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Abstract

Given a finite set o of the unit disc D = {z € C :, |z] < 1} and a holomorphic function f in D
which belongs to a class X, we are looking for a function g in another class Y (smaller than X) which
minimizes the norm ||g[|y, among all functions g such that g, = fi,. For Y = H®, X = lg(w;) =

f= Zf(k:)zk P = Z |f(k:)|pw£ < 00 ¢, with a weight w satisfying wy > 0 for every k£ > 0 and

k>0 k>0
limy(1/ w,lg/ k) = 1, and for the corresponding interpolation constant ¢ (o, X, H*), we show that if p = 2,
c(o, X, H®) < apx (1 — =) where n = #0, 1 = maze, |A| and where @x (t) stands for the norm of

the evaluation functional f — f(¢) on the space X. The upper bound is sharp over sets o with given n
B
and r. For X = lh(wy), p# 2 and X = L} <<1 — ]2\2) dwdy) (the weighted Bergman space), f > —1,

1 < p < 2, we also found upper and lower bounds for ¢ (o, X, H*) (sometimes for special sets o) but
with some gaps between these bounds.

Résumé

Etant donné un ensemble fini ¢ du disque unité D = {z € C: |2| < 1} et une fonction f holomorphe
dans D appartenant & une certaine classe X, on cherche g dans une autre classe Y (plus petite que
X)) qui minimise la norme de g dans Y parmi toutes les fonctions g satisfaisant la condition g, = f|,-

Pour Y = H®, X = B(wg) = ¢ f = Zf(k:)zk AP = Z|f(k:)|pwz < 00 p, dont le poids w est tel

k>0 k>0
que wy, > 0 pour tout k > 0 et limy(1 /wi/ k) = 1, et pour la constante d’interpolation correspondante
¢ (o, X, H*®), on montre que si p = 2, ¢(o, X, H®) < apx (1 - 1%) ou n = #o, r = maxe, |A| et

x (t) est la norme de la fonctionnelle d’évaluation f — f(t), 0 <t < 1, sur espace X. La majoration est
B
exacte sur I'ensemble des o avec n et r donné. Pour X = I5(wy), p #2 et X = L} ((1 — |z|2> dmdy)

(lespace de Bergman a poids), 5 > —1, 1 < p < 2, nous trouvons aussi des majorations/minorations pour
¢ (o, X, H*®) (parfois pour des ensembles o particuliers) mais avec certtains ecarts entre ces bornes.

0. Introduction

We recall that the problem considered in [Z] is the following: given two Banach spaces X and YV
of holomorphic functions on the unit disc D = {z € C: |z| <1}, X DY, and a finite set o C D,
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what is the best possible interpolation by functions of the space Y for the traces f|, of functions
of the space X, in the worst case?
Looking at this problem, we are lead to define and compute/estimate the interpolation constant

c(o, X, Y) = supsex, jrix<rinf {l9lly = 90 = fio}

(which is nothing but the norm of the embedding operator (X‘U, ”‘HX\U) — (Y‘U, ||||Y\o> ). Let us

notice that the following question was especially stimulating (which is a part of a more complicated
question arising in an applied situation in [BL1] and [BL2]): given a set ¢ C D, how to estimate
c (o, H?, H*®) in terms of n = card(c) and mawzye, || = 7 only? Here and everywhere below, H?
is the standard Hardy space of the disc,

1/2
H=qf=3 f(k): |f||Hz—<Z\f \) <00,

k>0 k>0

and H* stands for the space (algebra) of bounded holomorphic functions in the unit disc D
endowed with the norm || f||_ = sup.ep |f(2)|. The issue of estimating/computing ¢ (o, H?*, H>)
has been treated in [Z].

More precisely, we have treated in [Z] the cases X = HP L2, where H? (1 < p < co) stands
for the standard Hardy space of the unit disc and where Lg stands for the Bergman space of all

holomorphic functions f such that

/ F()FdA < o,
D

where dA stands for the area measure, and proved the following result, through Theorems A,
B&C (see the Introduction of [Z]) .

Theorems A, B&C.
(1)

1
42

B

< c(op,,, H*, H®) < C, , (H?, H®) < V2 v :
< (o, ) < Cor ( )< VI

;

1 n

— <

321 —r

for alln > 1, 0 <r < l,where o, . is the one set point {r, r, ..., v} (n times).
(2) Let 1 <p < oo. Then

(o, L2, H®) < C, (L2, H®) <

1 1
1 n P n P
1 PR < n,rs HpaHOO SCnr Hp> HOO SA )
s () et i) s ot 19 2.4, (£25)

forallm > 1,0 < r < 1, where A, is a constant depending only on p and the left hand side
inequality is proved only for p € 27

In this paper, we extend those results to the case where X is a weighted space X = I?(wy),



lo(wi) = {f =D FRF P =D fR)Puy < OO},

k>0 k>0

with a weight w satisfying w; > 0 for every k > 0 and lim(1 /w;/ k) = 1. The latter condition

implies that [?(wy,) is continuously embedded into the space of holomorphic functions Hol(D) on
the unit disc D = {z € C: |z| < 1} (and not on a larger disc, i.e. {P(wy) does not contained in
Hol(rD) for every r > 1).

