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Abstract

Detecting the presence of non-stationarity evemta signal is a challenge that is still
not taken up. The aim of this paper is to make mtrdmution to this key issue. We
already proposed a non-stationarity detection éefin time-frequency domain in order
to control the invariance of the time-frequencyist&s. In this paper, in order to be not
limited by the time and frequency resolution ofrae-frequency approach, we propose
another test in frequency domain. In frequency domie problem can be cast by
taking advantage of the normalized-variance proggemf a spectral estimator when
analyzing non-stationary signals. This secondw@stonfirm, invalidate or detect new
frequency localizations of non-stationarities. Hyahe main contribution of the paper
is to propose a stationary index defined so asdggethe information given by these
two tests and to allow an alarm to be raised fdrigh level of non-stationarities.
Applications on real-world signals show the pemice of this new index.

1. Introduction

When processing signals, knowing that the undeaglyphysical phenomena are non-
stationary is of the first importance. Moreovertsl@f processing methods rely on a
stationarity assumption, which could be usefuldst tbefore any analysis. The aim of
this paper is to propose a full methodology, fostitey this stationarity assumption
without anya priori hypothesis about the nature of the possibly natiestarity events.
In order to be of practical use, the methodologyppsed will conclude with an index
ranged between 0 and 100 so as to evaluate adEmeh-stationarity.



In many applications, and above all in conditionnitaring, Fourier analysis and
spectrograms are standard and powerfull toolsttadyeng time-varying signals. Great
progress has been made in this area in order tmiragesolution but this last point is
not of importance when the issue is not to estimatk to detect. In addition, the main
advantages of these classical transforms are tbleirstness and the fact that statistical
properties are theoretically well known, which istbe first concern for this study.
Finally, devising tests from these signal represtots is motivated by the TetrAS
project, in which signal-processing tools are depetl around Fourier-based transforms
(http://www.gipsa-lab.inpg.fr/index.php?id=30dnd in which takes place this work.

According to the definition of the stationarity afprocess, a stationarity test should
result in the control of its statistical propertiesrsus time. Such an approach first
requires a time-observation scale. The time-observascale will be set by the time
resolution of the time-frequency representationjctviwill infer the definition of the
minimal size of the non-stationary event the tesuld be able to detect. This size
becomes then aampriori assumption. Second, in order to control the psatistics,
this approach needs a way of measuring and trackititer the probability law
parameters, or the moment invariance. The testsopeal in this paper completes the
one presented in a previous publicatiband will be limited to the second order. Lastly,
the methodology aims at estimating also both timé fequency locations of each
nonstationary occurrence detected. Casting a reat time-frequency domain plan is
obviously well-fitted for solving this localizatigoroblem.

Early papers on the subject (séefor the references) deal with optimal criterions,
which rules out the time-frequency interest, dedihwmethods adapted to some
particular event detection as certain transients)e@d a preliminary training data set.
More recently, a method based on surrogates, stataed data get from the data itself
in order to get rid of a well-defined structurationtimé?, do not seem to be well-
adapted to mixed signals. Its current implementatieeds a number of choices, that the
method proposed in this paper tries to avoid. Altifothe test gives also a final index,
no time-frequency localizations are provided.

This paper is organized as follows. Section 2 dessrthe framework of this study. In

section 3, the test proposed‘this recalled whereas a new test is elaborated upon.
section 4 a classification based upon a signalstatienarity level is proposed from an
original index computed with the proposed testsallrof the sections, the performance
of the methodology is dicussed around a numbeeafworld signals. Finally, Section

5 looks at the conclusions that can be drawn fioenntork.

2. Framework

Let x[n] be a discrete time signal of lenghh and frequency samplings. The
observation sef [n] is a subset oR* so that

E‘;[n]:{(n,k)DRz/DSX[n,k] and foragiverk}, (1)



with k the frequency variable ar[n,k] a time-frequency representationxjin|. As
such, £[n] includes a cross-section & [n,k]at a constant frequendy The time-
frequency estimator is either a spectrogram,
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with W[m] a time window, D the window time-shift and K beitige Fourier bin
number, or a gliding correlogram evaluated fromagsied autocorrelation estimate,
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Figure 1. Time signals and their spectrograms (with segment length equal to the
close power of 2 of 2% signal length, 50% overlapping, no zero padding and
Hanning window), (from left to right) a magnetic Bar khausen noise, dolphin

whistles, a boat passing and gearbox vibrations.

