k  is proportional to a noncentral chi-square variable, ( )2
''rχ δ , with the same 

proportionality parameter α , a degree of freedom 'r , and with noncentrality parameter 

[ ] [ ]' , ,d br S n k S n kδ = . In this case, the normalized variance, 

 

 [ ]( ) ( )
( )2

2 ' 4
Varn ,

'
x

r
S n k

r

δ
δ

+
=

+
. (7) 

 
depends on the method parameters and mostly on the deterministic signal, whether the 
estimator is either a spectrogram or a correlogram. Nevertheless, the normalized 
variance in (7) is always lower than the normalized variance in (5). So, if we use the 
gamma distribution of the only-noise case in a detection test instead of the non-central 
chi-square distribution, the detector will always work but the real Pfa will be lower.  
 
Afterwards, considering 0p  as equal to a gamma law as in (4), we can write at each 

frequency k the decision rule, 
 

 [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

1

1

0

1

,

,

ˆ,

k
x H

k
r H

H is true
S n k n

x Pfa Pfa

H is true
S n k n

S n k k k kη λ α

∈

∈

>
= ×

<

L

L

, (8) 

 
which allows making a decision between the two hypothesis H0 and H1. Knowing that a 
gamma variable is proportional to a chi-square one 2

rχ , a given probability of false 

alarm Pfa  has permitted the calculation of the detection threshold [ ]Pfa kη  after 

inverting the following integral, 
 

 
[ ]

( )
[ ] [ ]

2 2
1

r r

Pfa Pfa Pfak k k

s
Pfa g ds g u duα χ χ

η λ η αα

+∞ +∞

=

 = = 
 

∫ ∫ , (9) 

 
where ( )2

r
g uχ

 is the probability density function of a 2
r

χ . The threshold [ ]Pfa kλ  is 

equal to 1 minus the Pfath-quantile of a 2

r
χ  and depends on the given Pfa  only. The 
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partition of [ ]k
x nL  being unknown, an iterative algorithm is proposed to be able to apply 

this decision rule. See (1) for more details. 
 
The result of this test is represented as a time-frequency map. Each element of [ ]

1

k
H nL  is 

coded by the normalized value [ ] [ ] [ ]ˆ,r PfaS n k k kλ α , whose maximum value is 1, and 

all elements of [ ]
0

k
H nL  are coded by 0. In an alternative map, each element of [ ]

1

k
H nL  is 

classified according to the value of Pfa  that detects this element at the last iteration. 
Each class is defined as 
 

( ) [ ] [ ] [ ] [ ] [ ] [ ]1
1

1 ˆ ˆClass = , / ,c c

c c k I I

x H xPfa Pfa
k

Pfa Pfa Pfa S n k n k k S n k kλ α λ α+

+≤ < ∈ ≤ < 
 
 

∪L  

  (10) 
with cPfa  and 1cPfa +  successive values of cPfa  in the Pfa  set defined 

as{ }2 3 4 510 ,10 ,10 ,10− − − − , and which defines 5 classes. 

 
 

  
 

Figure 2. Results of the time-frequency test applied on spectrograms computed 
with (from left to right) the magnetic Barkhausen noise, the dolphin whistles, the 

boat passing and the gearbox vibrations. Horizontal axis is time in s whereas 
vertical axis is frequency in Hz.    

 
This time-frequency test was applied to signals of Figure 1with a false alarm probability 
equal to 10-4. Figure 2 shows the map defined by (10) for each signal. Figure 3 shows 
time projections, referred to as [ ]

1HP n , and frequency projections, referred to as [ ]
1HP k , 

defined as 
 

 

[ ] [ ]

[ ] [ ]( )
1 1

1 1

,

.

k
H H

k

k
H H

P n card n

P k card n

 =  
 

=

∪L

L

 (11) 

 
The transient structures of the Barkhausen noise are well detected whereas the 
stationary narrow-band frequencies present all over the time duration of the signal 
(close to 30 kHz and 50 kHz) are fortunately undetected. These frequencies may come 
from some external interferences of the measurement equipment. In this application, 
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this test has performed a source separation in the time-frequency domain. In the second 
signal, the non-stationary parts of the signal, the dolphin whistles are very well localised 
in the submarine noise. In the third signal, the signal is globally stationary apart a very 
localized frequency event corresponding to amplitude modulations in a band around 
1 450 Hz. This band is well marked in the frequency projection, see Figure 3. The last 
signal is totally stationary, except for one non-significant point. 
 