As in [Z], in order to find an upper bound for ¢ (o, X, H*), we first use a linear interpolation:
Fe > (f e e,
k=1

where (.,.) means the Cauchy sesquilinear form (h, g) = >, h(k)g(k), and (e);_, is the explic-
itly known Malmquist basis of the space Kp = H*©BH?, B = II"_,b,, being the corresponding

Blaschke product, by = 1’\__{2 (see N. Nikolski, [N1] p. 117)). Next, we use the complex inter-

polation between Banach spaces, (see H. Triebel [Tr] Theorem 1.9.3 p.59). Among the technical
tools used in order to find an upper bound for ||>°;_, (f, ex) x|l (in terms of || f||y), the most
important is a Bernstein-type inequality || f’Hp <¢||B - Ifll, for a (rational) function f in the

star-invariant subspace H?NBH, generated by a (finite) Blaschke product B, (K. Dyakonov [Dy]).
For p = 2, we give an alternative proof of the Bernstein-type estimate we need.

The lower bound problem (for C, , (X, H*)) is treated by using the “worst” interpolation
n—tuple o = o), = {A, ..., A}, a one-point set of multiplicity n (the Carathéodory-Schur type
interpolation). The “worst” interpolation data comes from the Dirichlet kernels Zz;é 2F trans-
planted from the origin to A. We notice that spaces X = [P(wy) satisfy the condition X o by C X
when p = 2 | whereas this is not the case for p # 2 and this makes the problem of upper/lower
bound harder.

Our principal case is p = 2, where [?(wy) is a reproducing kernel Hilbert space on the disc D. It
is also important to recall that

() =22 (1= 12P)

2a+1

)dA),a<O,

where L? ((1 — |z|2)6 dA), £ > —1, stand for the Bergman weighted spaces of all holomorphic
functions f such that

/D 1F()7 (1 - Iz\2)BdA < .

Theorem. 1.0 Let o be a sequence in D. Then

on,r(Z§<<k+1>a>,H°°)SA( " ) T

1—1r



(o, Z((k+1)), H®) §A<1 n )
—r
Otherwise,
Cor (B((k+ 1)), HY) A=) .
B+2
<

Cor (L2 (1= 1) a4}, 1) Al(lﬁr) R

foralln>1,0<r<1,a<0,>—1, where A = A(«) is a constant depending only on o and
A" = A'(B) is a constant depending only on 3.

Later on, in Section 7 we show that for a = %, where N > 1 is an integer, the latter estimate
is sharp.

Theorem. 7.0 Let N > 1 be an integer and o, » = {A, ..., A\} (n times). Then,

¢ (onn B (k+1)F), H®) 2 a (1—L|/\|)

for a positive constant a = ay depending on N only. In particular,

N
2

N
2

(1) < (e (e ) ) <a ()

forallm > 1,0 <r <1, where A=A (%) 1s a constant defined in Theorem 1.0. Moreover,

a and A are such that a < W and A < N*N_ N standing for the integer part of . (The

notation x < y means that there exists numerical constants c1, ca > 0 such that c;y < x < cy).

In Sections 2, 3 and 4 , we deal with an upper estimate for C,, , (X, H*) in the scale of
spaces X = ((k+1)*), « < 0,1 < p < +00. (The case p = 2 is solved in Section 1 (for the
upper bound) and in Section 7 (for sharpness) ). We start giving a result for 1 < p < 2.
Theorem. 3.0 Let 1 <p<2,a<0. Then

1-2a

5 (1 )H_‘l’scn,r<zz<<k+1>a>,H°°>SA(I” )

1—7r —r

for allr €0, 1[, n > 1, where A = A(a, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.

It is very likely that the bounds of Theorem 3.0 are not sharp. The sharp one should be
probably (2-)' "
we feel again that the upper bound (&)%_a_% is not sharp. The sharp one probably should be

the lower bound (1"?)1_0_%.

_1
?. In the same way, for 2 < p < oo, we give the following theorem, in which



Theorem. 5.0 Let 2 <p<oo, a <0. Then

1—a-1 5—01—%
(1) =@y sa(f)

1—7r —r

for allr € [0, 1], n > 1, where A = A(a, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.

In Section 6 , we suppose that X is equal to L? <(1 — |z\2)ﬂdA>, >—1,1<p<2, where

dA stands for the area measure, the Bergman weighted spaces of all holomorphic functions f such
that

/D FE)P (1= [2P) dA < .

Our goal in this section is to give an estimate for the constant for a generalized Carathéodory-Schur
interpolation, (a partial case of the Nevanlinna-Pick interpolation),

(o2, X, H®) = sup {|| flla oy = f € X, |flx <1},

where || f||zppa~ = inf{||f + 039l : g € X}, and 0, 5 = {A, A, ..., A}, A € D. The
corresponding interpolation problem is: given f € X, to minimize ||h[|_, such that
hO(A) = fP(N),0<j <n.

For this partial case, we have the following generalization of the estimate from Theorem 1.0.
Theorem. 6.0 Let A\ €D, 8> —1 and 1 < p < 2. Then,

B+2

¢ (o L (1= 127)" da), ) < &' (1 —nMI) R

where A" = A'(3, p) is a constant depending only on B and p.

Before starting Section 1 and studying upper estimates for ¢ (o, X, H*), we give the follow-
ing lemma which is going to be useful throughout this paper, in particular in view of applying
interpolation between Banach spaces.