Figure 1 shows time-frequency representations af f&ignals with segment length
equal to the close power of 2 of 2 % signal len§thP6 overlapping, no zero padding
and Hanning window. The first one is a magnetickBausen NoiseHs=200 KHz over
0.2 s) measured with a magnetoresistive magfietat sensor in order to evaluate the
microstructure and the stress behaviour of ferromatig steeld®, the second one is a
bioacoustic signalHs=15 364 Hz over 17.64 s ) measured with an hydropho order
to characterize dolphin whistlé8, the third one is an acoustic sign&l{5 KHz over
20 s after a decimation by a factor 4) measuredh &it hydrophone during a boat
passing, and the fourth one is a vibratory sighgt 365 KHz over 10.3 s) measured
with an accelerometer on a test bench in orderdémtify vibrations induced by a
gearbox.

£{[n] is then an horizontal line at frequenkyn each spectrogram of Figure 1for n
varying from 1 to P, the number of signal-window$e union of setsci[n], with k



varying from 1 to K, contains all the time-frequgmmints of a spectrogram. The aim
of the tests proposed is to extract from these aetsb-set, which will contain all the
points corresponding to non-stationary events. €xding with detection theory is then
possible thanks to the use of Fourier-based tramsfo

3. Two non-stationary detection tests

The definition of a stationary process excuses th@ nonexistence of an unique
efficient test. An ergodic random process is conghyestationary if its probability
density function remains unaltered under a timdt.sfiihis definition is a severe
requirement and should be relaxed. Many tests wereed according to the way you
relax. In a previous paper of the authBtsa time-frequency test was proposed. Being
used in the final section, this test will be summgdin this section. Then, using the
result of this time-frequency test, a second tesed on the signal spectrum only will
confirm, refute or eventually detect other typesnoh-stationarities. It will be the
subject of the second sub-section.

3.1 Time-frequency test
As we did in, let us define two hypotheses:

- Ho where the signak|n] is equal tob[n], a stationary random process with zero
mean, constant variance and time-frequency es’a’:mnéij[n, k] , eventually added with
a stationary deterministic signal|[n] with time-frequency estimatiors, [n,k]; and

where £, [n] is defined as
£Ho[k]={(n,k)D£X[k] | Pgjp, = Po €t E(S,[n.K]) minforagiverk}, (4)

with S,[n,k| distributed as gammd(r/2,a ,0) ,which defines p,, the probability
density function ofSX[n,k] under this hypothesis. S&&for further details about the

chi-square approximation.
- Hy where x[n] is nonstationary and wheré; [n] is by definition the complement

of £ [n].

The two parameters of the lap,, parameter, the equivalent degree of freedom, and
parameteer are defined as,

_E((Sx[n,k])z)—(E(Sx[”’k]))2 _2

varn(S,[n k]) == anda=E(S,[kv])/r, (5)

(E(S[nK])) r

with Varn(SX[n,k]) the normalized variance of the observation. Thst fmoment

about zero of§,[n,k], E(S,[k,v]), can be estimated from the average of the points



belonging tos, [n], which allowa to be estimated as,

M= ( 1K) n/so[n%%[kls" " k]/ ©

a[k] being an estimation af at frequencyk .

As a matter of fact, if a deterministic signd[n] is eventually present undéty,

S.[nk] is proportional to a noncentral chi-square vasab}'?(Jd), with the same

proportionality parametesr , a degree of freedom', and with noncentrality parameter
d=r'S,[nk]/S[nkK]. In this case, the normalized variance,

(2r+ 45)

(r'+9)° ")

varn(S,[nk]) =

depends on the method parameters and mostly otetieeministic signal, whether the
estimator is either a spectrogram or a correlogrlavertheless, the normalized
variance in (7) is always lower than the normalizadance in (5). So, if we use the
gamma distribution of the only-noise case in a dd&ir test instead of the non-central
chi-square distribution, the detector will alwaysriwbut the reaPfa will be lower.

Afterwards, consideringp, as equal to a gamma law as in (4), we can writeagah
frequencyk the decision rule,

H, istrue

Sx[n,k]D,d;l[n]
SInK 2 [k = A K] (K] ®)

Hyistrue
S [nk]ocy[n]

which allows making a decision between the two hiypsisHy, andH;. Knowing that a
gamma variable is proportional to a chi-square grie a given probability of false

alarm Pfa has permitted the calculation of the detectioreghold npfa[k] after
inverting the following integral,

Pfa = T 39, (Sj ds= T g r2(u) du, (9)

X
Npra K] Apta[K]=/7p1a[ K] /@

where g , (u) is the probability density function of g7. The thresholdA,, [K] is
equal to 1 minus thefa™quantile of a)’ and depends on the givd?fa only. The



partition of E';[n] being unknown, an iterative algorithm is proposete able to apply
this decision rule. SE& for more details.