 

 
 
Figure 3. Time projection in s (up) and frequency projection in Hz (bottom) of the 
detection map get with the time-frequency test applied on the four studied signals, 
(from left to right) the magnetic Barkhausen noise, the dolphin whistles, the boat 

passing and the gearbox vibrations. 
 
 
3.2 Normalized variance test 
To round out the time-frequency test, a second test limited to second order also is 
designed in the frequency domain only. 
 
In the previous sub-section it was noticed that, first, the normalized variance of a 
spectrum for a noise-only signal is constant (see (5)), and second, this variance is lower 
when a deterministic signal being present (see (7)). Furthemore, if a signal contains a 
non-stationarity at a frequency, this variance increases and if the non-stationarity is 
high, the variance will exceed its variations due to its own variance. These properties 
are tolerant vis-à-vis the Gaussian noise assumption. A test based on a normalised 
variance could then be able to detect non-stationary events. 
 
The test proposed in this section aims at detecting the high variations of the normalized 
variance according to a stationary case. Based upon the previous time-frequency test 
and the definition of the normalised variance recalled in (5), the frequency test of this 
section is defined as 
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with [ ] [ ]ˆ ,p xk S p kγ =  the spectrum estimate over the pth signal window (see (2)), P the 

number of signal-windows in equation (2), and where [ ]ˆx kµ , 

 

 

[ ] [ ]( ) [ ]
[ ]00

1
ˆˆ

k
H

x pk
p nH

k k
card n

µ γ
∈

= ∑
LL

, (13) 

 
results of the previous test and is the mean value of [ ]

0

k
H nL

 
set. Indeed, the previous test 

provides the P independent estimations of the spectrum [ ]ˆ
p kγ  required in (12). 

Theoretically, [ ]ˆ Pvarn k  is then equal to a constant depending on the window shape and 

of the average number. [ ]ˆ
p kγ  is estimated with a Blackman window and without 

averaging due to the time-frequency estimator, then [ ]ˆ Pvarn k  in (12) is equal to 1 when 

using a spectrogram (from (2) and r=2 from (5)) or 0.49 when using a correlogram 
(from (3) and r=4.08 from (5)). 
 
The threshold ζ  should be defined from the standard deviation of [ ]ˆ Pvarn k  considered 

as a random process. As the derivation of the confident interval is a tricky task, a 
simulation procedure with 20 000 runs of a white Gaussian noise has determined the 
value of the threshold ζ  according to the false alarm probability Pfavarnorm and the 
signal-window number P. 
 
 

 
 

Figure 4. Simulation results of the normalised variance of a spectrum estimated by 
spectrograms (on the left) or gliding correlograms (on the right) versus the 

probability of false alarm Pfavarnorm  (vertical axis) and the threshold ζ  (horizontal 
axis) and the signal-window number P (number over the figure) 

 
 

Figure 4 shows the results for both the spectrogram and the gliding correlogram. Table 
1 makes use of the simulation results and suggests a final choice of the threshold ζ  for 
different ranges of the signal-window number P and for 4 values of the false alarm 
probability Pfavarnorm. It is important to notice that the value of P will lie in the range 
[30,150] due to the fact that, in the time-frequency test proposed, the length of the 
signal-window is fixed to the close power of 2 of 2 % signal length with 50% 



9 
 

overlapping. 
 

Table 1. Choice of the detection threshold in the normalized variance test 
according to the simulation process and for both the spectrogram and gliding 

correlogram. 
 

 Spectrogram Gliding correlogram 

P 

Pfavarnorm 

from20 
to 30 

from 30 
to 70 

from 70 
to 150 

from 150 
to 400 > 400 

from 20 
to 30 

from 30 
to 70 

from 70 
to 150 

from 150 
to 400 > 400 

10-5 5 3,7 2,5 2 1,6 2,4 1,7 1,3 1 0,8 

10-4 4 3 2,3 1,8 1,5 1,9 1,4 1,1 0,9 0,75 

10-3 3 2,4 2 1,6 1,4 1,4 1,2 1 0,8 0,7 

10-2 2 1,8 1,6 1,4 1,2 1 0,9 0,8 0,7 0,6 

 
Figure 5 shows the results for the dolphin whistles and, in particular, the stationary 
spectrum estimated by the first time-frequency test. The normalized variance shows that 
the variance is around 1 for most of the frequencies excepted for the frequency band 
containing the dolphin whistles, so the non-stationary part of the signal. 
 