Lemma 0. Let X be a Banach space of holomorphic functions in the unit disc D and
o =1{A1, A2, ..., \n} C D a finite subset of the disc . We define the Blaschke product
B, =117 by, where by = A2 et T : X — H®/B,H™ be the restriction map defined by

1)z
Tf={g9eH”: f—ge€ B, X},

for every f € X. Then,
| T || x> poe /B, o= ¢ (0, X, H®).

Proof. The proof is obvious. [



1. An upper bound for ¢ (0, 12 (wy) , HOO)

In this section, we generalize the upper bound obtained in [Z] for C,, , (X, H*) where X =
H?, L2 to the case of spaces X which contain H* X =2 ((k+ 1)), a < 0, the Hardy weighted
spaces of all f(z) =, f(k)z" satisfying

S ) F(k ) (k +1)% < oo.

k>0

Notice also that H?* = [2(1) and L2(D) = 2 (
of the unit disc D.

ol ), where L?(DD) stands for the Bergman space
_l’_

Theorem. 1.0 Let o be a sequence in D. Then

1—r

Cmaﬂ%+DﬂwWﬂ§A( ")77,

c@Jﬁ%+n%JPvSA(7I)7T

Otherwise,

B+2

Cn7r<L§<(1—|Z|2)BdA>’HOO> Al(ﬂr) -

foralln>1,0<r<1, a<0, > -1, where A = A(«a) is a constant depending only on o and
A" = A'(B) is a constant depending only on 3.

Cur (BUk+ 1), 1) <A (1) T
<

First, we recall the following lemma (see [Z]). In fact, Lemma 1.1 below is a partial case
(p = 2) of the following K. Dyakonov’s result [Dy] (which is, in turn, a generalization of M. Levin’s
inequality [L] corresponding to the case p = 00): for every p, 1 < p < oo there exists a constant
¢, > 0 such that

1711, < e 5| 171

for all f € Kp, where B is a finite Blaschke product (of order n) and ||.||, means the norm in
L>(T). For our partial case, our proof (in [Z]) is different and the constant is slightly better. We
notice that in general, Bernstein type inequalities have already been the subject of a lot of papers.
Among others, Chapter 7 of P. Borwein and T. Erdélyi’s book, see [BoEr]|, is devoted to such
inequalities. This is also the case of A. Baranov’s work, see [B1], [B2] and [B3], and also of R. A.
DeVore and G. G. Lorentz’s book, see [DeLo].

Lemma. 1.1 Let B = II}_,by,, be a finite Blaschke product (of order m), r = max;|)\;|, and
f e Kp=: H*OBH?. Then

5 n
< —
2~ 21




Corollary. 1.2 Let B = II}_,by,, be a finite Blaschke product (of order n), r = mazx;|\;|, and
f € Kg=: H*©BH?. Then,
5\" n \"
k
1790 <1 (3) (52 17l

Indeed, since f*~Y € Kz, we obtain applying Lemma 1.1 for B* instead of B,

5 kn _
1N e < 57— 17 e

for every k=0, 1, ...

and by induction,

Ty (I NPT

Corollary. 1.3 Let N > 0 be an integer and o a sequence in D. Then,
2N+1
n 2
¢ (o, 2 ((k+ 1)), B®) < A (1 ) ,
—r
where A = A(N) is a constant depending on N (of order N*V from the proof below).

Indeed, let H = [? ((k + 1)~ ) and B = B, the finite Blaschke product corresponding to o. We
recall that Pp is the orthogonal projection of H onto Kp = Kp(H?). We notice that Pz : H — H
is a bounded operator and the adjoint Pj : H* — H* of Pp relatively to the Cauchy pairing (., .)
satisfies Pjp = Ppyp , Vo € H* C H?, where H* = 2 ((k + 1)V) is the dual of H with respect to

this pairing. If f € H, then |Pgf(Q)| = (P f, ke)| = |(f, Phke)|, where ke = (1 — Zz)_l and

1P FO1 < Ul 1Pkl < 11 K (1Pl + || (PERO™| ).

where

(k+1)N B
k(k—1)...(k— N+ 1)} B
(N +1)N NN Gif N >3

N }:{ WD N =1,2

(Indeed, the sequence <$(1k)fl\f+l)>k>]v is decreasing since (1+z)™ > 1— Nz for all z € [0, 1],

Ky = mazx {NN, SUDE>N

= maz{NN,

and [NN > (NEPN} <= N > 3). Since Pgk; € Kp, Corollary 1.2 implies

5 n \V
1P f(O] < Ifllg Kn (HPBkch + N (51—_r> HPBkCHH2> <

n N+1
<A (72) el

where A(N) = v2Ky (14 N1 (3)"), since || Poke]l, < 2. O

Proof of Theorem 1.0. Applying Lemma 0 with X = 2 ((k + 1)), we get




| T liz(rsyorsmeepyme=c (o, 12 ((k+1)*) , H®),
where T and B, are defined in Lemma 0. Moreover, there exists an integer N such that N — 1 <
—a < N. In particular, there exists 0 < ¢ < 1 such that —a = (1 —6)(N —1)+6N. And since (as

in Theorem 4.0 of [Z]), we use the notation of the interpolation theory between Banach spaces see
[Tr] or [Be])

(i) )], - () () ) -

1 (0%

this gives, using Corollary 1.3 and (again) [Tr] Theorem 1.9.3 p.59,

| T {12 (k1) )= oo By Hoo <

e <m> Hoo>>l” (e wggw»%
ot 2 (o2

(2N— 1)(1 9)+(2N+1)9

= AN — )" AN
It remains to use § = 1 — a — N and set A(a) = A(N — 1)1 A(N)°.
U
1
2. An upper bound for ¢ (o, I} (wy,), H>)

The aim of this section is to prove the following theorem, in which the upper bound ( T,) 2
is not as sharp as in Section 1. We suspect (&)_a is the sharp bound for the quantity
Co,r (I (K + 1)), H®) .