The result of this test is represented as a tireguiency map. Each eIementK’,if[l [n] is
coded by the normalized valu& [n,k]/ A, [K] 4[k], whose maximum value i and

all elements ofz}, [n] are coded by 0. In an alternative map, each eleofed, [n] is

classified according to the value #&fa that detects this element at the last iteration.
Each class is defined as

Clas{ Pfa’ < Pfa< Pfa™) —{Sx[n o [ A, [Ké' Kss[n K <A,.0 [k]}

(10)
with Pfa® and Pfa* successive values ofPfa® in the Pfa set defined

as{lO‘2 .10°,10* ,105} , and which defines 5 classes.

UUUUUU =
won| . 000 - 2000 |
= = = = 1 s 7
= = . i
E F 2 E 1 -
i w000 | £ = E- = = 100 | = 1
E = B = = =l "_ 4 =l = - = =l
3 = = = 5 o 4 | . = g 7
5 - ) £ - £ g
S o | S ) -1 h B z 2 o | _ g
I = | == E2 E 3 . - I oo |
= 5 % = 2000 | ) -
2o0mn | e o = = 500 0
0| e % = §7 0 0 0
15 o s 5 [ 5 5 [ 5 2 B f B "
Timefs) Tinels) Tinels) Tinels)
I} L i ql!ll L1 ol | 1 ql!ll L1 ol | 1 L[| [l L1l Il |
J 1 % 4| % 4| o 1 15 H a: 3|

Figure 2. Results of the time-frequency test applied on spectrograms computed
with (from left to right) the magnetic Bar khausen noise, the dolphin whistles, the
boat passing and the gearbox vibrations. Horizontal axisistimein swhereas
vertical axisisfrequency in Hz.

This time-frequency test was applied to signalgigtire 1with a false alarm probability
equal to 1d. Figure 2 shows the map defined by (10) for eaghas. Figure 3 shows

time projections, referred to & [n], and frequency projections, referred toRas[k] ,
defined as

PHl[n]:card[LkJL';l[n] j
PHl[k]zcard(ﬁﬁl[n]).

The transient structures of the Barkhausen noise veell detected whereas the
stationary narrow-band frequencies present all dkier time duration of the signal
(close to 30 kHz and 50 kHz) are fortunately unckeid These frequencies may come
from some external interferences of the measuremguipment. In this application,

(11)



this test has performed a source separation itirtteefrequency domain. In the second
signal, the non-stationary parts of the signal dbkphin whistles are very well localised
in the submarine noise. In the third signal, tlgnal is globally stationary apart a very
localized frequency event corresponding to ampditmdodulations in a band around
1 450 Hz. This band is well marked in the frequepmjection, see Figure 3. The last
signal is totally stationary, except for one nogr#iicant point.
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Figure 3. Timeprojection in s (up) and frequency projection in Hz (bottom) of the
detection map get with the time-frequency test applied on the four studied signals,
(from left to right) the magnetic Bar khausen noise, the dolphin whistles, the boat
passing and the gear box vibrations.

3.2 Normalized variance test
To round out the time-frequency test, a second ltested to second order also is
designed in the frequency domain only.

In the previous sub-section it was noticed thastfithe normalized variance of a
spectrum for a noise-only signal is constant (8§¢g &and second, this variance is lower
when a deterministic signal being present (see E)jthemore, if a signal contains a
non-stationarity at a frequency, this variance eases and if the non-stationarity is
high, the variance will exceed its variations dadt$ own variance. These properties
are tolerant vis-a-vis the Gaussian noise assumpfiotest based on a normalised
variance could then be able to detect non-statjoeaents.

The test proposed in this section aims at detethadiigh variations of the normalized
variance according to a stationary case. Based tipwrprevious time-frequency test
and the definition of the normalised variance recaln (5), the frequency test of this
section is defined as

1 P—lA R H

A P& yp[k]z_lu><[k]2 >l
= < (12)

Ho



with j,[k] =S, [p.k] the spectrum estimate over tHgignal window (see (2)), P the
number of signal-windows in equation (2), and whgyék] ,

— 1 .
Al =y al Aﬁo[n])pggo[n]y"[k]’ (13)

results of the previous test and is the mean \m‘ILﬂ;O [n] set. Indeed, the previous test
provides the P independent estimations of the ﬂmactf/p[k] required in (12).
Theoretically,varn, [k] is then equal to a constant depending on the wirglape and
of the average numberf/p[k] is estimated with a Blackman window and without

averaging due to the time-frequency estimator, té&n, [k] in (12) is equal td when

using a spectrogram (from (2) and r=2 from (5))0at9 when using a correlogram
(from (3) and r=4.08 from (5)).