 

 
 

Figure 5. Detailed results of the normalized variance test applied to the 
spectrogram of the dolphin whistle signal (the second signal), (left, up to bottom) 

spectrum [ ]ˆ
p kγ  with P=65, mean value [ ]ˆx kµ of [ ]

0

k
H nL  from time-frequency-test, 

(right, up to bottom) normalised variance [ ]ˆ Pvarn k  with Pfavarnorm=10-4  then 

threshold ζ =3 in green dotted line, frequency alarm plot V[k]. 
 
The last plot shows the frequency alarms referred to as V[k] and given by 
 

 

[ ] [ ]
[ ] [ ]

0

1

ˆ0 if   ( )
.

ˆ1 if   ( )
P

P

V k varn k H

V k varn k H

ζ
ζ

= ≤
= >

 (14) 

Figure 6 shows the results for the three other signals. The magnetic Barkhausen noise is 
non-stationary for almost all the frequencies, which confirms the result of the time-
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frequency test (see Figure 3). For the boat passing signal, alarms are not all confirmed 
and some new frequencies are detected. More insights are necessary in this case, which 
will be the purpose of the next session. The gearbox vibration signal is totally 
stationary, no point of the variance exceeds the threshold, even the non-significant point 
of the first test, which is then not confirmed. This last example is interesting for the 
normalised variance shows several points well below 1, which characterizes 
deterministic components in the signal, which is indeed the case. 
 

 

 
 
Figure 6. Results of the normalized variance test with Pfavarnorm=10-4  applied to the 

spectrogram of the three other signals, (left to right) the magnetic Barkhausen 
noise with P=77 then ζ =2.3, the boat passing with P=96 then ζ =2.3, the gearbox 

vibrations with P=63 then ζ =3, (up to bottom) normalised variance [ ]ˆ Pvarn k  with 

threshold in green dotted line, frequency alarm plot V[k]. 
 
 
4.  Classification from a stationary index 
 
After having proposed tests, a final indicator is necessary in order to merge the 
information given by the two tests and also to provide one numerical index, which will 
allow a quick decision just after the signal acquisition. This index is targeted to assess 
the occurrence of non-stationary events without any considerations about their nature, 
then their time-frequency shape. 
 
In that context, several indexes are defined. The first two merge the results of the time-
frequency detection map defined in (10) by calculating the detection number referred to 
as Nbdet_time and Nbdet_freq and a percentage referred to as %det_time and %det_freq in 

the time and frequency projections [ ]
1HP n  and [ ]

1HP k  defined in (11), that is to say 
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[ ]

1

1

det_ det_
1,

det_ det_
1,

0 and % _  =  × 100 / ,

0 and % _  =  × 100 / ,

H

H

P n

time time
n P

P k

freq freq
k K

Nb P det time Nb P

Nb K det freq Nb K

=

=

= −

= −

∑

∑
 (15) 

with [ ]10 HP n
 and [ ]10 HP k

, zero to the power [ ]
1HP n  and [ ]

1HP k  respectively, providing the 

number of zero values in vectors [ ]
1HP n  and [ ]

1HP k  respectively. 
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The following three convey the contribution of the normalized test according to the 
time-frequency test, 
 

[ ]( ) [ ]
[ ] [ ]
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(16) 

where [ ]( )11 0 HP k−  is a binary-value vector deduced from[ ]
1HP k  and [ ]10 HP k

 the 

orthogonal one. The product [ ]( ) [ ]11 0 HP k
V k − ×  

 between the two binary vectors gives 

the detections confirmed referred to as conf_freq. When the first is replaced by its 
orthogonal, the product gives the new detections referred to as new_freq and the product 
between the two orthogonal vectors referred to as fa_freq gives the false alarms, that is 
to say the detections non-confirmed by the second test. 
 
The stationary index proposed is then defined by 
 

 

_ _   % _   % _Stat index time freq det time Rev det freq− = × , (17) 
 
with % _det time  from (15) and % _Rev detect freq  defined as 
 

 

( )_ _ _% _     100 /  ,det freq new freq fa freqRev det freq Nb Nb Nb K= + − ×  (18) 

 
a revision of the index % _det freq  in order to take both tests into account. 
 