Theorem. 2.0 Let a < 0. Then,

Cor (B 1) ) < 41 (2]
—r
for allr €0, 1[, n > 1, where A; = Ay(«) is a constant depending only on c.

First, we prove the following lemma.

Lemma. 2.1 Let B = II7_,by;, be a finite Blaschke product (of order m), r = max;|)\;|, and

f e Kg. Then,
2 k
15900 <8 (£25) 16l

for every k=10, 1, ...



Proof. By A. Baranov (see [B4] ),
I
for every f € Kp. (Theorem 5.1 p.50 of [B1] is also true for the Hardy spaces of the unit disc D; see

also [B2] Corollary 1.4, and [B3]). Since f*~Y € Kpi, we obtain, applying Baranov’s inequality
for B* instead of B,

< |[B]|_ 11

H1

Hf(k)HHl < HkB’Bk—l

I

and by induction,

ik
1£ O 0 < | B| 15l
On the other hand, B" = ‘_ Zj éi\i’;% < Zj T_rl;\jl < 12%, which completes the proof. [
_3,2) by,

Corollary. 2.2 Let N > 0 be an integer. Then,

- T

n N+3
Cur (B (640 1) <4 ()

for allr €0, 1], n > 1, where A; = A{(N) is a constant depending only on N (of order N*V from
the proof below).

Indeed, the proof is exactly the same as in Corollary 1.3: if f € I} (W) = H then |Ppf(()| =
(Pgf, kc)| = |(f, P5ke)|, where (., .) means the Cauchy pairing and k; = (1 — Zz) - Denoting
H* the dual of H with respect to this pairing, H* = [$° ((k: + I)N), we get,

1P (O < [1F 1l 1Pk e = 1 ller 1Pkl <

—_—

Pk (k)

y SUPE>N

(Pt (k= )| | <

<1l Knmaz {[|Pokell g e

where K is defined in the the proof of Corollary 1.3. Since Pk € Kp, Lemma 2.1 implies

< |1/l Kvmaz {supow_l

(PBkc)(N)‘

N
n
1P f(O < 1 fl I1Pskcll e < N1fllgy K | 1Pokcl o + N2V { — 1 Ppkcllg | <
1—r

< K ||l 1Pskelly | 14+ N2V [ i < Kn|Ifl 2—n% 1+ NN (T )
= DN Bl 1= ) = NI S ’

which completes the proof setting A;(N) = v2 (1 + N12V) Ky.

O
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Proof of Theorem 2.0. This is the same reasoning as in Theorem 1.0. Applying Lemma 0 with
X =1 ((k+1)*), we get

|| T ||lé((k+1)a)—>H°o/Bo-H°°: C (O-, li ((k ‘I‘ 1)0) 3 HOO) 5
where T" and B, are defined in Lemma 0. It remains to use Corollary 2.2 and (again) [Tr] Theorem

1.9.3 p.59 to complete the proof.
O

3. An upper bound for ¢ (o, I (wy), H®), 1 <p <2

1-2a

The aim of this section is to prove the following theorem, in which the upper bound (%) 2

is not sharp as sharp as in Section 1. We suppose that the sharp upper (and lower) bound here
a1
should be of the order of (&)1 P,

Theorem. 3.0 Let 1 <p <2, a<0. Then

1—2a

B( ! )M—%scn,rug((kﬂ)“),H“)SA(ln ) T

1—7” —r

for allr €0, 1[, n > 1, where A = A(a, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.

Proof. We first prove the right hand side inequality. The scheme of the proof is completely the
same as in Theorem 1.0 and Theorem 2.0, but we simply use interpolation between ! and [* (the
classical Riesz-Thorin theorem). Applying Lemma 0 with X =2 ((k 4+ 1)), we get

1T (g k1))t Bo e = (0, L (R + 1)), HT)
where T" and B, are defined in Lemma 0. It remains to use both Theorem 1.0&2.0 and (again)

[Tr] Theorem 1.9.3 p.59 to complete the proof of the right hand side inequality.
Now, we prove the left hand side one. Firstly, it is clear that

Coe (B (5 + 1)), H) 2 loullyr o =

= (Z(k + 1)(04—1)17/ (rp’)k> a ’

where ¢, is the evaluation functional

or(f) = f(r), feX,

and p’ is the conjugate of p: % + = 1. Now, since

S ket / tatdt ~ T(s + 1)(1 —2)*), asz — 1,
1

k>1
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for all s > —1, we get

’ ’ k oo ’ /
Z(l{; + 1)(e-bp (rp> ~ / tle Pt asr — 1.

£>0 1

0 r 1 1+(Oc—1)p, S /
/ tlomp g = <—) / =Pl gt ~
1 p p/

1\ HHe=1p oo , 1\ te-Dp / /
~ <_/) / Ot ~ <—,> r ((a - Dp + 1) (1—p) P~ asr — 1.
1

But

p p
This gives
k Pi/ 1 Lr"‘(‘l—l) 1 )
(S () )~ () e ) e e
k>0 p
This completes the proof since z% =1- %. O]

4. An upper bound for c(o, I2° (wy), H®)

3-2a
The aim of this section is the following theorem, in which -again- the upper bound ( &) 2 s

not as sharp as in Section 1. We can suppose here that the constant (%)a is the sharp bound
for the quantity C,, , (I5° ((k + 1)), H*).