The threshold{ should be defined from the standard deviationénhp[k] considered

as a random process. As the derivation of the denfiinterval is a tricky task, a
simulation procedure with 20 000 runs of a whiteu§san noise has determined the
value of the threshold according to the false alarm probabil®fa,amom and the

signal-window number P.
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Figure 4. Simulation results of the normalised variance of a spectrum estimated by
spectrograms (on theleft) or gliding correlograms (on theright) versusthe
probability of false alarm Pfayarnorm (Vertical axis) and the threshold ¢ (horizontal

axis) and the signal-window number P (number over thefigure)

Figure 4 shows the results for both the spectrograththe gliding correlogram. Table
1 makes use of the simulation results and suggefstsl choice of the threshold for
different ranges of the signal-window number P &md4 values of the false alarm
probability Pfa,amorm It iS important to notice that the value of P i in the range
[30,150] due to the fact that, in the time-frequenest proposed, the length of the
signal-window is fixed to the close power of 2 of% signal length with 50%



overlapping.

Table 1. Choice of the detection threshold in the nor malized variance test
according to the simulation process and for both the spectrogram and gliding

correlogram.
Spectrogram Gliding correlogram
P| from20 |from30| from70 | from 150 from20 | from30 | from 70 | from 150

Pfavamem| ©30 | ©070 | 10150 | t0400 | 40| t030 | 070 | t0150 | todoo |~ 400

10° 5 37 25 2 1,6 24 1,7 1,3 1 08

10* 4 3 23 18 15 1,9 1,4 11 09 0,75

10° 3 24 2 1,6 1,4 1,4 1,2 1 038 0,7

10 2 18 1,6 1,4 1,2 1 0,9 08 07 06

Figure 5 shows the results for the dolphin whistesl, in particular, the stationary
spectrum estimated by the first time-frequency. tEse normalized variance shows that
the variance is around 1 for most of the frequeneiecepted for the frequency band

containing the dolphin whistles, so the non-statrgrpart of the signal.
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Figure5. Detailed results of the normalized variancetest applied tothe
spectrogram of the dolphin whistle signal (the second signal), (left, up to bottom)

spectrum 7, [k] with P=65, mean value / [k] of £ [n] from time-frequency-test,

(right, up to bottom) normalised variance varn, [k] with Pfayarnorm=10* then
threshold ¢ =3in green dotted line, frequency alarm plot V[K].

The last plot shows the frequency alarms refemeasV[ k] and given by

V[k]:O ifvérn,,[k]s( (Hy)

V([k]=1 ifvarn,[k] > (H,)
Figure 6 shows the results for the three otheradggmhe magnetic Barkhausen noise is
non-stationary for almost all the frequencies, Wwhoonfirms the result of the time-

(14)




frequency test (see Figure 3). For the boat passgmal, alarms are not all confirmed
and some new frequencies are detected. More issagbtnecessary in this case, which
will be the purpose of the next session. The gearbibration signal is totally
stationary, no point of the variance exceeds thestiold, even the non-significant point
of the first test, which is then not confirmed. §hast example is interesting for the
normalised variance shows several points well belbdw which characterizes
deterministic components in the signal, which teied the case.
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Figure 6. Results of the normalized variance test with Pfayarnorm=10“ applied to the
spectrogram of thethree other signals, (left to right) the magnetic Barkhausen
noise with P=77 then ¢ =2.3, the boat passing with P=96 then ¢ =2.3, the gearbox

vibrationswith P=63 then ¢ =3, (up to bottom) normalised variance vérnp[k] with
threshold in green dotted line, frequency alarm plot V[K].

4. Classification from a stationary index

After having proposed tests, a final indicator iscessary in order to merge the
information given by the two tests and also to ptevone numerical index, which will
allow a quick decision just after the signal aciiais. This index is targeted to assess
the occurrence of non-stationary events without esrysiderations about their nature,
then their time-frequency shape.