Finally, the redundancy between the two tests is expressed by 
 

 

( )_ _ __    100 /  ,conf freq det freq new freqRedondancy freq Nb Nb Nb= × +  (19) 

 
Table 2. Values of the indexes proposed for the four studied signals 

 

%det_time %det_freq %conf_freq %new_freq %fa_freq Rev%det_freq

Barkhausen 72,7% 81,3% 76,6% 1,4% 4,7% 78,0% 56,7% 92,7%

Dolphin 76,9% 24,9% 18,7% 0,0% 6,2% 18,7% 14,4% 75,1%

Boat 70,8% 9,9% 2,0% 0,0% 7,8% 2,1% 1,5% 20,7%

Gearbox 1,6% 0,1% 0,0% 0,0% 0,1% 0,0% 0,0% 0,0%

Redondancy_

freq
Signal

t-f test Normvar test % t-f test

Stat_index_ti

me-freq

 
 

Table 2 shows the values of these indexes for the four signal studied throughout this 
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paper. Finally, relying upon a wider data base analysis, a symbolic classification is 
proposed and defined as 

 

_ _ 0%

0% _ _ 4% !

4% _ _ 16% !!

_ _ 16% !!!

 

Symbolic Classification

Stat index time freq Stationary

Stat index time freq Warning

Stat index time freq Serious warning

Stat index time freq Alarm

− =
< − ≤
< − ≤

− >

. (20) 

 
The last class corresponds, for example, to 40% time detection and 40% frequency 
detection in the time-frequency map, which is without any doubt a case of alarm 
relatively to the stationarity of the signal. Including this classification, Table 3 compares 
the results obtained with an expert interpretation. For the four studied results the 
stationary index proposed performs well. 
 
Table 3. For the four studied signals, comparison of the stationary index proposed 

with an expert interpretation 
 

Magnetic Barkhausen Noise 56,7% Alarm!!! Strongly Non-Stationary

Dolphin Whistles 14,4% Serious Warning!! Non-Stationary, Presence of non-linear modulations locally

Boat Passing 1,5% Warning!
Non-Stationary, small variations of central frequencies of narrow band patterns 

& small amplitude variations

Gearbox Vibrations 0,0% No Alarm Stationary

Stat_index_t

ime-freq
Expert viewSignal 

Classification given by the 

tests

 
5.  Conclusions 
 
This paper has proposed a stationary index defined in percentage in order to 
characterize the presence of stationary events in a signal without taking the nature of 
theses stationarities into account. This index does not need high computations and is 
easily and fast computed from a spectrogram or a gliding correlogram of a signal. This 
test is of interest to control all signal acquisitions as a pre-analysis before applying more 
specific processing. It can also be used in order to localise the non-stationarities, which 
can be the input of some algorithms. Future works will include another time test in order 
to reinforce the time index as the normalized-variance test does for the frequency index. 
 
References 
 
1.  N. Martin, A criterion for detecting nonstationary event. Special session, Twelfth 

International Congress on Sound and Vibration, ICSV12, Lisbonne, Portugal, July 
11-14, 2005. 

2. P. Borgnat, P. Flandrin, Stationarization via surrogates, J. Stat. Mech.: Th. and 
Exp., doi:10.1088/1742-5468/2009/01/P01001, 2009. 

3. L. Padovese, F. Millioz, N. Martin, Time-frequency and Time-Scale analysis of 
Barkhausen noise signals. To appear in Journal Proceedings of the Institution of 



13 
 

Mechanical Engineers, Part G, Journal of Aerospace Engineering for the Structure 
and Machine Monitoring Special issue, 2009. 

4. F. Millioz, J. Huillery and N. Martin, Short Time Fourier Transform Probability 
Distribution for Time-Frequency Segmentation. IEEE International Conference on 
Acoustics, Speech, and Signal Processing, Proceedings of ICASSP 2006, pp. III-
448-451, May 14-19 2006. 

5. N. Martin, Advanced Signal Processing and Condition Monitoring. International 
Journal Insight on Non-Destructive Testing and Condition Monitoring. Vol. 49. No 
8, August 2007. 

6. J. Huillery, N. Martin, On the Description of Spectrogram Probabilities with a Chi-
quared Law. IEEE Transactions on Signal Processing, Vol. 56, Issue 6, June 2008 