Theorem. 4.0 Let o« < 0. Then

3—2a

Cor (= (k4 10, ) < A (2]

- T

for allr €0, 1[, n > 1, where Ay, = Axo(a) is a constant depending only on «.
First, we prove the following partial case of Theorem 4.0.

Lemma. 4.1 Let N > 0 be an integer. Then,

n \ V3
Cor (1 (0 7)) < ()

- T

for all v € [0, 1[, n > 1, where Ay, = A (N) is a constant depending on N (of order N*V from
the proof below).

Proof. We use literally the same method as in Corollary 1.3&2.2. Indeed, if f € [2° (W) =H
then |Ppf(C)] = [(Psf, k¢)| = |(f, Ppk¢)|, where (., .) means the Cauchy pairing and k; =
(1 —Zz)_l. Denoting H* the dual of H with respect to this pairing, H* = I} ((k+1)"), we
get

IPsf (1 < Il I Pakclye < 11 K (1Pskelly + |[(Pok)™ || ).
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where W = {f = k>0 f(k)2F £l = > k0 ‘f(k)‘ < oo} stands for the Wiener algebra, and
Ky is defined in Corollary 1.3. Now, applying Hardy’s inequality (see [N2] p.370, 8.7.4 (c)),

IPof(O1 < 7 Ko (| (Poke)|| |+ 10Poke) )1+ 7 | (Pok) ™|+ |(Poke)™ (0)

which gives using Lemma 2.1,

[P f(Q)] <

< 11y Ko (122 WPl + 1(Pake) (0] +

N+1
M +

+ (N +1)! ( [Pkl g + ‘(PBkc)(N) (O)D <

2n
< 1 v ( (22 ) WPkl + VPl +

m N+1
+(N +1)! (E) [Pkl 2 + N ||PBkC||H2) :

1
This completes the proof since || Pkl < (£%)° . O

Proof of Theorem 4.0. This is the same application of interpolation between Banach spaces, as
before (Theorem 1.0&2.0) excepted that this time we apply Lemma 0 with X = [3° ((k + 1)®) to
get

I T Nige (1)) ooy B 1ree= ¢ (0, 157 ((k + 1)), H) |
where T and B, are defined in Lemma 0.
Applying Lemma 4.1 and using (again) [Tr] Theorem 1.9.3 p.59, we can complete the proof. O

5. An upper bound for ¢ (o, I (w;), H®), 2 <p < oo
The aim of this section is to prove the following theorem.

Theorem. 5.0 Let 2 <p<oo, a<0. Then

l—a—1 %—a—%
B( ! ) son,r<zz<<k+1>a>,ﬂ°°>3A( n ) |

1—17r 1—17r

for allr €0, 1[, n > 1, where A = A(a, p) is a constant depending only on o and p and
B = B(p) is a constant depending only on p.
2_a-2 . .
Remark. As before, the upper bound (1%)2 ? is not as sharp as in Section 1. We can

suppose here the constant (%)1_0_%should be a sharp upper (and lower) bound for the quantity
Cor (B ((E+1)%), H*), 2<p < +o0.



13

Proof. We first prove the right hand side inequality. The proof repeates the scheme from previous
theorems and from Theorem 3.0 in particular. We have already seen (in Theorem 3.0) that

|| T Hlﬁ((k—l—l)a)—)Hw/BgHOO: C(U> Iy ((k‘ + 1)0) ) HOO) )
where 7" and B, are defined in Lemma 0. Now, using both Theorems 1.0&4.0, and [Tr] Theorem
1.9.3 p.59, we complete the proof. The proof of the left hand side inequality is exactly the same
as in Theorem 3.0. O

6. Carathéodory-Schur Interpolation in weighted Bergman
spaces

We suppose that X = L <(1 — |z\2)BdA), B> —1and 1 < p < 2. Our aim in this section is

to give an estimate for the constant for a generalized Carathéodory-Schur interpolation, (a partial
case of the Nevanlinna-Pick interpolation),

c(orm X, HX) = sup {|| fllappyu= = f € X, [|fllx <1},

where || f |z jppr= = inf{||f + 09l : g € X}, and ox,, = {A, A, ..., A}, A € D. The
corresponding interpolation problem is: given f € X, to minimize ||h[|_, such that
hO(A) = fI(N),0< 5 <n.

For this partial case, we have the following generalization of the estimate from Theorem 1.0.
Theorem. 6.0 Let A\ €D, > —1 and 1 < p < 2. Then,

c (am, L» ((1 - |z|2)BdA) , H°°> <A (%W) - ,

where A" = A'(B, p) is a constant depending only on 8 and p.

We first need a simple equivalent to I;(8) = fol r2HL(1 —r2)Bdr, B > —1.