In that context, several indexes are defined. Tisé tivo merge the results of the time-
frequency detection map defined in (10) by caltntathe detection number referred to
as Nbge ime aNdNbget reqg @and @ percentage referred to%sdet_time and %det_freq in

the time and frequency projectioRs [n] and B, [k] defined in (11), that is to say

Nb e =P~ > 0% and oget time =Nb, . x 100P
n=1,P
b = PHl[k] 0, (15)
Dy, g =K =D 0 and 9@et _freq =Nb,, ., * 100K
k=1,K

with 0% and 0™ | zero to the poweR, [n] and R, [K] respectively, providing the
number of zero values in vectoRs [n] and R, [k] respectively.

10



The following three convey the contribution of thermalized test according to the
time-frequency test,

Nbconf_freq:k;< [(1— oPHl[k])x V[k] } and %onf _freq Nb,  (, x 100 K
anm_freq:k;K[ ol VK] } and Y%ew freq Nb,, nq X 100 K 5)
NS [(1— oPHI[k])x(l—V[k])} and %a freq MNb, ., x 100 /K,

k=1,K

where (1—0P“1[k]) is a binary-value vector deduced frem[k] and 0% the

orthogonal one. The prodqu— Op“l["])xv[k]} between the two binary vectors gives

the detections confirmedeferred to asonf freq. When the first is replaced by its
orthogonal, the product gives the new detectiofesned to asiew_freq and the product

between the two orthogonal vectors referred ttaaseq gives the false alarms, that is
to say the detections non-confirmed by the secesd t

The stationary index proposed is then defined by

Sat _index _time— freq = %det _time x Rev %let _freq,

with %det _time from (15) andRev 9%etect freq defined as

Revdbdet _freq = (Nb

a revision of the index #et

det_ freq

+Nb

Nb

new_ freq -

fa_freq

) x 100 /K

Finally, the redundancy between the two tests sessed by

Redondancy _ freq = Nb

conf _ freq

x 100 /(Nbyy e + N

det _ freq

new _ freq

(17)

freq in order to take both tests into account.

(18)

) (19)

Table 2. Values of the indexes proposed for the four studied signals

t-f test Normvar test % t-f test
signal Stat_index_ti |Redondancy_
%det_time | %det_freq | %conf freq | %new_freq | %fa_freq | Rev%det_freq me-freq freq
Barkhausen 72,7% 81,3% 76,6% 1,4% 4,7% 78,0% 56,7% 92,7%
Dolphin 76,9% 24,9% 18,7% 0,0% 6,2% 18,7% 14,4% 75,1%
Boat 70,8% 9,9% 2,0% 0,0% 7,8% 2,1% 1,5% 20,7%
Gearbox 1,6% 0,1% 0,0% 0,0% 0,1% 0,0% 0,0% 0,0%

Table 2 shows the values of these indexes for dbe $ignal studied throughout this

11




paper. Finally, relying upon a wider data base y@i®l a symbolic classification is
proposed and defined as
Symbolic Classification

Sat _index _time- freq = 0% Sationary

0%< Sat _index _time- freq< 4% Warning ! . (20)
4%< Sat _index _time— freq< 16%  Seriouswarning !!

Sat _index _time- freq>16% Alarm !

The last class corresponds, for example, to 40% w®tection and 40% frequency
detection in the time-frequency map, which is with@ny doubt a case of alarm
relatively to the stationarity of the signal. Inding this classification, Table 3 compares
the results obtained with an expert interpretatibor the four studied results the
stationary index proposed performs well.

Table 3. For thefour studied signals, comparison of the stationary index proposed
with an expert interpretation

Stat_index_t | Classification given by the
Signal T 1 g 4 Expert view
ime-freq tests
Magnetic Barkhausen Noise 56,7% Strongly Non-Stationary
Dolphin Whistles 14,4% Serious Warning!! Non-Stationary, Presence of non-linear modulations locally
Non-Stationary, small variations of central frequencies of narrow band patterns
Boat Passing 1,5% Warning! .y o d P
& small amplitude variations
Gearbox Vibrations 0,0% _Stationary

5. Conclusions

This paper has proposed a stationary index defimedpercentage in order to
characterize the presence of stationary eventssigraal without taking the nature of
theses stationarities into account. This index dumsneed high computations and is
easily and fast computed from a spectrogram ordingl correlogram of a signal. This
test is of interest to control all signal acquais as a pre-analysis before applying more
specific processing. It can also be used in ordéndalise the non-stationarities, which
can be the input of some algorithms. Future woriisinclude another time test in order
to reinforce the time index as the normalized-varéatest does for the frequency index.
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