Lemma. 6.1 Let k>0, 8> —1 and I(B) = fol r?* (1 —r2)Pdr. Then,

1T 1
()~ PO,

for k — oo, where I' stands for the usual Gamma function, I'(z) = 0+°° e %5 1ds.
Proof. Let a = \/leU b= maz(1,a?). Since 1 — e™* ~ u as u —> 0, we have

1 o
Iu(B) = / P — 2P dr = / e~ @RI _ 2Bty —
0 0

_ /a 6_2(k+1)t<1 . e—2t>5dt n /°° 6_2(k+1)t<1 . €—2t)ﬁdt _
0 a

@ b
=200t _ =23t 4 O < —2a(k+1))
= e — € + —€ =
/0 k+1
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¢ b
_ —2(k+1)t B —2a(k+1) | _
(1+0(1))/0 (2t) dt+0<k+1e )

2(k+1)a s B ds 0 b 2a(k1)
(1o ))/0 ¢ (k:+1) 2t 1) (k+16 )

_ 1#(1 +o(1)) /2(k+1) ssBds 1+ O b —2akin)) _
=S 0 i s k‘—l—le =
1 I(B+1) b oatkr)) _
_2(1{:+1)ﬁ+1(1+0(1))+0(k+16 -

1 T(B+1) 1T(B+1)
=—-————"(1 1))~ o——=
20+ 1yper o) ~ g pm
which completes the proof. [
Proof of Theorem 6.0. Step 1. We start to prove the Theorem for p = 1.

Let feX=1L! ((1 — |z\2)BdA) such that || f||x < 1. Since X o by = X, we have

fobA:ZkZOakzkeX. Let p, =Y 1 éakz and g = p, oby. Then, foby —p, € 2" X and
f—pnoby € (2"X)oby=0biX. Now, p,oby = Zk:o apbh and

1Pn © Oxlloe = llPnlloe < An[[f 0 0allx

where A, = sz>0ak2 = Yhso 4z HX—>H°°
’ )szz

1f obaly < / 1 a2 (1= [2)° dA = / 1 ()] (1= [oa(@)?)? [B, ()
<25/|f(w)|<<1—|xw)<1—|w\)) <m>2dA:
o D ‘1—Xw‘2 ‘1—Xw‘2
9 2+
=/|f(w)| (1 |wp)” (@) dA <
‘1—)&1}‘
(1-1AP) " 1=\
SSUpwelD(‘ ) /|f |w|) dA < <(1_‘>“)2> ||f||Xa

which gives,
14+ A\
b < .
[fobally < <1—|)\|> 11 x

We now give an estimation for A,. Let g(z) = Zk> Q( )2F € X, then

n—1
> gk
k=0

WMH

o0
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Now, noticing that

1 2m
/g (w)w” (1 — |w|2)5 dA = / / flre®)rke ™ (1 - 7’2)6 rdtdr =
D o Jo

1 2m 1
= / (1 — 7»2)57]@—1—1/ f(T’eit)e_iktdtd’l“ — / f];(k‘)rk—l_l(l . 7’2)Bd7’,
0 0

0
where g.(2) = g(rz), g,(k) = r*g(k). Setting I.(3) = fol r2F L1 — r2)Pdr, we get

! /Dg(w)@k (1— [wl?)’ dA.

9 =73

Then,
1

9091 = 35 | [ o) (1= 0 d] < 2 ol

which gives

n—1 n—1
1
gk < D7z | gl
2007 =\ m )1l
Now using Lemma 6.1,
n—1 n—1
1 2 2c
~n—oco kﬁ—H ~ 2 n6+27
~ I (8) "B+ ,;O T(6+1)

where cg is a constant depending on /3 only. This gives
n—1
> _ak)2"
k=0

where Cj is also a constant depending on 3 only. Finally, we conclude that A, < Csn*? and as

a result,
1 A 2+p
Ipao bl < G (TR 7

< Con* gllx

o0

which proves the Theorem for p = 1.
Step 2. This step of the proof repetes the scheme from Theorems 3.0&5.0. Let T : L ((1 — |z\2)5 dA) —

H®> /by H* be the restriction map defined by
Tf = {g CH®: f—gebiLr ((1— |z|2)BdA)},

for every f. Then,

p ~
| T HLQ((1_|Z|2)adA>_)Hw/bgHw: c (a, Ly ((1 — |z|2) dA) JH ) :
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Now, let v > 8 and P, : L? <(1 — \z|2)BdA> — LP ((1 — \2\2)ﬁdA> be the Bergman projec-
tion, (see [H], p.6), defined by

ow=(7+1)/7(1_|w| )

D (1 — Z@)}M

f(w)dA(w),

for every f. P, is a bounded projection from L? ((1 - |z|2)6 dA) onto L? ((1 - |z|2)6 dA) (see [H],
Theorem 1.10 p.12), (since 1 < p < 2). Moreover, since L2 ((1 — |z|2)6 dA) C Lr ((1 — |z|2)7 dA) ,
we have P, f = f for all f € L? ((1 — \2\2)ﬁdA> , (see [H], Corollary 1.5 p.6). As a result,

H T ||L§((1—\z\z)ﬁdA>—>H°°/bKH°°SH TP'\/ HLP((l_Iz‘Q)ﬁdA>_)Hoo/bg\LHoo7

for all 1 < p < 2. We set

ci(B) = ||P’Y||Li((1_‘Z‘2)ﬁdA)_>Lé((1—|z|2)ﬁdA) ’

for ¢ = 1, 2. Then,

HTP’YHLl((1—|z\2)ﬂdA)—>Hoo/b§Hoo =

< ||THL111((1_‘2‘2)‘3dA)_>Hoo/b§Hoo HP“/HLl((1—\z\2)ﬁdA)—>L}l((l—|z|2)BdA) N

— <a, Lk ((1 - |z\2)ﬂdA) ,H°°> a(B) <

) n B+2
<A 1
<A@ () e
using Step 1. In the same way,

||TPFY||L2((1—‘z‘2)ﬁdA)—>H°°/b7;H°° S ||T||Lg((1—|z|2)ﬁdA)—>H°°/b§\LH°° 02(5)'

Now, we recall that
12 ((1 - \z|2)ﬁdA> =2 ((k;+ 1)—%) B> —1.

As a consequence,

T (11t e = © (a, 2 ((k: n 1)—%) ,H°°> ,

and, applying Theorem 1.0,
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B+1
250=+1

(B+1 n :
HTP7HL2((1—\z|2)6dA>_>Hoo/b§H°° < C2<5>A ( 2 7’ 2) (m) =

s (5502) ()

We finish the reasoning applying Riesz-Thorin Theorem, (see [Tr] for example), to the operator
TP, If pe[l, 2], there exists 0 < # < 1 such that

1 11
5_(1_9>I+9§_1_

)

0
2

and then,
2L (= 1) aa), 22 (= 1277 aa)] = o (= 1277 aa),

and

||TP'Y||Lp((1—|z|2)BdA)—>H°°/bKH°° S

1-0 0
< <HTP7HL1((1—z|2)BdA)—>Hoo/b§Hoo) <||TP7||L2<<1—zz)ﬁdA>—>H°°/b§H°°> =

- (CI(B)W’ (s —n|A|)B+2> (CQ(M (52)( —nA)> i

2

— (cl(ﬁ)A'(ﬁ, 1))1_9 (Cz(ﬁ)A' (% 2))9 (%w)(5+2)(1—9)+96%.

B+2
p

Now, since = 2(1 = 1), (8+2)(1—0)+ 622 = f— (1= 1)g+2-2+2 = 2 and

||T||L§((1—\z\2)ﬁdA)—>Hw/bKH°° S ||TP'YHLP((1—|z\2)’8dA)—>H°°/b§fH°° ;

we complete the proof. [

7. A lower bound for C, , (lg(wk), HOO)
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Here, we consider the weighted spaces 12(wy) of polynomial growth and the problem of lower
estimates for the one point special case o, x = {\, A, ..., A}, (n times) A € D. Recall the definition
of the semi-free interpolation constant

C(O-n,kaHa Hoo) = Sup{”.fHHoo/bgHoo : f € H> ||.f||H < 1}>

where || f||ze oy = inf {[[f + b3gll : g € H}. In particular, our aim is to prove the sharpness
of the upper estimate for the quantity

Cn,r lg ;1\771 7HOO )
(k+1)7=

(where N > 1 is an integer), in Theorem 1.0.

Theorem. 7.0 Let N > 1 be an integer. Then,

N

1 n 2

¢ U"’l2 —1 >HOO 2(1, ( )
<*’ A((k+1)N2> ) AT

for a positive constant ay depending on N only. In particular,

N 1 N
n 2 n 2

- < LA [ — H* | <A
ow (1—r> ‘C"””<l“<(k+1)”zl)’ )‘ (1—r) ’

foralln>1,0<r <1, where A=A (%) is a constant defined in Theorem 1.0.

In the proof, we use properties of spaces X = [2(wy). As it is mentionned in the Introduction,

Lo (wy) = {fz Yo FwEE =Y I R)Puf < OO},

k>0 k>0

with a weight w satisfying wy, > 0 for every k > 0 and limy(1/ w,i/ k) = 1. The latter condition
implies that [?(wy) is continuously embedded into the space of holomorphic functions Hol(D) on
the unit disc D = {z € C: |z| < 1} (and not on a larger disc, i.e. {?(wy) does not contained in
Hol(rD) for every r > 1). In this section, we study the case p = 2, so that [?(wy) is a reproducing
kernel Hilbert space on the disc . The reproducing kernel of [2(wy,), by definition, is a
I2(wy)-valued function A — k¥, X € D, such that (f, k¥) = f(\) for every f € [2(wy), where
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(-,.) means the scalar product (f, g) = > ;- h(k)§(k)w?. Since one has
FO) =Y a0 f(R)A Lw? (X € D), it follows that

Nk
kY (z) = Z —, 2z €D.
>0 Wk

2
a

ka(z) = (1= 22)7,

In particular, for the Hardy space H? = [2(1), we get the Szegd kernel

for the Bergman space L2(D) = [2 <(k 11)%) - the Bergman kernel ky(z) = (1 — Xz)~2
+

(2) Conversely, following the Aronszajn theory of RKHS (see, for example [A] or [N2] p.317),
given a positive definit function (A, 2) — k(A, 2) on D x D (i.e. such that Y, @a;k(A;, A;) > 0
for all finite subsets (A;) C D and all non-zero families of complex numbers (a;)) one can define
the corresponding Hilbert spaces H (k) as the completion of finite linear combinations ), @;k(\;, )

endowed with the norm
D> @k, )= @iak(N, Ay).
i ij

When k£ is holomorphic with respect to the second variable and antiholomorphic with respect to
the first one, we obtain a RKHS of holomorphic functions H (k) embedded into Hol(DD).

For functions k of the form k(\,z) = K(Az), where K € Hol(D), the positive definitness is
equivalent to K(j) > 0 for every j > 0, where K(j) stands for Taylor coefficients, and in this
case we have H (k) = (2(w;), where w; = 1/1/K(j), j > 0. In particular, for K(w) = (1 — w)~7?,
ka(z) = (1= X2)7%, B > 0, we have K(j) = (gf{_l) (binomial coefficients), and hence w; =

[NIES

(WM) . Indeed, deriving i, we get by induction

(1—2)F = ﬁ SO0+ B = e D = ST

Clearly, w; ~ 1/ j%, where a; ~ b; means that there exist constants ¢; > 0, c; > 0 such that
c1a; < bj < caa; for every j. Therefore, H(k) = [2 (%) (a topological identity: the spaces
(k+1) 2
are the same and the norms are equivalent).
We will use the previous observations for the following composed reproducing kernels (Aronszajn-
deBranges, see [N2] p.320): given a reproducing kernel & and an entire function ¢ = 7., ¢(j)z’

with ¢(7) > 0 for every j > 0, the function ¢ o k is also positive definit and the corresponding
RKHS

H(pok)=: ¢(H(k))
satisfies the following. For every f € H (k) we have pof € ¢(H (k)) and ||¢Of||i(H(k)) < ‘P(Hf”?{(k))
(see [N2] p.320). In particular, if ¢ is a polynomial of degree N and k is the Szegd kernel then
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poka(z) = > 50 cjszj with ¢, >~ (k+ 1)¥~! and hence

2\ 72 1
SO(H>_ la<(k+1)¥)

(a topological identity: the spaces are the same and the norms are equivalent). The link between

spaces of type [2 ((k ;Nl) (already mentionned in Section 1) and of type ¢(H?) = H, being
+1)" 2
established, we give the following result.

Lemma 7.1 Let ¢(z) = fovzo arz®, ap > 0 (ay > 0), and H, = ©(H?) be the reproducing

kernel Hilbert space corresponding to the kernel (;) Then, there exists a constant a(yp) > 0

1-Xz
such that

vz

(03, Hyo H™) > ()(%IM)

Proof. 1) We set

(1= A2
Zbk ]_|—‘)\Z) >Hn:(pan>

v =0H,.

Then ||Q,||3 = n, and hence by the Aronszajn—deBranges inequality, see [N2] p.320, point (k) of
Exercise 6.5.2, with ¢(z) = 2 and K(\, 2) = ky(2) = and noticing that H(p o K) = H,

Tt s

1117, < Ve ([Qnll2) = b*o(n).
Let b > 0 such that b*p(n) = 1.

2) Since the spaces H,, and H> are rotation invariant, we have ¢ (o, x, H,, H*) = ¢ (0p, 4, Hy, H®)
for every A, o with [A] = [u[ = r. Let A = —r. To get a lower estimate for ||¥| x, ppu, consider G
such that U — G € by Hol(D), i.e. such that bH, oby — G o by € z"Hol(D).

3) First, we show that

Y =: Woby = bH, oby

is a polynomial (of degree nN') with positive coefficients. Note that
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n—1
L-ppe
k
Q”Ob*_z 1—ba(z)

n—1
=(1-[\P) > (1—1— (1—2X sz Xz”)

=1

n—1
=(1- 7"2)_1/2 (1 +(1+7) sz +rz”> = (1- 7“2)_1/21p1.

k=1

Hence, v = W o by =bH, 0by =bpo ((1 —r )_§ @Dl) and

N
poun =S awt(z)
k=0

1) = H_,~). Now, it

(In fact, we can simply assume that ¢ o ¢y = 1" (2) since H, = [2 <(k Yt
+1) "2

is clear that 1 is a polynomial of degree Nn such that

= Z@E(]) = by ((1 — 7“2)—1/2(1 + r)n) = by (Q / %n) > 0.

4) Next, we show that there exists a constant ¢ = ¢(p) > 0 (for example, ¢ = a/2?V (N —1)!, «
is a numerical constant) such that

S = > b = Y i) -

J=0

where m > 1 is such that 2m =n if n is even and 2m — 1 = n if n is odd.

Indeed, setting

3

Sp = 2,
=0
we have
m m n—1 k m
Z( f)zz (1—0—(1—1—7‘) z’f_|_7‘z"> ZZ(Sﬁ—l)
k=1

Next, we obtain
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where v > 0 is a numerical constant. Finally,

m

oo m w2
2. () 2 gy = o gy

o (1 +r)n)k a
T2k —DI (T+r)k 2RI+ r)kk—1) () 2

)
> = (e O*

Summing up these inequalities in 32" (1) = b3 (p o 41) = b3 ax (1 —12) *2 3™ (4F) (or
simply taking k = N, if we already supposed ¢ = z%), we obtain the result claimed.

5) Now, using point 4) and the preceding Fejer kernel argument and denoting F,, = ®,,, + 2" ®,,,
where ®;, stands for the k-th Fejer kernel, we get

1 Te=w -
[V 5o pppmee = |[9]| o jenme > 5||w * Fplloo > 52 Y(j) >
7=0

>

N O

1+
N (=)
wn=§¢( +20:£. >

2 (p(n)"?

> a(p) (127,)
0

Proof of Theorem 7.0. In order to prove the left hand side inequality, it suffices to apply Lemma

7.1 with ¢(z) = 2 . Indeed, in this case H, =I2 <( iN,l = H_~. The right hand side
k1) 2
inequality is a straightforward consequence of Theorem 1.0

(assuming that ¢ = 2V)
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